JPS5972135A - Super-precise x-y shifter - Google Patents

Super-precise x-y shifter

Info

Publication number
JPS5972135A
JPS5972135A JP57181338A JP18133882A JPS5972135A JP S5972135 A JPS5972135 A JP S5972135A JP 57181338 A JP57181338 A JP 57181338A JP 18133882 A JP18133882 A JP 18133882A JP S5972135 A JPS5972135 A JP S5972135A
Authority
JP
Japan
Prior art keywords
base
fine movement
movement table
precision
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57181338A
Other languages
Japanese (ja)
Inventor
Shigeo Moriyama
森山 茂夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57181338A priority Critical patent/JPS5972135A/en
Priority to US06/436,721 priority patent/US4492356A/en
Priority to US06/542,991 priority patent/US4575942A/en
Publication of JPS5972135A publication Critical patent/JPS5972135A/en
Priority to US07/709,317 priority patent/US5142791A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/26Movable or adjustable work or tool supports characterised by constructional features relating to the co-operation of relatively movable members; Means for preventing relative movement of such members
    • B23Q1/34Relative movement obtained by use of deformable elements, e.g. piezoelectric, magnetostrictive, elastic or thermally-dilatable elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/26Movable or adjustable work or tool supports characterised by constructional features relating to the co-operation of relatively movable members; Means for preventing relative movement of such members
    • B23Q1/34Relative movement obtained by use of deformable elements, e.g. piezoelectric, magnetostrictive, elastic or thermally-dilatable elements
    • B23Q1/36Springs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q1/00Members which are comprised in the general build-up of a form of machine, particularly relatively large fixed members
    • B23Q1/25Movable or adjustable work or tool supports
    • B23Q1/44Movable or adjustable work or tool supports using particular mechanisms
    • B23Q1/48Movable or adjustable work or tool supports using particular mechanisms with sliding pairs and rotating pairs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/0002Arrangements for supporting, fixing or guiding the measuring instrument or the object to be measured
    • G01B5/0004Supports
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70691Handling of masks or workpieces
    • G03F7/70716Stages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y35/00Methods or apparatus for measurement or analysis of nanostructures

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Control Of Position Or Direction (AREA)
  • Details Of Measuring And Other Instruments (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

PURPOSE:To obtain the super-precise X-Y shifter, which can be moved minutely in the X-Y-theta direction, by supporting one base by four elastic struts and driving the base by three rectilinear actuators. CONSTITUTION:The elastic struts 5 are set up at four corners of a Y roughly movable base 2 on an X roughly movable base 1, and support the minutely movable base 6. The base 6 is positioned within + or -5mum by the base 1 and 2, the accurate coordinates of the base 6 are detected by laser interference measuring instruments 17, 18, voltage bringing difference with a target value to zero by each closed loop control circuit 19, 20 is applied to piezoelectric elements 11- 13, and the base 6 is servo-controlled. The theta angular displacement of the base is detected by a laser measuring instrument 21, severally reverse phase voltage for X-axis compensation is applied to the piezoelectric elements 11, 12, and the base is compensated. Accordingly, a simple and light minutely movable mechanism is formed, and the roughly and minutely movable composite type super- precise X-Y shifter is obtained.

Description

【発明の詳細な説明】 〔発明の利用分野〕 この発明は縮小投影露光装置または電子線描画装置に係
り、特に試料台として用いるのに好適な超精密XY移動
装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a reduction projection exposure apparatus or an electron beam lithography apparatus, and particularly to an ultra-precision XY movement apparatus suitable for use as a sample stage.

〔従来技術〕[Prior art]

従来の上記装置に用いられている超精密XY移動台にお
(・ては、01μmという超精密位置決め精度とともに
高速位置決め機能が要求されており、一般的に高速XY
粗動台と超精密xy6W動台を組み合せた複合型の移動
機構が多く用いられている。
The ultra-precision XY moving table used in the conventional above-mentioned equipment is required to have an ultra-precision positioning accuracy of 0.1 μm as well as a high-speed positioning function.
A compound movement mechanism that combines a coarse movement table and an ultra-precision xy6W movement table is often used.

従来の上記複合型移動機構は、例えばX軸方向に移動す
るX和動テーブル上をY粗動テーブルがY軸方向に移動
し、さらに該Y粗動テーブルの上にX微動テーブルどY
微動テーブルをそれぞれ積ろ重ねて、4段重ねの構造に
なって(゛た。従って構造が複雑かつ高価になるととも
に、可動部の重量増加を招いて、位置決めの高速化の妨
げにもなっていた。
In the above-mentioned conventional compound movement mechanism, for example, a Y coarse movement table moves in the Y axis direction on an X movement table that moves in the X axis direction, and an X fine movement table, etc.
The fine movement tables are stacked one on top of the other, resulting in a four-tier structure (2).This makes the structure complicated and expensive, and also increases the weight of the moving parts, which hinders high-speed positioning. Ta.

〔発明の目的〕[Purpose of the invention]

この発明の目的は、上記問題点を解消するためになされ
たもので、構造が簡単かつ安価ブエ複合型の超精密XY
移動装置を提供することにある。
The purpose of this invention was to solve the above problems, and to provide a simple and inexpensive Bue composite type ultra-precision XY.
The purpose of the present invention is to provide a mobile device.

〔発明の概要〕[Summary of the invention]

この発明は、従来のXY二段重ねの微動機構の代りに、
4本の弾性支柱で支えられた一個のテーブルが3個の直
進型アクチーエータに駆動されて、X、Y、  θ方向
に微動するところの構造簡単力・つ軽量な微動機構を備
えたXY粗微動複合型移動機構からなる超精密XY移動
装置である。
This invention replaces the conventional XY two-stage fine movement mechanism.
A single table supported by four elastic columns is driven by three linear actuators to make fine movements in the X, Y, and θ directions.The XY coarse and fine movement has a simple structure and a lightweight fine movement mechanism. This is an ultra-precision XY movement device consisting of a complex movement mechanism.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例の構成を第1図〜第3図によ
って説明する。なお、各図中、同一または同等の部位に
は同一の符号を付ける。XY粗動台は、X粗動テーブル
1、Y粗動テーブル2および上記それぞれのテーブルの
モータ駆動機構3,4から構成されており、XY 1.
50111111程度の可動範囲に対して±5μm程度
の位置決め精度でY粗動テーブル2のXY二次元の位置
決めを行−・が、上記の技術は既に公知である。Y粗動
テーブル2の上には、四隅を細い弾性支柱5で自重を支
えられた微動テーブル6が取付けられており、該微動テ
ーブル6は、上記弾性支柱5の弾性変形範囲である±5
0μm程度はX、Y、  θ方向に自在に微動できる。
Hereinafter, the configuration of an embodiment of the present invention will be explained with reference to FIGS. 1 to 3. In addition, in each figure, the same reference numerals are given to the same or equivalent parts. The XY coarse movement table is composed of an X coarse movement table 1, a Y coarse movement table 2, and motor drive mechanisms 3 and 4 for each of the above tables.
The XY two-dimensional positioning of the Y coarse movement table 2 is performed with a positioning accuracy of about ±5 μm over a movable range of about 50111111, but the above-mentioned technique is already known. A fine movement table 6 whose weight is supported by thin elastic columns 5 at its four corners is mounted on the Y coarse movement table 2, and the fine movement table 6 has an elastic deformation range of ±5 of the elastic column 5.
It can freely move slightly in the X, Y, and θ directions at about 0 μm.

Y粗動テーブル2とBXX微テーブルとの間は、第2同
核 に示すように、約100μmの間隙を設け、へ間隙に高
粘度のオイル(例えばシリコンオイル)7を満たず。該
オイル70層は、ダンノく作用をさせるためのもので、
上記微動テーブル6の微細振動を吸収する。
A gap of approximately 100 μm is provided between the Y coarse movement table 2 and the BXX fine table 2, as shown in the second core, and the gap is not filled with high viscosity oil (for example, silicone oil) 7. The 70 layers of oil are for effective action,
Absorbs minute vibrations of the fine movement table 6.

Y粗動テーブル2には、X軸方向に2個所、Y軸方向に
1個所、それぞれL型支持フレーム8゜9.10を固着
し、該り型支持フレーム3,9.10と微動テーブル6
との間には、それぞれ圧電素子アクチュエータ]I、 
12.13が挿設固定しである。
L-shaped support frames 8°9.10 are fixed to the Y coarse movement table 2 at two locations in the X-axis direction and one in the Y-axis direction, and the L-shaped support frames 3, 9.10 and the fine motion table 6 are fixed to the Y coarse motion table 2.
A piezoelectric element actuator] I,
12.13 is inserted and fixed.

該圧電素子アクチュエータ11.12.13は、圧電素
子の電歪効果による素子長さの微少な変位を利用する例
えば特公昭49−26477に示されるようなもので、
この実施例では、直流600Vの電圧印加時に約20μ
mの変位量が得られる。
The piezoelectric element actuator 11, 12, 13 is one such as that shown in Japanese Patent Publication No. 49-26477, which utilizes minute displacement of the element length due to the electrostrictive effect of the piezoelectric element.
In this example, when a voltage of 600V DC is applied, approximately 20μ
A displacement of m is obtained.

この発明の特徴は、上記のように3個の圧電素子アクチ
ュエータを用いることにより、微動テーブル6のX、Y
方向の微少変位とともに、θ方向の微少角変位を規制で
きる点にある。そのため従来装置に不可欠であった微動
テーブルの平行ばね機構等を用いたXY案内機構が不要
となり、非常にコンパクトな構造にすることができる。
The feature of this invention is that by using three piezoelectric actuators as described above, the fine movement table 6 can be moved in the X and Y directions.
The point is that it is possible to regulate not only the minute displacement in the direction but also the minute angular displacement in the θ direction. Therefore, the XY guide mechanism using the parallel spring mechanism of the fine movement table, etc., which was indispensable to the conventional device, is no longer necessary, and the structure can be made very compact.

微動テーブル6のX、Y方向への微動に伴って上記圧電
素子アクチュエータは、XY平面内で僅かに傾くことに
なるが、第2図に示すように、圧電素子アクチーエータ
の両端部に環状のくびれ14を有する弾性変形支持端子
15.16を備えており、このくびれ14が弾性変形す
るようにしたもので、該弾性変形支持端子15,1.6
は、3個の圧電素子アクチュエータの両端にそれぞれ設
けられている。なお、]、7.18は、微動テーブル6
の静止座標系に対するX、Y位置を0.02μm程度の
精度で正確に検出するレーザ干渉測長器、19.20は
、後述する閉ループ制御回路、21は、Yaw検出用レ
ーザ測長器、22は、Yaw閉ループ制御回路を示す。
As the fine movement table 6 moves slightly in the X and Y directions, the piezoelectric actuator will be slightly tilted in the XY plane, but as shown in FIG. 14, the constriction 14 is elastically deformable, and the elastically deformable support terminals 15, 1.6
are provided at both ends of the three piezoelectric element actuators. ], 7.18 is the fine movement table 6
19. 20 is a closed loop control circuit to be described later; 21 is a laser length measurement device for Yaw detection; 22 shows the Yaw closed loop control circuit.

つぎに作用を説明する。上記の構造において圧電素子ア
クチュエータ11.12.13の印加電圧をそれぞれ変
化させることにより、Y粗動テーブル2に対する微動テ
ーブル6のX、Y、θの位置関係を変位させることがで
きるとともに、印加電圧を変化させない限り、上記位置
関係を拘束することができる。
Next, the effect will be explained. In the above structure, by changing the applied voltages to the piezoelectric element actuators 11, 12, and 13, the X, Y, and θ positional relationships of the fine movement table 6 with respect to the Y coarse movement table 2 can be changed, and the applied voltage The above positional relationship can be constrained as long as it does not change.

以上に述べたXY徽励動機構制御方法について記すとつ
ぎのとおりである。すなわち第1図において、微動テー
ブル6の静止座標系に対するX、 Y位置は、それぞれ
レーザ干渉測長器17.18によって約0.02μmの
精度で正確に検出される。そこでXY粗動台により与え
られた目標値の±5μm以内に微動テーブル6が位置決
めされた後、該微動テーブル6の正確な座標を上記レー
ザ干渉測長器17.18が検出し、第3図に示されるX
、Yそれぞれの閉ループ制御回路19.20によって目
標値との差を0とするような電圧が圧電素子アクチーエ
ータ11゜12.13に対して印加され、サーボ制御さ
れる。しかし、これら閉ループ位置制御技術は公知技術
故詳細な説明は省略する。
The method for controlling the XY excitation mechanism described above is as follows. That is, in FIG. 1, the X and Y positions of the fine movement table 6 with respect to the stationary coordinate system are each accurately detected by the laser interferometers 17 and 18 with an accuracy of approximately 0.02 μm. After the fine movement table 6 is positioned within ±5 μm of the target value given by the XY coarse movement table, the precise coordinates of the fine movement table 6 are detected by the laser interferometer 17 and 18, as shown in FIG. X shown in
, Y, a voltage is applied to the piezoelectric element actuators 11, 12, and 13 so as to make the difference from the target value zero, and servo control is performed. However, since these closed-loop position control techniques are well-known techniques, detailed explanations thereof will be omitted.

上記制御方法において、X軸方向に2個の圧電素子アク
チュエータ11.12が設けであるが、通常は該両圧電
素子アクチ、エータに同一の制御信号を与えることによ
り、微動テーブル6に微少なθ角変位(Yaw )を生
じることなく、X軸方向にのみ駆動できる。しかし縮小
投影露光装置のXYY料台に用いる場合には、微動テー
ブル6の極く僅かなYawも許容できず、例えば150
mmの可動範囲内において、±5 X IF’ rad
以下のYawであることが必要とされる。微動テーブル
のYawを検出して修正する方法としては、−km特開
昭52−60074に示されたように支点を中心として
回転するテーブルを設けた公知例があるが、この発明に
おいては、第3図に示すように、微動テーブル6のYa
WをYaw検出用レーザ測長器21を用いて検出し、Y
awを生じたならば、X軸方向の2個の圧電素子アクチ
ュエータ11.12にX軸方向補正用のそれぞれ逆位相
の印加電圧を与えることにより微動テーブル6を角変位
させて上記のYawを補正するものである。以上の説明
においては、圧電素子アクチュエータを用いた例につき
述べたが、何らこれに限ることなく、磁歪素子や電磁力
とばね力をつり合わせる電磁アクチーエータを用いても
同様の作用が得られる。
In the above control method, two piezoelectric element actuators 11 and 12 are provided in the X-axis direction, but normally the same control signal is given to both piezoelectric element actuators 11 and 12, thereby causing the fine movement table 6 to have a minute θ. It can be driven only in the X-axis direction without causing angular displacement (Yaw). However, when used in the XYY stage of a reduction projection exposure apparatus, even the slightest Yaw of the fine movement table 6 cannot be tolerated;
Within the movable range of mm, ±5 X IF' rad
The following Yaw is required. As a method of detecting and correcting Yaw of a fine movement table, there is a known example in which a table that rotates around a fulcrum is provided as shown in -km Japanese Patent Laid-Open No. 52-60074. As shown in Fig. 3, Ya of the fine movement table 6
W is detected using the laser length measuring device 21 for Yaw detection, and Y
If aw occurs, the fine movement table 6 is angularly displaced by applying voltages of opposite phases for X-axis direction correction to the two piezoelectric actuators 11 and 12 in the X-axis direction to correct the above-mentioned Yaw. It is something to do. In the above description, an example using a piezoelectric element actuator has been described, but the present invention is not limited thereto, and the same effect can be obtained by using a magnetostrictive element or an electromagnetic actuator that balances electromagnetic force and spring force.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、この発明によれば、XY粗動台に
よって生じたYawを、微動テーブルにより容易に補正
できるため、XY粗動台にはそれ程高(・案内精度が必
要とされず、従って安価に製作することができるという
効果がある。
As explained above, according to the present invention, the Yaw caused by the XY coarse movement table can be easily corrected by the fine movement table, so that the XY coarse movement table does not require high (guiding) accuracy, and therefore It has the advantage that it can be manufactured at low cost.

またYaw検出用レーザ測長器を設けて常時Yawを検
出、補正せずに、XY粗動台の各XY座標におけるYa
w値のマツプな予め測定の上、作成しておき、このデー
タをもとに微動テーブルを角変位させ、上記XY粗動台
のYawを補正することもできるという効果も有する。
In addition, a laser length measuring device for Yaw detection is installed to constantly detect and correct Yaw, and the Yaw at each XY coordinate of the XY coarse movement table is
It also has the effect that the Yaw of the XY coarse movement table can be corrected by creating a map of the w value by measuring it in advance and angularly displacing the fine movement table based on this data.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の一実施例を示す斜視図、第2図は
、第1図のY軸における断面図、第3図は、第1図の実
施例の制御方法を示す図である。 符号の説明 1・・X粗動テーブル、2・・・Y粗動テーブル、5・
・・弾性支柱、6・・・微動テーブル、7・・・オイル
、11゜12.13・・・圧電素子アクチュエータ、1
7.18・・・レーザ干渉測長器、19.20・・・閉
ループ制御回路、21・・・YaW検出用レーザ測長器
、22・・・Yaw閉ループ制御回路 代理人弁理士 中 村 純之助
FIG. 1 is a perspective view showing an embodiment of the present invention, FIG. 2 is a cross-sectional view along the Y axis of FIG. 1, and FIG. 3 is a diagram showing a control method of the embodiment of FIG. 1. . Explanation of symbols 1...X coarse movement table, 2...Y coarse movement table, 5...
... Elastic strut, 6... Fine movement table, 7... Oil, 11°12.13... Piezoelectric element actuator, 1
7.18...Laser interferometric length measuring device, 19.20...Closed loop control circuit, 21...Laser length measuring device for YaW detection, 22...Yaw closed loop control circuit Patent attorney Junnosuke Nakamura

Claims (1)

【特許請求の範囲】 (ll  XY二次元に移動可能なXY移動テーブルと
、該XY移動テーブル上にXY二次元に微動可能なXY
微動機構を設けた粗微動接合型xy移動装置において。 上記XY@動機構が、微動テーブルと上記XY移動テー
ブルとの間に設けた平行案内機構と、上記XY移動テー
ブルと上記微動テーブルとの間に設けた少なくとも3個
の直進型伸縮機構とからなることを特徴とする超精密X
Y移動装置。 (2)  上記直進型伸縮機構に圧電素子アクチーエー
タを用いたことを特徴とする特許請求の範囲第1項記載
の超精密XY移動装置。 (3)  上記直進型伸縮機構のうち1個をX軸と平行
に配設し、他の直進型伸縮機構をお互いにX軸方向に有
限の距離だけ離してY軸方向に平行に記載の超精密XY
移動装置。 (4)上記平行案内機構が、少なくとも3本以上の弾性
支柱によって支えられる平行ばね案内機構からなり、さ
らに上記XY移動テーブルと上記微動テーブルとの間の
平行間隙内に、粘性を有する液体を介在させたことを特
徴とする特許請求の範囲第1項記載の超精密xy移動装
置。 (5)上記微動テーブルのX、Y位置を検出するX、Y
それぞれの位置検出器を備え、目標値に対する上記微動
テーブルの位置誤差に応じて上記直進型伸縮機構の伸縮
量を調整するように構成したことを特徴とする特許請求
の範囲第3項記載の超精密XY移動装置。 (6)  上記微動テーブルのYawを検出する検出器
を備え、これにより検出したYawに応じて上記直進型
伸縮機構のうち、互に平行に伸縮するように配置した2
個の直進型伸縮機構の伸縮量を逆位相となるように調整
すべく構成したことを特徴とする特許請求の範囲第3項
記載の超精密XY移動装置。
[Claims] (ll) An XY moving table that can be moved in two dimensions, and an
In a coarse and fine movement joint type xy movement device provided with a fine movement mechanism. The XY@ movement mechanism includes a parallel guide mechanism provided between the fine movement table and the XY movement table, and at least three linear telescopic mechanisms provided between the XY movement table and the fine movement table. Ultra-precision X characterized by
Y moving device. (2) The ultra-precision XY moving device according to claim 1, wherein a piezoelectric actuator is used in the linear expansion and contraction mechanism. (3) One of the above linear telescopic mechanisms is arranged parallel to the X-axis, and the other linear telescopic mechanisms are spaced apart from each other by a finite distance in the X-axis direction and parallel to the Y-axis direction. Precision XY
Mobile device. (4) The parallel guide mechanism includes a parallel spring guide mechanism supported by at least three or more elastic columns, and further includes a viscous liquid interposed in the parallel gap between the XY moving table and the fine movement table. The ultra-precision x-y moving device according to claim 1, characterized in that: (5) X, Y to detect the X, Y position of the fine movement table
The ultrasonic device according to claim 3, further comprising respective position detectors, and configured to adjust the amount of expansion and contraction of the linear expansion and contraction mechanism according to the position error of the fine movement table with respect to the target value. Precision XY movement device. (6) A detector for detecting the Yaw of the fine movement table is provided, and two of the linear expansion and contraction mechanisms are arranged so as to expand and contract in parallel to each other according to the Yaw detected by the detector.
4. The ultra-precision XY moving device according to claim 3, characterized in that the amount of expansion and contraction of each of the linear expansion and contraction mechanisms is adjusted to be in opposite phases.
JP57181338A 1982-02-26 1982-10-18 Super-precise x-y shifter Pending JPS5972135A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP57181338A JPS5972135A (en) 1982-10-18 1982-10-18 Super-precise x-y shifter
US06/436,721 US4492356A (en) 1982-02-26 1982-10-26 Precision parallel translation system
US06/542,991 US4575942A (en) 1982-10-18 1983-10-18 Ultra-precision two-dimensional moving apparatus
US07/709,317 US5142791A (en) 1982-02-26 1991-06-03 Apparatus for positioning sample

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57181338A JPS5972135A (en) 1982-10-18 1982-10-18 Super-precise x-y shifter

Publications (1)

Publication Number Publication Date
JPS5972135A true JPS5972135A (en) 1984-04-24

Family

ID=16098945

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57181338A Pending JPS5972135A (en) 1982-02-26 1982-10-18 Super-precise x-y shifter

Country Status (1)

Country Link
JP (1) JPS5972135A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61247026A (en) * 1985-04-25 1986-11-04 Canon Inc Exposure equipment
JPS61251028A (en) * 1985-04-30 1986-11-08 Canon Inc Exposing apparatus
JPS6320848A (en) * 1986-07-15 1988-01-28 Canon Inc Positioning device
JPS6345819A (en) * 1986-08-13 1988-02-26 Hitachi Ltd Stage error measurement system in projection aligner
JPS6370296U (en) * 1986-10-23 1988-05-11
JPS63222204A (en) * 1987-03-11 1988-09-16 Hitachi Constr Mach Co Ltd Apparatus for detecting displacement of actuator for generating displacement
JPH0419033A (en) * 1990-05-11 1992-01-23 Agency Of Ind Science & Technol Micro-locational device
JPH05259263A (en) * 1992-03-11 1993-10-08 Nec Corp Xy fine-moving stage
KR20030094887A (en) * 2002-06-08 2003-12-18 정상화 Precision Multi-Axial Stage
KR100636298B1 (en) 2005-08-01 2006-10-19 조선대학교산학협력단 Ultra-precision optical element alignment system
JP2009194384A (en) * 2008-02-13 2009-08-27 Asml Netherlands Bv Movable support, position control system, lithographic apparatus, and method of controlling position of exchangeable object
JP2010511859A (en) * 2006-11-30 2010-04-15 コーニング インコーポレイテッド Method and apparatus for image distortion measurement
JP2013148395A (en) * 2012-01-17 2013-08-01 Seiko Epson Corp Handler and inspection device

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61247026A (en) * 1985-04-25 1986-11-04 Canon Inc Exposure equipment
JPS61251028A (en) * 1985-04-30 1986-11-08 Canon Inc Exposing apparatus
JPS6320848A (en) * 1986-07-15 1988-01-28 Canon Inc Positioning device
JPH0529130B2 (en) * 1986-08-13 1993-04-28 Hitachi Ltd
JPS6345819A (en) * 1986-08-13 1988-02-26 Hitachi Ltd Stage error measurement system in projection aligner
JPS6370296U (en) * 1986-10-23 1988-05-11
JPH051992Y2 (en) * 1986-10-23 1993-01-19
JPS63222204A (en) * 1987-03-11 1988-09-16 Hitachi Constr Mach Co Ltd Apparatus for detecting displacement of actuator for generating displacement
JPH0419033A (en) * 1990-05-11 1992-01-23 Agency Of Ind Science & Technol Micro-locational device
JPH05259263A (en) * 1992-03-11 1993-10-08 Nec Corp Xy fine-moving stage
KR20030094887A (en) * 2002-06-08 2003-12-18 정상화 Precision Multi-Axial Stage
KR100636298B1 (en) 2005-08-01 2006-10-19 조선대학교산학협력단 Ultra-precision optical element alignment system
JP2010511859A (en) * 2006-11-30 2010-04-15 コーニング インコーポレイテッド Method and apparatus for image distortion measurement
JP2009194384A (en) * 2008-02-13 2009-08-27 Asml Netherlands Bv Movable support, position control system, lithographic apparatus, and method of controlling position of exchangeable object
US9261799B2 (en) 2008-02-13 2016-02-16 Asml Netherlands B.V. Movable support, position control system, lithographic apparatus and method of controlling a position of an exchangeable object
JP2013148395A (en) * 2012-01-17 2013-08-01 Seiko Epson Corp Handler and inspection device

Similar Documents

Publication Publication Date Title
US4575942A (en) Ultra-precision two-dimensional moving apparatus
US6927840B2 (en) Positioning device having dynamically isolated frame, and lithographic device provided with such a positioning device
US5832620A (en) Staging apparatus
JPS5972135A (en) Super-precise x-y shifter
US6353271B1 (en) Extreme-UV scanning wafer and reticle stages
US20050280390A1 (en) Electromagnetic alignment and scanning apparatus
US20080180053A1 (en) Positioning device having dynamically isolated frame, and lithographic device provided with such a positioning device
US6836093B1 (en) Exposure method and apparatus
KR20010070483A (en) Stage apparatus, exposure apparatus, and device production method
JP2005046941A (en) Stage device with cable jogging unit
JP2004132435A (en) Bearing device
JP2007053244A (en) Stage equipment and its exposure device
KR20200067738A (en) Stage device and charged particle beam device
KR102296327B1 (en) A movable body apparatus, a moving method, an exposure apparatus, an exposure method, a manufacturing method of a flat panel display, and a device manufacturing method
JP4962779B2 (en) STAGE DEVICE, FLOAT CONTROL METHOD, AND EXPOSURE DEVICE USING STAGE DEVICE
JP2001116867A (en) Xy stage
JPH0434166B2 (en)
US5714860A (en) Stage device capable of applying a damping force to a movable member
JP2005024567A (en) Location finding apparatus
JP2803440B2 (en) XY fine movement stage
JPH07226354A (en) Positioning device and manufacture of semiconductor device using this positioning device
JPH11251409A (en) Positioner and aligner
JPH04317Y2 (en)
JP4962780B2 (en) STAGE DEVICE, FLOAT CONTROL METHOD, AND EXPOSURE DEVICE USING STAGE DEVICE
KR102320293B1 (en) A moving body apparatus, a moving method, an exposure apparatus, an exposure method, a manufacturing method of a flat panel display, and a device manufacturing method