JPS5972010A - Film thickness monitoring device of optical film forming device - Google Patents

Film thickness monitoring device of optical film forming device

Info

Publication number
JPS5972010A
JPS5972010A JP18217582A JP18217582A JPS5972010A JP S5972010 A JPS5972010 A JP S5972010A JP 18217582 A JP18217582 A JP 18217582A JP 18217582 A JP18217582 A JP 18217582A JP S5972010 A JPS5972010 A JP S5972010A
Authority
JP
Japan
Prior art keywords
optical
light
optical fiber
fiber bundle
optical path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18217582A
Other languages
Japanese (ja)
Inventor
Akihiko Toku
昭彦 悳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Nihon Shinku Gijutsu KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc, Nihon Shinku Gijutsu KK filed Critical Ulvac Inc
Priority to JP18217582A priority Critical patent/JPS5972010A/en
Publication of JPS5972010A publication Critical patent/JPS5972010A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/06Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material
    • G01B11/0691Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness for measuring thickness ; e.g. of sheet material of objects while moving

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To perform monitoring even when a base twists or oscillates and when the monitor surface cause diffused reflection by using an optical fiber bundle for either the optical path from a projector to the base or the optical path from the base to a photodetector. CONSTITUTION:Incident light from the projection 19a is reflected by a semitransparent mirror 27, condensed by a condenser 24, and projected on a monitor surface 28 through the optical fiber bundle 23. Its reflected light traverses backward to enter the photodetector 20a through the semitransparent mirror 27. Its output is sent to a recorder 26 through an amplifier 25. Since the optical fiber bundle 23 and condenser lens 24, the incidence optical path Iu coincides with the reflection optical path Ru and the monitoring is possible even when the monitor surface 28 twists or oscillates and when the monitor surface causes diffusion.

Description

【発明の詳細な説明】 この発明は、シート状の長尺の基体の表面上に光学膜を
形成したのちに投光器から基体に光を投射し基体を透過
しまたはこゎ、で反射されて受光器で受光された光の特
性に基いて光学膜の膜厚を監視する装置に関する、 このような装置t−を従来から知らn、てぃて、例ヌげ
第1図に示されるように構成される。この図においてシ
ート状の長尺の基体10け真空槽/lの中で巻出しロー
ラlコがら巻出でれいくつかの巻出し側偏向ローラ13
で偏向され案内されたのちに冷却筒lダに接触しながら
これの下側を進行し、次いでいくつかの巻]0#)側偏
向ローラ15で偏向され案内されたのちに巻取シローラ
/乙に巻取られる。冷却筒/lI−の下刃には7個寸た
け多くの蒸発源/7a、/7bが配宿され、蒸発源/’
7a。
DETAILED DESCRIPTION OF THE INVENTION This invention involves forming an optical film on the surface of a long sheet-like substrate, and then projecting light from a projector onto the substrate, transmitting the light through the substrate, or receiving the light after being reflected by the substrate. A device for monitoring the thickness of an optical film based on the characteristics of the light received by the device has been known for some time, for example, as shown in FIG. be done. In this figure, a long sheet-like substrate is unwound from an unwinding roller l in a 10 vacuum chamber/l, and several unwinding-side deflection rollers 13 are unrolled.
After being deflected and guided by the cooling cylinder 15, it advances under the cooling cylinder 15 while contacting it, and then is deflected and guided by the winding cylinder 15, and then is deflected and guided by the winding cylinder 15, and then is deflected and guided by the winding roller 15. It is wound up. Seven evaporation sources /7a, /7b are arranged in the lower blade of the cooling cylinder /lI-, and the evaporation sources /'
7a.

/’lbの中で加熱された蒸着物A、Bがこn、から蒸
発して真空雰囲気内を飛行し7基体/θの表面上に膜状
に沈積して光学膜を形成する。膜厚監視装置としては光
学モニタ/gが使用されこn、は投光器および受光器を
有する。投光器は例えばWランプ、ハロゲンランプなど
の光源およびコリメータからなシ、また受光器は例えば
光を電気的信号に変換するフォトマル、pbsなどの光
検出器と狭帯域フィルタからなシ、受光器にはざらに増
幅器その他が接続される。光の反射を利用する場合には
一般に投光器/qaおよび受光器20aが投受光器とし
て一体に形成され、これから発射された光線が案内部材
を構成するaつの巻取り側偏向ローラ15aと/Sbの
間の区域で基体ioに投射され基体10で反射されたの
ちに投受光器へ戻る。
The deposits A and B heated in /'lb evaporate from this n, fly in a vacuum atmosphere, and deposit in the form of a film on the surface of the substrate /θ to form an optical film. An optical monitor/g is used as a film thickness monitoring device, which has a light projector and a light receiver. The emitter consists of a light source such as a W lamp or a halogen lamp, and a collimator, and the receiver consists of a photodetector such as a photomultiplier or PBS that converts light into an electrical signal, and a narrow band filter. Amplifiers and other devices are connected to each other. In the case of utilizing light reflection, the light emitter /qa and the light receiver 20a are generally formed integrally as a light emitter/receiver, and the light beam emitted from the emitter/qa and the winding side deflecting roller 15a and /Sb which constitute the guide members are emitted from the light emitter/qa and the light receiver 20a. The light is projected onto the substrate io in the area between, is reflected by the substrate 10, and then returns to the emitter/receiver.

光の透過を利用する場合には通常投光器/91)と受光
器、20bが相離し、て配散され、投光器/?bからの
光i!ili!が例えば反射鏡2/で反射されたのちに
基体IOを透過して受光器コObに達する。受光器20
a、、20bで受取った光の特性によって光学膜の膜厚
が監視できるが、その詳細については例えば特開昭3.
2−79933号公報に述べらn、ているので説明を省
略する。
When utilizing transmission of light, the emitter/91) and the receiver 20b are usually separated and distributed, and the emitter/? Light from b! ili! For example, after being reflected by a reflecting mirror 2/, the light passes through the base IO and reaches the light receiver Ob. Light receiver 20
The thickness of the optical film can be monitored based on the characteristics of the light received by the light beams a, 20b, and the details can be found in, for example, JP-A-3.
2-79933, so the explanation will be omitted.

上述した構成によj、ば当業者によく知らn、ているよ
うに原理的には膜厚の監視が確実に高い精度で達成され
る。しかじな力・ら実際には、偏向ローラ15aと/3
bの間の区域で基体10が充分に引き張られるとしても
、第“コ図に示されるように基体10け破線10Dで示
されるように設計上の位置から例えば角度りだけよじれ
、或いは振動する。こn、によって例えば光の反射を利
用する際に、原理的には投受光器/?a、コOaから投
射される光線すなわち基体への入射光重の光路に沿って
戻るべき反射光Rが実際には入射光重の光路から横へ偏
る。従ってよじれ角度すなわち偏向角度りが大きければ
反射光Rは投受光器/9a、コOaに全(到着せず、壕
だよじれ角度すなわち偏向角度りが小きくでもこれはも
ちろん一定ではなく変動するから投受光器への反射光の
到着量が変動して、膜厚の監視が困難または不可能にな
る。一般に監視面(光学膜が被着形成された基体ioの
表面)と投光器/′?の距離がタダONで入射光重の光
束の直径が10鮨の場合に、よじj、角度りが0、グ0
 以上になると反射光R[受光器コ0から完全に外れる
。光の透過を利用する際にも明らかに同様のことが起る
The arrangement described above in principle ensures that film thickness monitoring is achieved with high precision, as is well known to those skilled in the art. In reality, the deflection rollers 15a and /3
Even if the base body 10 is sufficiently stretched in the area between b and b, the base body 10 may twist or vibrate by an angle, for example, from the designed position, as shown by the broken line 10D in Figure 1. When using the reflection of light, for example, in principle, the reflected light R that should return along the optical path of the light beam projected from the light emitter/receiver /?a, or the light beam incident on the substrate. is actually deflected to the side from the optical path of the incident light. Therefore, if the twist angle, that is, the deflection angle is large, the reflected light R will not reach the emitter/receiver /9a, and the light beam will not arrive at the emitter/receiver /9a, Even if the film thickness is small, it is of course not constant but fluctuates, so the amount of reflected light arriving at the emitter and receiver will fluctuate, making it difficult or impossible to monitor the film thickness. When the distance between the surface of the formed substrate io) and the emitter /' is just ON, and the diameter of the incident light beam is 10, the twist j, angle is 0, and angle is 0.
If the amount exceeds that level, the reflected light R [completely deviates from the light receiver 0]. Obviously, something similar occurs when using light transmission.

上述した従来の欠点に、案内部材を構成するコつの巻取
シ側偏向ローラ15aと/sbの間の区域で基体IOに
光を投射する代りに案内部材15aiたV′115bに
接触する基体部分に光を投射するようにすれば、この基
体部分がよじれたシ振動したりすることはないから除去
できるように思われる。
The above-mentioned drawbacks of the prior art include that instead of projecting light onto the substrate IO in the region between the winding side deflection rollers 15a and /sb of the guide member 15ai, the portion of the substrate that contacts the guide member V'115b; It seems that if the light is projected onto the base part, it will not twist or vibrate, so it can be eliminated.

しかしながらこのようにしたとすると、この基体部分け
2つの案内部材の間の区域のように平面に広がることな
く案内部材/Sに沿ってわん曲しているから(第3図)
光を発散される作用を有し、従って入射光路工uK沿っ
て基体部分に投射される入射光重は基体部分で反射され
たのちにRuで示されるように発散する。故KJy、射
光Rは受光器コO(第1図)にほとんど到着せず従って
膜厚監視は達成できない。案内部材を透明体で形成[、
て光の透過を利用するようにした場合にも同様のことが
言える。
However, if this is done, this base portion will curve along the guide member /S instead of spreading out in a plane like the area between the two guide members (Fig. 3).
It has the effect of diverging light, so that the incident light beam projected onto the base part along the incident light path uK diverges as indicated by Ru after being reflected at the base part. Therefore, the emitted light R almost never reaches the photoreceiver KO (FIG. 1), so that film thickness monitoring cannot be achieved. The guide member is made of a transparent material [,
The same thing can be said when the transmission of light is utilized.

さらに、従来の膜厚監視装置では入射光重が監視面で拡
散反射され従ってそのほとんどが受光器に到達しない場
合には使用できず、廿だ第1図に示したような例におい
て入射光、反射光または透過光を通過させる監視窓コニ
が適当な場所に配信されずまたは反射鏡21などの光学
系を設けるための充分な空間が存しない場合にも従来の
膜厚監視装置は利用できない。
Furthermore, conventional film thickness monitoring devices cannot be used if the weight of the incident light is diffusely reflected by the monitoring surface and most of it does not reach the receiver; Conventional film thickness monitoring devices also cannot be used if a monitoring window for passing reflected or transmitted light is not placed in a suitable location, or if there is not enough space for an optical system such as a reflector 21.

よってこの発明はこn、らの従来の光学膜形成装置にお
ける膜厚監視装置の欠点を除去中ることを主な目的とす
る、 この目的の達成のためこの発明によれば、冒頭に記した
よりな膜厚監視装置において、投光器から基体までの光
路および基体から受光器′までの光路才たけそのいず檜
かのうちの少くとも基体近くの部分が光学繊維束によっ
て形成される。
Therefore, the main purpose of the present invention is to eliminate the drawbacks of the film thickness monitoring device in the conventional optical film forming apparatus. In a more conventional film thickness monitoring device, at least a portion of the optical path from the emitter to the substrate and the optical path from the substrate to the receiver, both of which are near the substrate, is formed by an optical fiber bundle.

その実力Q; fOによれば、前記両光路が実質上相定
なる場合にこnらに共通の光学繊維束が使用され、或い
は両党路が部分的に実質上相定なる場合に、実質上相定
なる光路部分から相11fflる光路部分の/15”!
!で延長する光学9.維と実質」二相型なる光路部分か
ら相離n。る光路部分の他力まで延長する光学繊維とを
含む分岐形状の光学繊維束が使用される、 望甘しくけ光学92 t4f、束と投光器の間の光路お
よびこれと受光器の間の光路またはそのいずj、かに集
光レンズのような集光用光学系が配置される。
According to the ability Q; /15” of the optical path portion whose phase is 11ffl from the optical path portion where the upper phase is constant!
! Optical extension 9. There is a phase separation n from the optical path part, which is a two-phase type "fiber and substance". A branched optical fiber bundle is used, which includes an optical fiber bundle extending to the other side of the optical path part, and an optical path between the bundle and the emitter and an optical path between this and the receiver, or In each case, a condensing optical system such as a condensing lens is arranged.

以下図面を参照しながらこの発明の実施例について以下
に詳述する。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第を図に略示される第1実施例においては、第向ローラ
/Sa、/Sbの間の基体10との間の光路に光学繊維
束23と集光用光学系としての集光レンズ2グとが配性
される。光学膜i ffj+束23にループ部分を有す
るように図示ζ力、ているが、こnu単なる明示のため
であって、明らかにループ部分は必要秀作ではない。詳
述中nば、第5Mに示すように光学モニタ/gri投光
器/9a、受光器、20a、この受光器に増幅器コSを
介して接続される記録器=6を有し、投光器/9aから
の光束(入射光)■は半透明鏡コアVCよって反射され
たのちに光路Iuに沿って進行し監視面′fなわち光学
膜が被着形成された基体lθの表面コgで反射され、反
射された光束(反射光)R[光路Ruに沿って進行し半
透明叙、2りを透過して受光器λOaに達する。この発
明によn、は光学繊維束23および集光レンズハ4配宿
l〜たことによって入射光路工Uは反射光路Ruに一致
する。すなわち第2図の配備でよしわ一角度すなわち偏
向角度りが常にゼロである場合すなわちよしね、が全く
ない場合と同様になる。
In the first embodiment shown schematically in the figure, an optical fiber bundle 23 and a condensing lens 2 group as a condensing optical system are provided in the optical path between the first direction rollers /Sa and /Sb and the base body 10. is assigned. Although the optical film i ffj + bundle 23 is shown to have a loop portion, this is merely for clarification, and the loop portion is obviously not a necessary masterpiece. In the detailed description, as shown in No. 5M, it has an optical monitor/gri emitter/9a, a light receiver 20a, and a recorder=6 connected to this light receiver via an amplifier S, and from the light emitter/9a. The luminous flux (incident light) ■ is reflected by the semi-transparent mirror core VC, travels along the optical path Iu, and is reflected by the monitoring surface 'f, that is, the surface cog of the substrate lθ on which the optical film is deposited, The reflected light flux (reflected light) R [proceeds along the optical path Ru, passes through the translucent light, and reaches the light receiver λOa. According to the present invention, the optical fiber bundle 23 and the condensing lens 4 are arranged so that the incident optical path U coincides with the reflected optical path Ru. That is, in the arrangement shown in FIG. 2, the situation is the same as when the wrinkle angle, that is, the deflection angle, is always zero, that is, when there is no wrinkle at all.

その点についてでらに第6図、第7シ!および第3図も
参照して説明すると、光学繊維束コ3は例えば内径、3
rnms外径り、5朝のポリ塩化ビニル製色和29の中
に直径0.071!mのガラス製光学11゜を数100
本束ねて収容したもので芝、って、光学膜・維30け受
光角#: b 7°、開口数0−3 Xdf過スペクト
ル0.グルコ、/μmという牛・・性を冶L−1その端
面は鏡面加工きれている。例えはるoO記の長はのかか
る光学繊維束23が使用され、こfi、Viその内端3
/ズバ監視面コgから僅かに例えけo、/〜/mnたけ
離n、るように配置される6集光レンズ2qは例えば直
径36節、焦点距離3θ調の凸レンズであって光学繊維
束2.3の外端32からほぼ焦点距離だけ離れるように
配置される。このような配置によn、は投光器/qaか
らの入射光重は入射光路工uK沿って例えば直径10w
nの光束で集光レンズ、2ダに達し、こj、によって光
学繊維束コ3の外端32に収束し、光学繊維束23の中
を進行してその内端31に達する。この入射光は内端3
/から監視面2gに向って投射されこれで反射されるが
、内端31がmJ述したように監視面、2gの杼く近く
に位置しているため反射光Rの大半はふたたヒ内端31
へ向い、ここから光学に細束23の中を逆行してその外
端32に達する。このル、射光R1−j外端3コから発
散しつつ進行するが集光レンズコグによって平行に収束
され、入射光路1uと実質上一致する反射光路Ruに沿
って受光器、20aへ向う。この際に基体/θがよじn
たシ振即lI−,でも前述したように内端31が監視、
面、1gの極く近くに位置しているから、反射光の大半
は同じく内端3/へ戻って上述したと同じ径路を通る、
第9関から*/b図に図示される第2実が11例でに1
投光器/ワaと受光器コθaがかなシ相離して配性され
、また光学膜が被着形成されているけれどもまだ冷却筒
/りから離n、ていない基体10の監視面2gについて
監視が行なわVる。従って光学繊y#束コ3の内端31
は冷却筒/ダから離nる直曲の基体10の監視面のすぐ
近くに配置される。光学繊維束23に分岐部33を有し
分岐部33から内端3/4でけり3cで示されるように
7本であるけj、とも分岐部33から外端前でけu3a
、−2Jbで示されるように投光部分および受光部分の
コ本に分れる構造を有する。この光学繊維束23は投光
用光学繊維JOaおよび受光用光学繊維30bを有し、
投光用光学繊維30aは光学線維束コ3の投光部分23
aの外端3コaから分岐部33を通って共通部分コ3c
の内端3ノまで延長する。また受光用光学繊維30bは
受光部分コ3bの外端3コbから分岐部33を通って内
端3/まで達する。投光部分23aおよび受光部分、2
3bでは投光用光学繊維30aだけまたは受光用光学締
紐30bだけがそれぞれ束ねて色和コ9の中に収容され
るが、共通部分、23cにおいては投光用光学tυ維3
0aおよび受光用光学繊維ト、?Obが実質上互に釣等
に混シ合うような分布で束ねらn、て1つの色和2qの
中に配置される。このような配備では投光器/9aから
の入射光重は集光レンズコ11.a1投光用光学繊維3
0hを通って監視面2gに入射し、とn、から反射され
た反射光Rのかなりの部分が受光用光学繊維30b、集
光レンズ、2”(bを通って受光器20aへ向う。この
実施例で監視面コgは冷却筒/4’に従ってわん曲して
いるけれども、外端31が監視面−gの極く近くに位置
しているから監視に確実にを成できる。従って明らかに
、光学繊維束3)の内1/i%’、 3 /は偏向ロー
ラ/SF3.、/Sbなどのその他の部材に接触する基
体部分の監視面2gの近くに配置゛−することもできる
On that point, let's talk about Figures 6 and 7! Referring also to FIG. 3, the optical fiber bundle 3 has an inner diameter of, for example,
rnms outer diameter, 0.071 in diameter in 5th grade PVC colored Wa 29! m glass optical 11° several hundred
When the book is bundled and stored, it has 30 optical films/fibers, acceptance angle #: b 7°, numerical aperture 0-3, Xdf overspectrum 0. Gluco, a cow called /μm, has a mirror finish on its end surface. For example, an optical fiber bundle 23 with a length of 100 mm is used, and its inner end 3 is
The six condensing lenses 2q, which are arranged at a slight distance o, /~/mn, from the /Zuba monitoring surface g, are, for example, convex lenses with a diameter of 36 nodes and a focal length of 3θ, and are optical fiber bundles. 2.3 is placed approximately the focal length away from the outer edge 32 of the lens. With such an arrangement, the incident light weight from the projector/qa is e.g.
The light beam of n reaches the condenser lens 2, converges on the outer end 32 of the optical fiber bundle 3, travels through the optical fiber bundle 23, and reaches the inner end 31 thereof. This incident light is at the inner end 3
/ is projected toward the monitoring surface 2g and reflected by it, but as the inner end 31 is located close to the monitoring surface 2g as described above, most of the reflected light R is reflected within the lid. edge 31
, and from there it optically travels back through the bundle 23 to its outer end 32 . The incident light R1-j travels while diverging from the three outer ends, but is converged in parallel by the condenser lens cog, and heads toward the light receiver 20a along the reflected optical path Ru, which substantially coincides with the incident optical path 1u. At this time, the base /θ is twisted
However, as mentioned above, the inner end 31 is monitored,
Since it is located very close to the surface 1g, most of the reflected light also returns to the inner end 3/ and passes through the same path as described above.
From the 9th section, the second fruit shown in diagram */b is 1 in 11 cases.
The emitter/wafer a and the receiver θa are arranged slightly apart from each other, and the monitoring surface 2g of the substrate 10, which has been coated with an optical film but has not yet been separated from the cooling tube/ri, is monitored. Let's do it. Therefore, the inner end 31 of the optical fiber y# bundle 3
is placed in close proximity to the monitoring surface of the straight-curved base body 10 away from the cooling cylinder/da. The optical fiber bundle 23 has a branching part 33, and there are seven fibers, as shown by 3c, extending from the branching part 33 to the inner end 3/4, and extending from the branching part 33 to the outer end U3a.
, -2Jb, it has a structure divided into a light emitting part and a light receiving part. This optical fiber bundle 23 has a light emitting optical fiber JOa and a light receiving optical fiber 30b,
The light projecting optical fiber 30a is the light projecting portion 23 of the optical fiber bundle 3.
The common part 3c passes through the branch part 33 from the outer end 3 pieces a of
Extend to the inner end of 3 threads. Further, the light-receiving optical fiber 30b passes from the outer end 3b of the light-receiving portion 3b, passes through the branching portion 33, and reaches the inner end 3/. Light emitting part 23a and light receiving part, 2
3b, only the light emitting optical fibers 30a or only the light receiving optical strings 30b are bundled together and housed in the colored wagon 9, but in the common part 23c, the light emitting optical fibers 3
0a and optical fiber for light reception, ? The Obs are bundled in a distribution such that they are substantially intermingled with each other and arranged in one color sum 2q. In such an arrangement, the weight of the incident light from the projector/9a is concentrated by the condenser lens 11. a1 optical fiber for light projection 3
A considerable portion of the reflected light R that is incident on the monitoring surface 2g through 0h and reflected from andn passes through the light-receiving optical fiber 30b, the condensing lens 2'' (b), and heads toward the light receiver 20a. Although the monitoring surface g is curved according to the cooling cylinder /4' in the embodiment, since the outer end 31 is located very close to the monitoring surface -g, the monitoring can be carried out reliably. , 1/i%', 3/ of the optical fiber bundle 3) can also be placed close to the monitoring surface 2g of the base portion that contacts other members such as the deflection rollers /SF3., /Sb.

第17図および第1g図は基体/θを透過した光を利用
して膜厚を監視する実施例を示す。投光器lワbからの
入射光■けその光路Iu、に¥Jって集光レンズコダお
よび光学繊維束、23を通過したのちに基体ioへ向う
。基体10を透過した透過光Tけその光路Tuに沿って
即うtレンズ3’lで平行に収束されたのちに受光器u
(7bに達する。この実施例において透過光路TuVc
も光学締紐束(図示なし)を配置できることは明らかで
ある。
FIG. 17 and FIG. 1g show an embodiment in which the film thickness is monitored using light transmitted through the substrate /θ. The incident light from the projector 1b follows its optical path Iu, passes through a condenser lens and an optical fiber bundle 23, and then heads toward the base io. The transmitted light T transmitted through the base 10 is converged in parallel along the optical path Tu by the T lens 3'l, and then sent to the light receiver U.
(reaches 7b. In this example, the transmitted optical path TuVc
It is clear that an optical lace bundle (not shown) can also be arranged.

第19図は、第6図および第7図に示す実施例において
監視面2gにおける反射率の入射角依存性を避けるため
例えば焦点2Stasの凸レンズ3Sを監視面コgと光
学繊維束23の内端3/との間に配置した変型を示す。
In the embodiment shown in FIGS. 6 and 7, for example, a convex lens 3S having a focal point 2Stas is connected to the monitoring surface g and the inner end of the optical fiber bundle 23 in order to avoid the dependence of the reflectance on the monitoring surface 2g on the angle of incidence. 3/ shows a variant placed between.

内端3/から凸レンズ35の中心までの距離を3コ、6
酵またこの中心から監視面2g″!、での距離をIO乙
、gtnmとすn、ば、第6図および第7図で半開き角
が30°て゛あるとするとこれが凸レンズ3sの配置に
よってlOoになシ、反射率の入射角依存性が実質上阻
止できる。
The distance from the inner end 3/ to the center of the convex lens 35 is 3 and 6.
Also, the distance from the center of this center to the monitoring surface 2g''! is IO, gtnm, and if the half-opening angle is 30° in Figures 6 and 7, this becomes lOo due to the arrangement of the convex lens 3s. However, the dependence of the reflectance on the angle of incidence can be substantially prevented.

上述した各実施例において光学紘細束23の内端31が
監視面2gの近くに配置されているから、この発明によ
れば監視面λgで光が拡散反射される場合にも反射光の
かなりの部分が光学繊維束23に到達でき、従って膜厚
監視が達成できる。
In each of the embodiments described above, since the inner end 31 of the optical fiber bundle 23 is arranged near the monitoring surface 2g, according to the present invention, even when light is diffusely reflected on the monitoring surface λg, a large amount of the reflected light is can reach the optical fiber bundle 23, thus achieving film thickness monitoring.

この発明の効果を確認するため、第1図に示されるよう
な装置を使用し、厚ざ弘0μm1幅りS■、長#230
Mのアルミニウム箔からなる基体10を毎分3Mの速き
で送シこれに対してコ個の蒸発源/7a、/7bから蒸
着物質としてCrおよび(1!r203を蒸発ζせて光
学的選択吸収膜を形成中る作業において、光学繊維束2
3および集光レンズ2ダを使用し7た場合と使用しない
場合との比較試験を行なった。光学繊維束、集光レンズ
および光学モニタなどの仕様、構成、配置などけ第を図
から第3図の説明において例示した辿りであシ、1、g
μmの波長の光が使用された。光学モニタの記録器に示
された出力(P)の時間(T)豹変化は第20図および
第21図に示す通シであった。ここで第20図は光学締
紐束および集光レンズを使用したこの発明による場合、
第ココ図はこれらを使用しない従来方式による場合を示
す(ただし第二0し!と第27図で出力(P)と時間(
T)の単位は異っている)。こfl+−)図において、
Fl−i蒸着作業開始時点、GVi蒸着作業終了時点を
有し、また鎖線Uは蒸着作業をしないときの正しい出力
水準、鎖線■は蒸着作業中の正しい出力水準、鎖pl 
sは反射0チの水準すなわち基体を除いたときの出力水
準を示す。こn、ら図面を比較すれば、この発明の有効
性は明らかである。
In order to confirm the effects of this invention, we used an apparatus as shown in Fig. 1, and used
A substrate 10 made of M aluminum foil is transported at a speed of 3 M/min, and Cr and (1! During the process of forming the absorbent film, the optical fiber bundle 2
A comparative test was conducted between the case where 3 and the condenser lens 2 were used and the case where they were not used. The specifications, configuration, arrangement, etc. of the optical fiber bundle, condensing lens, optical monitor, etc. are illustrated in the explanation from Figures to Figure 3.
Light with a wavelength of μm was used. The time (T) variation of the output (P) shown on the recorder of the optical monitor was as shown in FIGS. 20 and 21. Here, FIG. 20 shows a case according to this invention using an optical string bundle and a condensing lens.
Figure 20 shows the case of the conventional method that does not use these (however, Figure 20 and Figure 27 show output (P) and time (
The units of T) are different). In this figure,
The Fl-i evaporation work start point and the GVi evaporation work end time are shown, and the chain line U indicates the correct output level when not performing the evaporation operation, and the chain line ■ indicates the correct output level during the evaporation operation, and the chain pl
s indicates the level of reflection 0, that is, the output level when the substrate is excluded. Comparing these drawings, the effectiveness of this invention is clear.

第ココ図は第1り図および第1g図のような実施例によ
って透過を使用した場合の結果の7例を示す。その仕様
、構成、配置、作業榮件などは基体が透明であることを
除き第コOVの場合とかなシ似ているがその詳細は省略
する。なおここで透過率θ係の水準−Fなわち不透明基
体を使用したときの出力水準を示す鎖線Sに実質上横軸
に一致する。
Figure 1 shows seven examples of the results of using transmission according to the embodiments shown in Figures 1 and 1g. Its specifications, configuration, arrangement, working conditions, etc. are similar to those in the first OV except that the base is transparent, but the details will be omitted. Here, the level -F of the transmittance θ, that is, the chain line S indicating the output level when an opaque substrate is used, substantially coincides with the horizontal axis.

この発明による膜厚監視装置げ上述のように栴成されて
いるから、基体がよじれたシ振動する場合にも膜厚が監
視でき寸だ拡散反射する監視面にも使用できるなどの特
性を有し、ざらに監視窓の位置にかかわシなくオだ光学
系のための充分な空間がなくても配備でき、かくして従
来の膜厚監視装置の欠点を除去できる。しかもこの欠点
の除去は光学繊維束および必要に応じ使用される集光レ
ンズを採用することによって比較的簡単かつ低廉に達成
できる。
Since the film thickness monitoring device according to the present invention is constructed as described above, it has characteristics such as being able to monitor the film thickness even when the substrate is twisted or vibrating, and can also be used on monitoring surfaces that undergo diffuse reflection. However, it can be deployed regardless of the position of the monitoring window, even if there is insufficient space for an optical system, thus eliminating the drawbacks of conventional film thickness monitoring devices. Moreover, the elimination of this drawback can be achieved relatively easily and inexpensively by employing optical fiber bundles and condensing lenses used as necessary.

【図面の簡単な説明】[Brief explanation of the drawing]

第1I’fは従来の光学膜形成装置における膜厚監視装
置の7例を示す図解図、m’+、;z図は第1図の装着
の監視光投射場所を示す部分酒視図、第3図は案内部材
に接触する基体部分に光を投射した状態を示す図解図、
第偽Vはこの発明による膜厚監視装置の第1実施例を略
示する第7図に相当する部分図解図、第5図は第7図の
主要部分をやや詳しく示す線図、第6E(′汀ざ)5図
の7部をさらに詳L〈示す図、第7図は第6図に■で示
1.た部分の拡大図、第g図は浄7図の■−■糺)に沿
う断面図、第9図および第70図は第2実施例を示す第
9図および第6図にそれぞn−相当する図、2(’: 
/ /しIけ第1θ図KX[で示した部分の拡大図、卯
7.2図1ニ第iirの刈−XIl線に沿う断面図、第
13図1は肖410図にx■で示した部分の拡大図、が
/グ邸は第13図のXIV −XIV線に沿う断面図、
第75図げ第10図にXVで示した部分の拡大図、■)
 / 6r5!’け第1S図のXV−XM線に沿う断面
図、m)77図および第ig図は第3実施、例を示す?
P、 q図および第6図にそn、ぞn7相当する図、f
$:19図は第6図の変型を示す図、第、20図は第9
図の実施例による実験結果を示すグラフ、第2/図に従
来の装置による実験結果を示す第20図に対応するグラ
フ、笛2.2図は第1りMの実施例に関する第コ。図に
相当するグラフである。 N面において、/θは基体、17aと/’7bは光学膜
形成のための蒸発源、/9aと/9bは光を投射する投
光器1.20aと20bは反射光J・たは透過光を受取
る受光器、工uに入射光路、Rui’j反射光路、Tu
け迅過光銘、23に光学繊維束を示す。 第1図 第4図 第5図 第21図 G J ) 60−
1I'f is an illustrative diagram showing seven examples of a film thickness monitoring device in a conventional optical film forming apparatus; Figure 3 is an illustrative diagram showing a state in which light is projected onto the base portion that contacts the guide member;
No. V is a partial illustrative view corresponding to FIG. 7 schematically showing the first embodiment of the film thickness monitoring device according to the present invention, FIG. 5 is a diagram showing the main part of FIG. Figure 7 is shown in Figure 6 with a black mark 1. FIG. 7 is an enlarged view of the part shown in FIG. Corresponding figure, 2(':
/ / / / /shi Figure 1 θ An enlarged view of the part indicated by KX An enlarged view of the part shown in Figure 13.
Figure 75 - Enlarged view of the part marked XV in Figure 10, ■)
/ 6r5! A sectional view taken along the line XV-XM of Figure 1S, Figure 77 and Figure ig show the third embodiment and example.
Figures P, q and 7 corresponding to Figure 6, f
$: Figure 19 is a modification of Figure 6, Figure 20 is Figure 9.
A graph showing experimental results according to the embodiment shown in the figure, a graph corresponding to FIG. 20 showing experimental results using a conventional apparatus in FIG. 2, and a graph corresponding to FIG. This is a graph corresponding to the figure. On the N plane, /θ is the substrate, 17a and /'7b are evaporation sources for forming an optical film, /9a and /9b are projectors 1 for projecting light, and 20a and 20b are for reflecting light or transmitting light. The receiving optical receiver, the incident optical path, the reflected optical path, Tu
The optical fiber bundle is shown at 23. Figure 1 Figure 4 Figure 5 Figure 21 G J ) 60-

Claims (1)

【特許請求の範囲】 l シート状の長尺の基体の表面上に光学膜を形成した
のちに投光器から基体に光を投射し基体を透過しまたけ
これで反射されて受光器で受光された光の信性に基いて
光学膜の膜厚を監視する装置において、投光器から基体
までの光路および基体から受光器までの光路オたけその
いずn、かのうちの少くとも基体近くの部分を光学繊維
束によって形成したことを特徴とする光学膜形成袋#り
における膜厚監視装置。 2、 前記両光路が実質上相貫なる場合にこj、らに共
通の光学繊維束を使用する特許請求の範囲第7項に記載
の膜厚監視装置。 3 前記両党路が部分的に実質上相貫なる場合に1実質
上相重なる光路部分から相離j5る光路部分の/7iま
で延長する光学繊維と実質上相貫なる光路部分から相離
れる光路部分の他方捷で延長する光学繊維とを含む分岐
形状の光学ねy維束を使用する特許請求のll7J曲M
1項に記載のれ厚監視装置k。 グ 光学繊維束と投光器の間の光路および光学繊維束と
受光器の間の光路オたけそのいずれかの間に集光用光学
系を配置した特許請求の範囲第1項、第2項、第3項の
いずれか7項に記載の膜厚監視装置。
[Claims] l After an optical film is formed on the surface of a long sheet-like substrate, light is projected onto the substrate from a projector, passes through the substrate, is reflected by the substrate, and is received by a light receiver. In a device that monitors the film thickness of an optical film based on the reliability of the A film thickness monitoring device for an optical film forming bag, characterized in that it is formed by a fiber bundle. 2. The film thickness monitoring device according to claim 7, wherein a common optical fiber bundle is used when both the optical paths are substantially interconnected. (3) When the two optical paths are partially substantially mutually intersecting, (1) an optical path that is separated from the optical fiber and the optical fiber that extends to /7i of the optical path section that is separated from the optical path section that substantially overlaps; Patented 117J song M using a branched optical fiber bundle including an optical fiber extending at the other end of the part.
The thickness monitoring device k described in item 1. Claims (1), (2), and (2) above claim 1, wherein a condensing optical system is disposed between the optical path between the optical fiber bundle and the emitter, and the optical path between the optical fiber bundle and the receiver. The film thickness monitoring device according to any one of Items 3 to 7.
JP18217582A 1982-10-19 1982-10-19 Film thickness monitoring device of optical film forming device Pending JPS5972010A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18217582A JPS5972010A (en) 1982-10-19 1982-10-19 Film thickness monitoring device of optical film forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18217582A JPS5972010A (en) 1982-10-19 1982-10-19 Film thickness monitoring device of optical film forming device

Publications (1)

Publication Number Publication Date
JPS5972010A true JPS5972010A (en) 1984-04-23

Family

ID=16113648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18217582A Pending JPS5972010A (en) 1982-10-19 1982-10-19 Film thickness monitoring device of optical film forming device

Country Status (1)

Country Link
JP (1) JPS5972010A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI404908B (en) * 2009-07-03 2013-08-11 Shincron Co Ltd An optical film thickness gauge and a thin film forming apparatus having an optical film thickness gauge

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5331157A (en) * 1976-09-03 1978-03-24 Sekisui Chemical Co Ltd Method of measuring size with transmitting
JPS5489680A (en) * 1977-12-26 1979-07-16 Matsushita Electric Ind Co Ltd Optical measuring method and optical measuring apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5331157A (en) * 1976-09-03 1978-03-24 Sekisui Chemical Co Ltd Method of measuring size with transmitting
JPS5489680A (en) * 1977-12-26 1979-07-16 Matsushita Electric Ind Co Ltd Optical measuring method and optical measuring apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI404908B (en) * 2009-07-03 2013-08-11 Shincron Co Ltd An optical film thickness gauge and a thin film forming apparatus having an optical film thickness gauge
US8625111B2 (en) 2009-07-03 2014-01-07 Shincron Co., Ltd. Optical film thickness meter and thin film forming apparatus provided with optical film thickness meter

Similar Documents

Publication Publication Date Title
US4412720A (en) Optical system coupling a rectangular light source to a circular light receiver
JPS5640737A (en) Damage detector for optical fiber for laser power transmission
GB1521443A (en) Reflectometer optical system
KR880006659A (en) Optical pickup
US4005926A (en) Scanning device
US8767200B2 (en) Luminous flux branching element and mask defect inspection apparatus
US2178245A (en) Sound recording apparatus
JPH071344B2 (en) Light splitting device
JPS5972010A (en) Film thickness monitoring device of optical film forming device
KR890002841A (en) Optical pickup
US4662716A (en) Light splitter
KR880008258A (en) Optical pickup
US3068745A (en) Slit lamp apparatus
JP3548282B2 (en) Optical branching optical system
US2401706A (en) Range finder
US2314392A (en) Monitoring device
JPS5948604A (en) Film thickness monitor in optical film forming apparatus
JPS59204726A (en) Flame detector
JP2890699B2 (en) Non-contact orientation meter
JPS5973709A (en) Film thickness monitoring device in optical film forming apparatus
JPS60222816A (en) Photoelectrical contact
JPS601584A (en) Optical switch
JPS61167912A (en) Optical coupling device
SU424012A1 (en) DEVICE FOR RECORDING ANGULAR VIBRATIONS
JPS5768823A (en) Printing device