JPS6037868B2 - Manganese-aluminum-carbon alloy magnet - Google Patents

Manganese-aluminum-carbon alloy magnet

Info

Publication number
JPS6037868B2
JPS6037868B2 JP57183979A JP18397982A JPS6037868B2 JP S6037868 B2 JPS6037868 B2 JP S6037868B2 JP 57183979 A JP57183979 A JP 57183979A JP 18397982 A JP18397982 A JP 18397982A JP S6037868 B2 JPS6037868 B2 JP S6037868B2
Authority
JP
Japan
Prior art keywords
alloy
max
added
manganese
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57183979A
Other languages
Japanese (ja)
Other versions
JPS5974253A (en
Inventor
進 佐内
清司 小嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57183979A priority Critical patent/JPS6037868B2/en
Publication of JPS5974253A publication Critical patent/JPS5974253A/en
Publication of JPS6037868B2 publication Critical patent/JPS6037868B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Hard Magnetic Materials (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、磁気特性を向上させたマンガンーアルミニウ
ム−炭素(Mn−AI−C)系合金磁石に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a manganese-aluminum-carbon (Mn-AI-C) alloy magnet with improved magnetic properties.

従来例の構成とその問題点 近年Mn68.0〜73.の重量%(以下単に%で表示
する)、C(命。
Conventional structure and its problems Recently, Mn68.0 to 73. % by weight (hereinafter simply expressed as %), C (life).

Mn−66)〜(きMn−22‐2)%(ただし数式内
のMnはマンガン成分の重量%を表す)、残部AIの組
成からなる磁気特性の優れた異方性Mn−山一C系合金
磁石が開発されている(特公昭54一31448号公報
)。またMn−AI−C合金の磁気特性を向上させた合
金としてMn一AI−C−Ni合金(特関昭53−73
411号公報)、Mh−N−C−Ni−Ti合金(特関
昭54−83613号公報)、Mn−AI−C−P合金
(特顔昭57−3918)などが提案されている。この
Mn−N−C系合金磁石は、すでにスピーカ、電気機器
などに使用されているが、電動機や発電機など磁石に逆
磁界が加わる機器においては、磁石の保磁力がより大き
くなること、及びスピーカ、電気機器などでは小型化の
煩向のため磁石のエネルギー積(BH)maxがより大
きくなることが要求されている。
Anisotropic Mn-Yamaichi C system with excellent magnetic properties, consisting of Mn-66) to (Mn-22-2)% (Mn in the formula represents the weight% of the manganese component), with the balance being AI. Alloy magnets have been developed (Japanese Patent Publication No. 54-31448). In addition, as an alloy with improved magnetic properties of Mn-AI-C alloy, Mn-AI-C-Ni alloy (Tokukan Sho 53-73
411), Mh-N-C-Ni-Ti alloy (Tokukan Sho 54-83613), Mn-AI-C-P alloy (Tokukan Sho 57-3918), etc. have been proposed. This Mn-N-C alloy magnet is already used in speakers, electrical equipment, etc., but in equipment such as motors and generators where the magnet is subjected to a reverse magnetic field, the coercive force of the magnet becomes larger and In order to reduce the size of speakers, electrical equipment, and the like, it is required that the energy product (BH) max of the magnet be increased.

発明の目的 本発明は、Mh−AI−C系合金磁石の磁気特性を高め
ることを目的とする。
OBJECT OF THE INVENTION The object of the present invention is to improve the magnetic properties of Mh-AI-C alloy magnets.

発明の構成 本発明は、上記の目的を達成するため、Mn−N−C合
金にリン(P)、ニッケル(Ni)の双方を添加するこ
とを特徴とする。
Structure of the Invention In order to achieve the above object, the present invention is characterized in that both phosphorus (P) and nickel (Ni) are added to the Mn--N--C alloy.

また本発明は、上記の目的を達成するため、P、Niと
更にチタン(Ti)の3元素を添加することを特徴とす
る。本発明によれば、Mn−AI−C系合金磁石の磁気
特性、特に保磁力とエネルギー積を高めることができる
。実施例の説明 Mn−AI−C系合金磁石は、前記組成範囲内のMn−
AI−C系合金を530〜83び0の温度領域で押圧加
工や圧縮加工などの温間塑性加工することにより製造さ
れる。
Further, the present invention is characterized in that three elements, P, Ni, and further titanium (Ti) are added to achieve the above object. According to the present invention, the magnetic properties of the Mn-AI-C alloy magnet, particularly the coercive force and the energy product, can be improved. Description of Examples The Mn-AI-C alloy magnet has Mn-
It is manufactured by subjecting an AI-C alloy to warm plastic working such as pressing or compression working in a temperature range of 530 to 83 degrees.

第1図〜第3図は代表的な実験データで、前記組成範囲
内のMn−AI−C合金にP及びNiの双方を添加した
鋳造ビレットに、1100℃で溶体化熱処理を施した後
、室温まで冷却し、次に温間塑性加工(押出比5)した
後の添加量(前記合金100に対する割合と%で表す)
に対する保磁力(,Hc)及び(BH)maxの変化を
示す。
Figures 1 to 3 show typical experimental data, in which a cast billet containing both P and Ni added to an Mn-AI-C alloy within the above composition range was subjected to solution heat treatment at 1100°C. Addition amount after cooling to room temperature and then warm plastic working (extrusion ratio 5) (expressed as a ratio and % to the alloy 100)
The changes in coercive force (, Hc) and (BH)max are shown.

ただしIHc、(BH)maxの値は同じ条件で作成し
たMn−AI−C−Ni合金(Ni=0.8%)の,H
c、(BH)maxに対する比で表してある。第1〜3
図に示してあるように、P、Ni双方を添加することに
より、温間塑性加工後の,Hc、(BH)maxはMn
−AI−C−Ni合金に比べて大幅に向上し、特に0.
01SPSO.〇0.4ミNiS2.0の範囲で,Hc
は15%以上向上する。
However, the values of IHc and (BH)max are the values of H
c, expressed as a ratio to (BH)max. 1st to 3rd
As shown in the figure, by adding both P and Ni, Hc, (BH)max after warm plastic working increases with Mn
- Significantly improved compared to AI-C-Ni alloy, especially 0.
01SPSO. 〇In the range of 0.4mm NiS2.0, Hc
will improve by more than 15%.

(BH)maxは0.03≦P≦0.2、0.4SNi
SI.2の範囲で約10%以上向上する。またP、Ni
の添加量についは、P添加量が0.6%を越えると熱処
理後合金中に非磁性のr相が多くなり、Ni添加量が2
.5%を越えると熱処理後合金中にk相(Mn一山一N
i相)が多くなり、残留磁束密度が大幅に低下して(B
H)maxも低下する。またPはごく微量添加で,Hc
が向上し、またNiは0.2%以上で磁気特性に及ぼす
効果が大きい。よってP、Niの最適添加量は0くPS
O.〇 0.2ミNjS2.5である。P、Niを添加
することによってIHcが向上する原因はまだ明らかで
ない。
(BH)max is 0.03≦P≦0.2, 0.4SNi
S.I. In the range of 2, the improvement is about 10% or more. Also P, Ni
Regarding the addition amount of
.. If it exceeds 5%, k phase (Mn one mountain one N) will form in the alloy after heat treatment.
i phase) increases, and the residual magnetic flux density decreases significantly (B
H) max also decreases. In addition, P is added in a very small amount, and Hc
Moreover, Ni has a large effect on magnetic properties when it is 0.2% or more. Therefore, the optimal addition amount of P and Ni is 0 PS
O. 〇 0.2 miNjS2.5. The reason why IHc is improved by adding P and Ni is not yet clear.

しかし熱処理のみによって得られる等万性磁石では、P
、Njを添加してもIHcは向上しないが、温間塑性加
工後の異方性磁石で向上すると、及びP、Niが相状態
に及ぼす影響として、P添加量が多いとご相(高温相)
→7相(磁性相)の変態速度が遅くなり、Ni添加量が
多いと逆に速くなる現象がある。以上から推察すると、
P、Niは主要構成元素のMnやAIのエネルギー状態
等に大きな影響を与えていると考えられ、またこれらの
影響は結晶粒の紬粒化を引き起している温間塑性加工の
効果によって、より促進される。これらのことが,Hc
増大の方向に作用していると考えられる。第4図、第5
図は前記組成範囲内のMn−N−C合金にP、Ni、T
iの3元素を添加した鍵造ビレットに1100午○で溶
体化熱処理を施した後「室温まで風冷し、次に温間塑性
加工(押出比5)した後の添加量に対する,Hc、(B
H)maxの変化を示す。
However, in isomerial magnets obtained only by heat treatment, P
, adding Nj does not improve IHc, but it improves with an anisotropic magnet after warm plastic working, and the influence of P and Ni on the phase state. )
→There is a phenomenon in which the transformation rate of the 7-phase (magnetic phase) becomes slow, and conversely becomes faster when the amount of Ni added is large. Judging from the above,
P and Ni are thought to have a large influence on the energy states of the main constituent elements Mn and AI, and these influences are due to the effect of warm plastic working that causes pongee grain formation. , more promoted. These things mean that Hc
It is thought that this is working in the direction of increase. Figures 4 and 5
The figure shows Mn-N-C alloys within the above composition range with P, Ni, and T.
After applying solution heat treatment to the key billet to which the three elements of i were added at 1,100 pm, it was air-cooled to room temperature and then warm plastic worked (extrusion ratio 5). B
H) Shows the change in max.

ただしHc、(BH)maxの値は同じ条件で作製した
Mn−AI−C−Ni合金(Ni=0.8%)の,Hc
、(BH)maxに対する比で表している。第4図より
,HcはTiの添加量にかかわらず、Ni−P添加合金
の,Hcとほぼ同じ大きな値を示す。第5図より0.0
1STiSO.5のTi添加で(BH)maxが大幅に
向上するのがわかる。これらの合金について金属頭微境
で熱処理後の合金の組織を観察してみると、P一Ni−
Ti添加合金はNi添加合金、Ni−P添加合金に比べ
て結晶粒が小さくなっており、(BH)maxの向上は
Ti添加による結晶粒の微細化によるものと推定される
。以上よりP、Ni、Tiの最適添加量は0<P≦0.
0 0.2SNiS2.与 0.01STiSO.5で
ある。更に本発明のMn−山一C−P−Ni合金、及び
Mh−N−C−P−Ni−Ti合金に鉄(Fe)、ホウ
素(B)、銅(Cu)をそれぞれ単独又は複数で少量添
加して検討したところ、それらの磁気特性はそれぞれF
e、B、Cuを添加しない合金(Mn−AI−C−P−
Ni合金、Mn−AI−C−P−Ni−Ti合金)と比
較してほぼ同じかやや向上する煩向があった。
However, the values of Hc and (BH)max are those of the Mn-AI-C-Ni alloy (Ni = 0.8%) produced under the same conditions.
, (BH) is expressed as a ratio to max. From FIG. 4, Hc shows almost the same large value as Hc in the Ni-P alloy, regardless of the amount of Ti added. From Figure 5, 0.0
1STiSO. It can be seen that (BH)max is significantly improved by adding Ti in No. 5. When we observed the structure of these alloys after heat treatment in the metal head microstructure, we found that P-Ni-
The Ti-added alloy has smaller crystal grains than the Ni-added alloy and the Ni-P-added alloy, and it is presumed that the improvement in (BH)max is due to the refinement of the crystal grains due to the addition of Ti. From the above, the optimal addition amount of P, Ni, and Ti is 0<P≦0.
0 0.2SNiS2. Given 0.01STiSO. It is 5. Further, a small amount of iron (Fe), boron (B), and copper (Cu) may be added to the Mn-Yamaichi C-P-Ni alloy and Mh-N-C-P-Ni-Ti alloy of the present invention, individually or in combination. When investigated by adding F
Alloy without adding e, B, Cu (Mn-AI-C-P-
Ni alloy, Mn-AI-C-P-Ni-Ti alloy), it was almost the same or slightly improved.

実施例 1 Mn70.0%、AI29.5%、CO.5%の組成の
ものにPO.05%、Nio.8%を添加した外径18
脚の円柱状の合金ビレツトを溶解鋳造により作成し、ビ
レツトを1100qoで約1時間保持後炉冷した。
Example 1 Mn70.0%, AI29.5%, CO. 5% composition of PO. 05%, Nio. Outer diameter 18 with 8% added
A cylindrical alloy billet for the legs was prepared by melting and casting, and the billet was held at 1100 qo for about 1 hour and then cooled in a furnace.

このビレットを700ooの温度で押出加工(押出比5
)した。押出加工後の合金の磁化優位方向における磁気
特性値を測定したところ、残留磁束密度Br=590の
、,Hci斑0のe、(BH)max=6.2MG比で
あり、上記のP−Ni添加合金と同じ条件で製造したM
n−M−C−Ni合金の磁気特性値と比較して,Hcが
25%、(BH)maxが15%向上した。実施例 2
Mn69.5%、AI29.4%、CO.6%の組成の
ものにPO.1%、Nio.4%を添加した外径18肌
の円柱状の合金ビレットを溶解鋳造により作製した。
This billet was extruded at a temperature of 700 oo (extrusion ratio 5
)did. When we measured the magnetic property values of the alloy in the dominant magnetization direction after extrusion processing, we found that the residual magnetic flux density Br = 590, e of Hci spots 0, (BH)max = 6.2MG ratio, and the above P-Ni M manufactured under the same conditions as the additive alloy
Compared to the magnetic property values of the n-M-C-Ni alloy, Hc was improved by 25% and (BH)max was improved by 15%. Example 2
Mn69.5%, AI29.4%, CO. 6% composition of PO. 1%, Nio. A cylindrical alloy billet with an outer diameter of 18 mm and containing 4% was produced by melting and casting.

このビレツトを1100℃で約1時間保持後空冷し、7
0000の温度で押出加工(押出比5)した。押出加工
後のNj−P添加合金の磁化優位方向における磁気特性
値を測定したところ、Br=600的、IHc=360
的、(BH)max=7.血4G0eであった。上記の
P−Ni添加合金と同じ条件で製造したMn一N−C−
Ni合金の磁気特・性値と比較してIHcが20%、(
BH)maxが10%向上した。実施例 3 Mn70.2%、AI29.4%、CO.4%の組成の
ものにPO.07%、Nio.6%、Tio.1%を添
加した外径18脚の円柱状の合金ピレツトを溶解鋳造に
より作成し、ビレットを1100ooで約1時間保持後
風冷した。
This billet was held at 1100°C for about 1 hour and then air cooled.
Extrusion processing was carried out at a temperature of 0,000 °C (extrusion ratio: 5). When the magnetic property values of the Nj-P added alloy in the magnetization dominant direction after extrusion processing were measured, Br = 600, IHc = 360
target, (BH)max=7. Blood was 4G0e. Mn-N-C- produced under the same conditions as the above P-Ni alloy
Compared to the magnetic properties and properties of Ni alloy, IHc is 20%, (
BH)max improved by 10%. Example 3 Mn70.2%, AI29.4%, CO. 4% composition of PO. 07%, Nio. 6%, Tio. A cylindrical alloy pillar with an outer diameter of 18 rods containing 1% was prepared by melting and casting, and the billet was held at 1100 oo for about 1 hour and then air-cooled.

このビレットを70000の温度で押出加工(押出比5
)した。押出加工後の合金の磁化優位方向における磁気
特性値を測定したところ、Br=605の、,Hc=3
85に、(BH)max=7.4MGOeであった。上
記P−Ni−Ti添加合金と同じ条件で製造したMn−
山一C−Ni合金及びMn一AI−C−Ni一Ti合金
を比較した。,HcについてはNi添加合合金、Ni−
Ti添加金と比較して26%向上した。(BH)max
についてはNi添加合金と比較して30%、Ni−Ti
添加合金と比較して12%向上した。発明の効果 本発明は、従来のMn−AI−C系合金磁石よりも保磁
力、(BH)maxを改良したMn−AI−C−P−N
j系合金磁石、及びMn−AI−C−P−Ni−Ti系
合金磁石を提供するもので、この合金磁石はスピーカ、
電気機器などに適している。
This billet was extruded at a temperature of 70,000 °C (extrusion ratio: 5
)did. When the magnetic property values of the alloy in the dominant magnetization direction after extrusion processing were measured, it was found that Br=605, , Hc=3
85, (BH)max=7.4MGOe. Mn- produced under the same conditions as the above P-Ni-Ti alloy
A Yamaichi C-Ni alloy and a Mn-AI-C-Ni-Ti alloy were compared. , Hc is Ni-added alloy, Ni-
This was improved by 26% compared to Ti-added gold. (BH)max
30% compared to Ni-added alloy, Ni-Ti
It was improved by 12% compared to the additive alloy. Effects of the Invention The present invention provides Mn-AI-C-P-N which has improved coercive force and (BH) max than conventional Mn-AI-C alloy magnets.
J-based alloy magnets and Mn-AI-C-P-Ni-Ti based alloy magnets, and these alloy magnets can be used for speakers,
Suitable for electrical equipment, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第3図はMn−AI−C合金にP、Ni双方を
添加した合金を温間塑性加工した後の添加量と保磁力(
IHc)、(BH)maxとの関係を示す図、第4図及
び第5図はMn−AI−C合金にP、Ni、Tiを添加
した合金を溢間塑性加工した後の添加量と,Hc、(B
H)maxとの関係を示す図である。 第1図 第2図 第3図 第4図 第5図
Figures 1 to 3 show the amount of addition and coercive force (
Figures 4 and 5 show the relationship between IHc) and (BH)max, and Figures 4 and 5 show the amounts of addition after the alloy in which P, Ni, and Ti are added to the Mn-AI-C alloy are subjected to overflow plastic working, and Hc, (B
H) is a diagram showing the relationship with max. Figure 1 Figure 2 Figure 3 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】 1 マンガン68.0〜73.0重量%・炭素(1/(
10)Mn−6.6)〜(1/3Mn−22.2)重量
%、残部アルミニウムの組成からなる合金100重量部
に対して、リンを0.6重量以下、ニツケルを0.2〜
2.5重量部添加したことを特徴とするマンガン−アル
ミニウム−炭素系合金磁石。 2マンガン68.0〜73.0重量%、炭素(1/(1
0)Mn−6.6)〜(1/3Mn−22.2)重量%
、残部アルミニウムの組成からなる合金100重量部に
対して、リンを0.6重量部以下、ニツケルを0.2〜
2.5重量部、チタンを0.01〜0.5重量部添加し
たことを特徴とするマンガン−アルミニウム−炭素系合
金磁石。
[Claims] 1 68.0 to 73.0% by weight of manganese and carbon (1/(
10) For 100 parts by weight of an alloy consisting of Mn-6.6) to (1/3 Mn-22.2)% by weight, the balance being aluminum, 0.6% by weight or less of phosphorus and 0.2% by weight of nickel.
A manganese-aluminum-carbon alloy magnet characterized by adding 2.5 parts by weight. 2 Manganese 68.0-73.0% by weight, carbon (1/(1
0) Mn-6.6) to (1/3 Mn-22.2) weight%
, 0.6 parts by weight or less of phosphorus and 0.2 to 0.2 parts of nickel for 100 parts by weight of an alloy with the balance being aluminum.
A manganese-aluminum-carbon alloy magnet characterized by adding 2.5 parts by weight and 0.01 to 0.5 parts by weight of titanium.
JP57183979A 1982-10-19 1982-10-19 Manganese-aluminum-carbon alloy magnet Expired JPS6037868B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57183979A JPS6037868B2 (en) 1982-10-19 1982-10-19 Manganese-aluminum-carbon alloy magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57183979A JPS6037868B2 (en) 1982-10-19 1982-10-19 Manganese-aluminum-carbon alloy magnet

Publications (2)

Publication Number Publication Date
JPS5974253A JPS5974253A (en) 1984-04-26
JPS6037868B2 true JPS6037868B2 (en) 1985-08-28

Family

ID=16145181

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57183979A Expired JPS6037868B2 (en) 1982-10-19 1982-10-19 Manganese-aluminum-carbon alloy magnet

Country Status (1)

Country Link
JP (1) JPS6037868B2 (en)

Also Published As

Publication number Publication date
JPS5974253A (en) 1984-04-26

Similar Documents

Publication Publication Date Title
US9850562B2 (en) Fe-based nano-crystalline alloy
US4065330A (en) Wear-resistant high-permeability alloy
US4171978A (en) Iron/chromium/cobalt-base spinodal decomposition-type magnetic (hard or semi-hard) alloy
US4133703A (en) Permanent magnetic Mn-Al-C alloy
JPS6043900B2 (en) permanent magnet material
US3983916A (en) Process for producing semi-hard co-nb-fl magnetic materials
JPS6037868B2 (en) Manganese-aluminum-carbon alloy magnet
JPS5910562B2 (en) intermetallic compound magnet
JPS608297B2 (en) magnet alloy
JPH0146575B2 (en)
JPS5924177B2 (en) Square hysteresis magnetic alloy
JP2679069B2 (en) High squareness ratio soft magnetic material
JPH0146574B2 (en)
US4443276A (en) Mn--Al--C Alloys for anisotropic permanent magnets
JPS6218619B2 (en)
JPS5931583B2 (en) Anisotropic manganese-aluminum-carbon alloy magnet
US4134756A (en) Permanent magnet alloys
JPS6130405B2 (en)
JPS58210150A (en) Amorphous metal and product
JP2021100065A (en) MANUFACTURING METHOD OF Cu-Mn-Al MAGNET
JPH0617104A (en) Production of permanent magnet
JPS62163303A (en) Permanent magnet
JPH0673326B2 (en) Anisotropic manganese-aluminum-carbon alloy magnet
JPH0682573B2 (en) Anisotropic manganese-aluminum-carbon alloy magnet
JPS5910421B2 (en) Rare earth cobalt permanent magnet alloy