JPS5974253A - Manganese-aluminum-carbon alloy magnet - Google Patents

Manganese-aluminum-carbon alloy magnet

Info

Publication number
JPS5974253A
JPS5974253A JP57183979A JP18397982A JPS5974253A JP S5974253 A JPS5974253 A JP S5974253A JP 57183979 A JP57183979 A JP 57183979A JP 18397982 A JP18397982 A JP 18397982A JP S5974253 A JPS5974253 A JP S5974253A
Authority
JP
Japan
Prior art keywords
alloy
added
parts
weight
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57183979A
Other languages
Japanese (ja)
Other versions
JPS6037868B2 (en
Inventor
Susumu Sanai
佐内 進
Seiji Kojima
小嶋 清司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57183979A priority Critical patent/JPS6037868B2/en
Publication of JPS5974253A publication Critical patent/JPS5974253A/en
Publication of JPS6037868B2 publication Critical patent/JPS6037868B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain the titled alloy magnet with improved magnetic characteristics such as coercive force and energy product by adding restricted amounts of P and Ni to an Mn-Al-C alloy magnet having a specified composition consisting of Mn, C and Al. CONSTITUTION:A cast billet of an alloy prepared by adding, by weight, <=0.6 part P and 0.2-2.5 parts Ni to 100 parts alloy having a composition consisting of 68.0-73.0wt% Mn, (1/10Mn-6.6)-(1/3Mn-22.2)wt% C and the balance Al or by further adding 0.01-0.5 part Ti is subjected to soln. heat treatment at about 1,100 deg.C, cooling and warm plastic working such as extrusion. The resulting Mn- Al-C alloy magnet can be provided with improved magnetic characteristics. Said small amount of P increases the coercive force, and >=0.2 part Ni produces a significant effect on the magnetic characteristics, yet >2.5 parts Ni reduces the energy product. Ti increases the energy product furthermore when added by said amount.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、磁気特性全向上させたマンガン−アルミニウ
ムー炭素(Mn−ム1−C)系合金磁石に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a manganese-aluminum-carbon (Mn-aluminum-1-C) alloy magnet having completely improved magnetic properties.

屹の 従来例の構成と。問題点 近年Mn 6 B、O〜73.0重量%(以下単に%で
表示する)、c (i”n −e、e ) 〜(7Mn
 −22,2)96(たたし数式内のMnはマンガン成
分の重量%を表す)、残部A[の組成からなる磁気特性
の優れた異方性Mn−Al−C系合金磁石が開発されて
いる(特公昭54−31448号公報)。またMn−A
N−C合金の磁気特性を向上させた合金としテMn−A
71−C−Ni合金(特開昭63−73411号公報)
 、 Mn −kl−C−Ni−Ti合金(特開昭54
−83613号公報) 、 Mn−Al−C−P合金(
特願昭57−3918)などが提案されている。
The configuration of a conventional example of a leopard. Problems In recent years, Mn 6 B, O ~ 73.0% by weight (hereinafter simply expressed as %), c (i"n - e, e ) ~ (7Mn
-22,2)96 (Mn in the formula represents the weight percent of the manganese component), and the remainder A [Anisotropic Mn-Al-C alloy magnet with excellent magnetic properties was developed. (Japanese Patent Publication No. 54-31448). Also, Mn-A
Mn-A is an alloy with improved magnetic properties of N-C alloy.
71-C-Ni alloy (Japanese Unexamined Patent Publication No. 63-73411)
, Mn-kl-C-Ni-Ti alloy (Japanese Unexamined Patent Publication No. 1983
-83613), Mn-Al-C-P alloy (
Japanese patent application No. 57-3918) has been proposed.

このMn−五l−C系合金磁石は、すてにスピーカ、電
気機器などに使用されているが、電動機や発電機など磁
石に逆磁界が加わる機器においては、磁石の保磁力がよ
り大きくなること、及びスピーカ、電気機器などでは小
型化の傾向のため磁石のエネルギー積(B H) ma
xがより犬きくなることが要求されている。
This Mn-5L-C alloy magnet is already used in speakers, electrical equipment, etc., but the coercive force of the magnet becomes larger in equipment such as motors and generators where the magnet is subjected to a reverse magnetic field. In addition, due to the trend toward miniaturization of speakers, electrical equipment, etc., the energy product of magnets (B H) ma
x is required to become more dog-like.

発明の目的 本発明は、Mn −AA −Q系合金磁石の磁気特性を
高めることを目的とする。
OBJECT OF THE INVENTION The object of the present invention is to improve the magnetic properties of a Mn-AA-Q alloy magnet.

発明の構成 本発明は、上記の目的を達成するため、Mn −AN−
C合金にリン(P)、ニッケル(Ni)の双方を添加す
ることを特徴とする。また本発明は、上記の目的を達成
するため、P、Nlと更にチタン(T1)の3元素を添
加することを特徴とする。
Structure of the Invention In order to achieve the above object, the present invention provides Mn -AN-
It is characterized by adding both phosphorus (P) and nickel (Ni) to the C alloy. Further, the present invention is characterized in that three elements, P, Nl, and further titanium (T1) are added in order to achieve the above object.

本発明によれば、Mn−AA−C系合金磁石の磁気特性
、特に医磁力とエネルギー積を高めることができる。
According to the present invention, the magnetic properties of the Mn-AA-C alloy magnet, particularly the medicinal magnetic force and energy product, can be improved.

実施例の説明 Mn−Al−C系合金磁石は、前記組成範囲内のMn−
Al−C系合金’jz530〜830’C,の温度領域
で押出加工や圧縮加工などの温間塑性加工することによ
り製造される。
Description of Examples The Mn-Al-C alloy magnet has an Mn-Al-C alloy magnet within the above composition range.
It is manufactured by performing warm plastic working such as extrusion working or compression working in the temperature range of Al-C based alloy'jz530 to 830'C.

第1図〜第3図は代表的な実験データで、前記組成範囲
内のMn−AA−C合金にP及びNi力双方を添加した
鋳造ビレットに、1000℃で溶体化熱処理を施した後
、室温まで冷却し、次に温間塑性加工(押出比6)した
後の添加量(前記合金100に対する割合を%で表す)
に対する医磁力(lHc)及び(B H) w&xの変
化を示す。たたしtHc 、 (B H) maxの値
は同じ条件で作成したMn−A l −C−Ni  合
金(Ni=o、s%)のIHC。
Figures 1 to 3 show representative experimental data, in which a cast billet made of a Mn-AA-C alloy within the above composition range with both P and Ni added was subjected to solution heat treatment at 1000°C. Amount added after cooling to room temperature and then warm plastic working (extrusion ratio 6) (expressed as a percentage relative to the alloy 100)
Figure 2 shows changes in medical magnetic force (lHc) and (B H) w&x. The values of tHc and (BH) max are IHC of a Mn-A1-C-Ni alloy (Ni=o, s%) prepared under the same conditions.

(B H) waxに対する比で表しである。(BH) It is expressed as a ratio to wax.

第1〜3図に示しであるように、P、Ni双方を添加す
ることにより、温間塑性加工後のtHc 。
As shown in FIGS. 1 to 3, by adding both P and Ni, tHc after warm plastic working.

(BH) maxはMn−41−C−Ni  合金に比
べて大幅に向上し、特に0.01≦P≦0.6 、0.
4≦Ni≦2.0の範囲でIHCは15%以上向上する
。(BH)maxは0.03≦P≦0.2 、0.4≦
Ni≦1.2の範囲で約10%以上向上する。またP、
Niの添加量については、P添加量が0.6%を越える
と熱処理後合金中に非磁性のr相が多くなり、Ni添加
量が2.6%を越えると熱処理後合金中にに相(Mn 
−AA−Ni相)が多くなり、残留磁束密度が大幅に低
下して(BH)maxも低下する。またPはごく微量添
加でIHCが向上し、またNiは0.2%以上で磁気特
性に及ぼす効果が大きい。よってP、Niの最適添加量
はo<p≦0.6 、0.2≦Ni≦2.6である。
(BH) max is significantly improved compared to the Mn-41-C-Ni alloy, especially when 0.01≦P≦0.6 and 0.01≦P≦0.6.
IHC improves by 15% or more in the range of 4≦Ni≦2.0. (BH)max is 0.03≦P≦0.2, 0.4≦
The improvement is about 10% or more in the range of Ni≦1.2. Also P,
Regarding the amount of Ni added, if the amount of P added exceeds 0.6%, non-magnetic r phase will increase in the alloy after heat treatment, and if the amount of Ni added exceeds 2.6%, the amount of non-magnetic r phase will increase in the alloy after heat treatment. (Mn
-AA-Ni phase) increases, the residual magnetic flux density decreases significantly, and (BH)max also decreases. Further, IHC is improved even when P is added in a very small amount, and Ni has a large effect on magnetic properties when it is added in an amount of 0.2% or more. Therefore, the optimum amounts of P and Ni to be added are o<p≦0.6 and 0.2≦Ni≦2.6.

P、Ni を添加することによってticが向上する原
因はまた明らかでない。しかし熱処理のみによって得ら
れる等方性磁石では、P、Ni を添加してもIHCは
向上しないが、温間塑性加工後の異方性磁石で向上する
こと、及びP、Niが相状態に及ぼす影響として、P添
加量が多いとε相(高温相)−Pτ相(磁性相)の変態
速度が遅くなり、N1添加箪が多いと逆に速くなる現象
がある。以上から推察すると、P 、 Niは主要構成
元素のMnやAlのエネルギー状態等に大きな影響を与
えていると考えられ、またこれらの影響は結晶1/fO
細粒化を引き起している温間塑性加工の効果によって、
より促進される。これらのことがIHc増大の方向に作
用していると考えられる。
The reason why tic is improved by adding P and Ni is also not clear. However, in isotropic magnets obtained only by heat treatment, IHC does not improve even when P and Ni are added, but it improves in anisotropic magnets after warm plastic working, and P and Ni affect the phase state. As an effect, when the amount of P added is large, the transformation rate of ε phase (high temperature phase)-Pτ phase (magnetic phase) is slowed down, and when the amount of N1 added is large, it becomes faster. Inferring from the above, P and Ni are considered to have a large influence on the energy states of the main constituent elements Mn and Al, and these influences also affect the crystal 1/fO
Due to the effect of warm plastic working which causes grain refinement,
more promoted. It is thought that these factors act in the direction of increasing IHc.

第4図、第6図は前記組成範囲内のMn−Ll−C合金
にP 、 Ni 、 Tiの3元素を添加した鋳造ビレ
ットに1000℃で溶体化熱処理を施した後、室温まで
風冷し、次に温間塑性加工(押出比5)した後の添加量
に対するlHc 、 (BH) maxの変化を示す。
Figures 4 and 6 show a cast billet made by adding the three elements P, Ni, and Ti to an Mn-Ll-C alloy within the above composition range, which was subjected to solution heat treatment at 1000°C and then air-cooled to room temperature. , Next, the change in lHc, (BH) max with respect to the added amount after warm plastic working (extrusion ratio 5) is shown.

ただしlHc 、 (BH) maxの値は同じ条件で
作製したMn −Ll −C−Ni合金(Ni:0.8
%)のrHc 、 (BH) waxに対する比で表し
ている。
However, the values of lHc and (BH) max are the values of Mn-Ll-C-Ni alloy (Ni: 0.8
%) to rHc, (BH) wax.

第4図よりtHc id Tiの添加量にかかわらず、
Ni、P添加合金のtHcとほぼ同じ大きな値を示す。
From Figure 4, regardless of the amount of tHc id Ti added,
It shows a large value almost the same as the tHc of Ni and P-added alloys.

第6図より0.01≦Ti≦0.5のTi添加で(BH
)maxが大幅に向上するのがわかる。これらの合金に
ついて金属顕微鏡で熱処理後の合金の組織を観察してみ
ると、P −Ni −Ti添加合金はN1添加合金、N
1−P添加合金に比へて結晶粒が小さくなっており、(
BH)waxの向上はTi添加による結晶粒の微細化に
よるものと推定される。以上よりP 、 Ni 、 T
iの最適添加量は0〈P≦Q6゜0.2≦Ni≦2.5
 、0.01≦T1≦0.6テある。
From Fig. 6, with Ti addition of 0.01≦Ti≦0.5 (BH
) max is significantly improved. When we observed the structure of these alloys after heat treatment using a metallurgical microscope, we found that the P-Ni-Ti alloy is the same as the N1-added alloy and the N1-added alloy.
The crystal grains are smaller compared to the 1-P-added alloy, (
It is presumed that the improvement in BH) wax is due to the refinement of crystal grains due to the addition of Ti. From the above, P, Ni, T
The optimal addition amount of i is 0〈P≦Q6゜0.2≦Ni≦2.5
, 0.01≦T1≦0.6te.

更に本発明のMn−ム1−C−P−Ni合金、及びMn
−kl−C−P−Ni−Ti合金に鉄(Fe)、ホウ素
(B)、銅(Cu)をそれぞれ単独又は複数で少量添加
して検討したところ、それらの磁気特性はそれぞれFe
l、B、Cue添加しない合金(Mn−A#−C−P−
Ni合金、 Mn−kl−C−P−Ni−Ti合金)と
比較してほぼ同じかやや向上する傾向があった。
Furthermore, the Mn-mu 1-C-P-Ni alloy of the present invention, and the Mn
-kl-C-P-Ni-Ti alloy was studied by adding small amounts of iron (Fe), boron (B), and copper (Cu), each singly or in combination, and the magnetic properties of each were
Alloy without addition of l, B, Cue (Mn-A#-C-P-
Ni alloy, Mn-kl-C-P-Ni-Ti alloy), there was a tendency for it to be almost the same or slightly improved.

実施例1 Mn70,0%、 A12 ea、ts%、Co、5%
の組成のものにPQ05%、 N= o、s%を添加し
た外径18程の円柱状の合金ビレッ)k溶解鋳造により
作成し、ビレットを1100℃で約1時間医持後炉論し
た。このビレッ)i700℃の温度で押出加工(押出比
6)した。押出加工後の合金の磁化優位方向における磁
気特性値を測定したところ、残留磁束密度Br=590
0G 、IHC=3BOOOe 。
Example 1 Mn70.0%, A12 ea, ts%, Co, 5%
A cylindrical alloy billet with an outer diameter of about 18 mm was prepared by melting and casting, and the billet was heated at 1100° C. for about 1 hour and then heated in a furnace. This fillet was extruded at a temperature of 700°C (extrusion ratio 6). When the magnetic property values of the alloy in the dominant magnetization direction after extrusion processing were measured, the residual magnetic flux density Br = 590
0G, IHC=3BOOOe.

(BH) max = 6.2 MG Oe T ;h
 f)、上記のP−Ni添加合金と同じ条件で製造した
Mn−kl−C−Ni合金の磁気特性値と比較してIH
C73; 2 s 96 、 (BH)maXが16%
向上した。
(BH) max = 6.2 MG Oe T ;h
f), IH compared with the magnetic property values of the Mn-kl-C-Ni alloy produced under the same conditions as the above P-Ni alloy.
C73; 2s96, (BH)maX is 16%
Improved.

実施例2 Mn 69.5%、 A7+29.4%、Co、6%の
組成のものにPo、1%、Ni0,4%を添加した外径
18驕の円柱状の合金ビレットを溶解鋳造により作成し
た。このビレットを1000℃で約1時間保持後空冷し
、700℃の温度で押出加工(押出比6)した。押出加
工後のNi −P添加合金の磁化優位方向における磁気
特性値を測定したところ、Br=eoooe 、IHC
:3600G、(BH)max=乙OMGOsであった
。上記のP−Ni添加合金と同じ条件で製造したMn−
41−C−Ni 合金の磁気特性値と比較してtHcが
20%、(BH)maxが1o%向上した。
Example 2 A cylindrical alloy billet with an outer diameter of 18 mm was created by melting and casting, with the composition of 69.5% Mn, 29.4% A7, 6% Co, and 1% Po, and 0.4% Ni added. did. This billet was held at 1000° C. for about 1 hour, cooled in air, and extruded at a temperature of 700° C. (extrusion ratio 6). When the magnetic property values in the magnetization dominant direction of the Ni-P added alloy after extrusion processing were measured, Br=eoooe, IHC
:3600G, (BH)max=Otsu OMGOs. Mn- produced under the same conditions as the above P-Ni alloy
Compared to the magnetic property values of 41-C-Ni alloy, tHc was improved by 20% and (BH)max was improved by 10%.

実施例3 Mn 7 o、29f1. Ajt 29,4%、 C
004%(7)組成(7JものにPo、07%、Ni0
.6%、Ti0,1%を添加した外径IElljXの円
柱状の合金ヒレットヲ溶解鋳造により作成し、ビレット
を1100’Cで約1時間保持後風冷した。このビレッ
トを700°Cの温度で押出加工(t!出比6)した。
Example 3 Mn 7 o, 29f1. Ajt 29.4%, C
004% (7) Composition (Po, 07%, Ni0 for 7J)
.. A cylindrical alloy fillet with an outer diameter of IElljX containing 6% Ti and 0.1% Ti was prepared by melt casting, and the billet was held at 1100'C for about 1 hour and then air cooled. This billet was extruded at a temperature of 700°C (t! extrusion ratio 6).

押出加工後の合金の磁化優位方向における磁気特性値を
測定したところ、Br:6050G、夏HC=3850
G。
When the magnetic property values of the alloy in the magnetization dominant direction after extrusion processing were measured, Br: 6050G, summer HC = 3850
G.

(BH)max=7.4MGO6T4つ7’c。上記P
 −Ni −T工添加合金と同じ条件で製造したMn−
A/!−C−Ni合金及びMn−41−C−Ni−Ti
合金を比較した。ticについてはN1添加合金、Ni
 −Ti添加合金と比較して26%向上した。(BH)
waxについてはN工添加合金と比較して30%、Nニ
ーTi添加合金と比較して12%向上した。
(BH) max=7.4MGO6T4 7'c. Above P
-Mn- manufactured under the same conditions as the Ni-T alloy
A/! -C-Ni alloy and Mn-41-C-Ni-Ti
Alloys were compared. For tic, N1-added alloy, Ni
-26% improvement compared to the Ti-added alloy. (BH)
Wax was improved by 30% compared to the N-added alloy and 12% compared to the N-Ti added alloy.

発明の効果 本発明は、従来のMn−kl−C系合金磁石よりも保磁
力、 (BH) maxを改良したMn−A71!−Q
−P −Ni 系合金磁石、及びMn−A 1−C−P
−Ni −Ti系合金磁石を提供するもので、この合金
磁石はスピーカ、電気機器などに適している。
Effects of the Invention The present invention provides Mn-A71! which has improved coercive force and (BH) max than conventional Mn-kl-C alloy magnets. -Q
-P -Ni alloy magnet, and Mn-A 1-C-P
-Ni-Ti based alloy magnet is provided, and this alloy magnet is suitable for speakers, electrical equipment, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図はMn −Al−C合金にP、Ni、9
方を添加した合金を温間塑性加工した後の添加量を添加
した合金を温間塑性加工した後の添加量とIHC、(B
H) maXとの関係を示す図である。 第1図 Ni  流力口f(淘 第2図 第4図 第3図
Figures 1 to 3 show P, Ni, 9 in Mn-Al-C alloy.
IHC, (B
H) It is a diagram showing the relationship with maX. Figure 1 Ni Fluid port f (Tao Figure 2 Figure 4 Figure 3

Claims (1)

【特許請求の範囲】 (11−z7ガ768,0〜73.0重量%、炭@−7
M n−6,6) 〜(T”−22,2)重量%、残部
アルミニウムの組成からなる合金100重量部に対して
、リン全0.6重量以下、ニッケルヲ0.2〜2.6重
量部添加したことを特徴とするマンガン−アルミニウム
ー炭素系合金磁石。 (2) マンガン68.0〜73.0重量9fJ、炭素
(■Mn −6,6)〜(7Mn−22,2)重量%、
残部アルミニウムの組成からなる合金100重量部に対
して、リンをQ6重量部以下、ニッケルを0.2〜2.
6重量部、チタンを0.01〜0.5重量部添加したこ
とを特徴とするマンガン−アルミニウムー炭素系合金磁
石。
[Claims] (11-z7ga 768,0 to 73.0% by weight, charcoal@-7
M n-6,6) to (T"-22,2)% by weight, the balance being aluminum for 100 parts by weight of the alloy, the total amount of phosphorus is 0.6 weight or less, and the amount of nickel is 0.2 to 2.6 weight. A manganese-aluminum-carbon alloy magnet characterized by the addition of 68.0 to 73.0% manganese (9 fJ by weight) and carbon (■Mn-6,6) to (7Mn-22,2) by weight ,
For 100 parts by weight of an alloy with the balance being aluminum, phosphorus is contained in Q6 parts by weight or less, and nickel is contained in amounts of 0.2 to 2.
A manganese-aluminum-carbon alloy magnet characterized by adding 6 parts by weight and 0.01 to 0.5 parts by weight of titanium.
JP57183979A 1982-10-19 1982-10-19 Manganese-aluminum-carbon alloy magnet Expired JPS6037868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57183979A JPS6037868B2 (en) 1982-10-19 1982-10-19 Manganese-aluminum-carbon alloy magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57183979A JPS6037868B2 (en) 1982-10-19 1982-10-19 Manganese-aluminum-carbon alloy magnet

Publications (2)

Publication Number Publication Date
JPS5974253A true JPS5974253A (en) 1984-04-26
JPS6037868B2 JPS6037868B2 (en) 1985-08-28

Family

ID=16145181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57183979A Expired JPS6037868B2 (en) 1982-10-19 1982-10-19 Manganese-aluminum-carbon alloy magnet

Country Status (1)

Country Link
JP (1) JPS6037868B2 (en)

Also Published As

Publication number Publication date
JPS6037868B2 (en) 1985-08-28

Similar Documents

Publication Publication Date Title
JPS5853057B2 (en) Highly conductive copper-based alloy
US4427462A (en) Electric apparatus and its magnetic core of (100)[011] silicon-iron sheet made by rapid quenching method
US2193768A (en) Magnetic alloys
JPS6043900B2 (en) permanent magnet material
JPH0317893B2 (en)
JPS5974253A (en) Manganese-aluminum-carbon alloy magnet
JPH02266503A (en) Manufacture of rare earth permanent magnet
US3211592A (en) Method of manufacturing permanent magnets having large coercive force
JPS608297B2 (en) magnet alloy
US1968569A (en) Permanent magnet and method of making it
US4443276A (en) Mn--Al--C Alloys for anisotropic permanent magnets
KR900007666B1 (en) Amorphous alloy for use in magnetic heads
JP4218111B2 (en) Fe-Ni alloy powder and method for producing the same
JPH0146574B2 (en)
JPH0137467B2 (en)
JP2862985B2 (en) Magnetic shield parts
JPS5931583B2 (en) Anisotropic manganese-aluminum-carbon alloy magnet
JP3380575B2 (en) RB-Fe cast magnet
JPS58210150A (en) Amorphous metal and product
JPS59154003A (en) Permanent magnet
JPH0682573B2 (en) Anisotropic manganese-aluminum-carbon alloy magnet
JPS6155583B2 (en)
JPS62167852A (en) Low loss fe-base amorphous alloy
JPH0499819A (en) Production of mild magnetic steel products
JPS61168206A (en) Anisotropic manganese-aluminum-carbon series alloy magnet