JPS5969954A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS5969954A
JPS5969954A JP57180241A JP18024182A JPS5969954A JP S5969954 A JPS5969954 A JP S5969954A JP 57180241 A JP57180241 A JP 57180241A JP 18024182 A JP18024182 A JP 18024182A JP S5969954 A JPS5969954 A JP S5969954A
Authority
JP
Japan
Prior art keywords
region
wiring
capacitance
synchronized
tunnel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57180241A
Other languages
Japanese (ja)
Other versions
JPH0153512B2 (en
Inventor
Mamoru Fuse
布施 守
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP57180241A priority Critical patent/JPS5969954A/en
Publication of JPS5969954A publication Critical patent/JPS5969954A/en
Publication of JPH0153512B2 publication Critical patent/JPH0153512B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/535Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including internal interconnections, e.g. cross-under constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Bipolar Integrated Circuits (AREA)

Abstract

PURPOSE:To delay signals similarly, and to prevent the generation of a whisker and malfunction by inserting dummy capacitance using the same P-N junction to another signal line to be synchronized when parasitic capacitance by a tunnel resistor for one cross wiring in a signal line group to be synchronized enters therein. CONSTITUTION:Wirings 70 and 72, 74 must be crossed on a pattern layout, the tunnel resistor 51 to which an N type region 7-1 is formed is formed in a P type region 6, the wiring 70 is divided into 70-1, 70-2 and connected by the tunnel resistor 51, and the wirings 72, 74 pass on the region 7-1 through an insulating film. A wiring 76 must be synchronized with the wiring 70, a region 7-2 of the same width and length as the region 7-1 is formed in order to give dummy capacitance, and the wiring 76 is divided into two of 76-1 and 76-2 and connected by the region 7-2. The capacitance values and resistance values of the regions 7-1, 7-2 are approximately equal to each other because the regions 7-1, 7-2 have the same width and length and are arranged adjacently. Accordingly, retardation time at points P, Q between the two lines 70, 76 is made approximately constant.

Description

【発明の詳細な説明】 本発明は半導体装置、特に集積回路におけるクロス配線
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to cross wiring in semiconductor devices, particularly integrated circuits.

最近バイポーラlCに於いては、ワンチップ上にILデ
バイスを用いたデジタル部とアナログ部回路とを組み込
んだアナログ・デジタル混在型のICが増加している。
Recently, in bipolar ICs, there has been an increase in the number of analog-digital mixed ICs that incorporate a digital section using an IL device and an analog section circuit on one chip.

ICの規模の増大と伴にデバイス間を結ぶ配線数も膨大
となっ°Cいるが、■2L部に於いては、このことは特
にN要な問題となっている。
With the increase in the scale of ICs, the number of wires connecting devices has also increased tremendously, and this is a particularly important problem in the 2L section.

通常、アナログ部分における配線交差箇所では、N型エ
ピタキシャル表面からNPNトランジスタのベースと同
時拡散したP+領域を形成し、この中ENPN)ランジ
スタのエミッタN+を拡散して抵抗の両端でP+層とN
+層をショートしてこれらを一方の配線の一部として使
うことが広く用いられている。このとき、トンネル抵抗
のP+領域と外側のN型エピタキシャル領域の間には、
0.IPF乃至03PF:程度の寄生容量がつくが特に
高周波回路以外は問題とならない。
Normally, at wiring intersection points in the analog part, a P+ region is formed from the N-type epitaxial surface by co-diffusion with the base of the NPN transistor, and the emitter N+ of the ENPN transistor is diffused into the P+ layer and the N+ region at both ends of the resistor.
It is widely used to short-circuit the + layers and use them as part of one wiring. At this time, between the P+ region of the tunnel resistance and the outer N type epitaxial region,
0. IPF to 03PF: A certain amount of parasitic capacitance is generated, but this is not a problem except for high frequency circuits.

一方、  I2L部でのクロス配線は、次のようにして
対処し7ている。すなわち、NPNトランジスタのベー
ス拡散と同時拡散した領域であって接地電位に接続さ:
1LfcP+領域を設け、とのP+領域中にNPN)ラ
ンジスタのエミッタと同時拡散″した炉領域を形成し、
とのN+領領域両端でコンタクト部分を形成してアルミ
ニウム配線を引き出すようにし、クロスする他の配線は
N+領域上を絶縁膜を介して通過するようにしている。
On the other hand, cross wiring in the I2L section is dealt with as follows. In other words, it is a region co-diffused with the base diffusion of the NPN transistor and connected to the ground potential:
A 1LfcP+ region is provided, and a reactor region is formed in which the emitter of the NPN transistor is co-diffused in the P+ region.
Contact portions are formed at both ends of the N+ region to draw out the aluminum wiring, and other wirings that cross are passed over the N+ region via an insulating film.

以下、クロス配線のために基体中に形成された領域部を
トンネル抵抗と呼ぶ。このとき、N+領領域P+領域間
には数PFの寄生容量が存在し、I2Lに於いては配線
の迂回が困難であることもあって、I2Lの至るところ
に寄生容量が入っ゛〔くる。この結果として、同期をと
るべき信号ラインの一方にトンネル抵抗が入ると、他方
に比して信号の遅れが生じ、この結果、誤動作の原因と
なる。
Hereinafter, the region formed in the base for cross wiring will be referred to as a tunnel resistance. At this time, a parasitic capacitance of several PF exists between the N+ region and the P+ region, and since it is difficult to detour the wiring in I2L, parasitic capacitance is introduced everywhere in I2L. As a result, if a tunnel resistance is introduced into one of the signal lines to be synchronized, the signal will be delayed compared to the other, resulting in malfunction.

第1図に従来のトンネル抵抗の使用例を示す。FIG. 1 shows an example of the use of a conventional tunnel resistor.

NANDゲートIA−N’ANDゲートIB間の信号ラ
インとNANDゲート2A−NANDゲート2B間の信
号ラインとは伴に同期をとる必要があるが、マスクレイ
アウトの都合上NANDゲート2AとNANDゲート2
Bとの間にトンネル抵抗TN几が挿入されている。従っ
て、このままでは、第2図に示すように、P点の波形(
同図(a))に対してGNDとの間に数PFの寄生容量
が入っているQ点の波形は同図(b)のようになり、信
号の遅延の原因となる。
It is necessary to synchronize the signal line between NAND gate IA and N'AND gate IB and the signal line between NAND gate 2A and NAND gate 2B, but due to mask layout, NAND gate 2A and NAND gate 2
A tunnel resistor TN is inserted between it and B. Therefore, if things remain as they are, the waveform at point P (
In contrast to (a) in the same figure, the waveform at point Q, where there is a parasitic capacitance of several PF between it and GND, is as shown in (b) in the same figure, which causes signal delay.

第3図は広く一般に行なわれているI2L部のレイアウ
ト図である。第3図の左側には、ファンアウト数3でイ
ンジェクタ領域20.ベース領域22およびコレクタ領
域24を有する2つの■2L部5゜が示してあゆ、右側
に交差配線のためのトンネル抵抗100が示しである。
FIG. 3 is a layout diagram of a widely used I2L section. On the left side of FIG. 3, there are 20 injector areas with a fanout number of 3. Two 2L parts 5° having a base region 22 and a collector region 24 are shown, and a tunnel resistor 100 for cross wiring is shown on the right side.

トンネル抵抗100はN型エピタキシャル層3の表面か
ら拡散されたP+領域6が絶縁領域4とつながっており
、GND(接地)電位に落ちている。P+領域6には、
■2L部100のコレクタ炉領域24と同時拡散された
トンネル抵抗のN+領域7が形成され、コレクタ領域2
4と領域、7の一端とはアルミニウム配線26−1で接
続され、領域7の他端から配線26−2が取り出されて
いる。領域7の上には、■2L部100の他のコレクタ
領域に接続された二つの配+12s。
In the tunnel resistor 100, a P+ region 6 diffused from the surface of the N-type epitaxial layer 3 is connected to the insulating region 4, and is at a GND (ground) potential. In P+ area 6,
■An N+ region 7 of tunnel resistance is formed which is simultaneously diffused with the collector region 24 of the 2L section 100, and the collector region 2
4 and one end of the region 7 are connected by an aluminum wiring 26-1, and a wiring 26-2 is taken out from the other end of the region 7. Above the region 7, there are two +12s connected to the other collector region of the 2L section 100.

30が交さしている。尚、5は炉カラー領域である。30 are intersecting. Note that 5 is the furnace collar area.

第4図は、第3図のA−A/勝に沿って切った模式的構
造断面図であり、1はP型基板、2はN+埋込み層であ
り、3は比抵抗1〜3Ω−cm 、厚さ7〜10μのN
型エビタキンヤル層、4は絶縁P+領域、5はN+カラ
ーであって埋込陪に達するように表面から深く拡散形成
されCいる。6はNPNトランジスタのベースと同時拡
散あるいはこれより低い濃度のP抵抗である。通常のI
Lに於いては、領域6はNPN )ランジスタのベース
と同時に拡散するが、高耐圧ILなどに於いてはILの
β。、を改善する為に、アナログ部分のNPNトランジ
スタのベースP+よりも低濃度のP+層を■2Lのベー
スに使うので、容量値を小さくする為にはこの低濃度P
領域を用いるのが良い。7はNPNエミッタと同時拡散
する炉トンネル抵抗領域、8は酸化膜、26−1.26
−2.28.30は前述のA7配線である。第4図から
もわかるように、トンネル抵抗を形成するP+層6およ
びN+層7とも高濃度であり、接合近辺での濃度は10
〜IOに達する。又、IL内を伝播する信号レベルは0
.7v以下なので、トンネル抵抗の寄生容量は、数PF
が一般的である。この寄生容量を減少させるには、金属
を多層配線化するなどが考えられるが、この方法では工
程数の増加によりコストアップとなることは避けられな
い。
FIG. 4 is a schematic cross-sectional view of the structure taken along line A-A/Kin of FIG. , 7-10μ thick N
4 is an insulating P+ region, and 5 is an N+ collar, which is formed by diffusion deep from the surface so as to reach the buried region. 6 is a P resistance which is co-diffused with the base of the NPN transistor or whose concentration is lower than this. normal I
In L, the region 6 diffuses at the same time as the base of the NPN transistor, but in the case of a high breakdown voltage IL, the region 6 diffuses at the same time as the base of the IL. In order to improve
It is better to use regions. 7 is a furnace tunnel resistance region co-diffused with the NPN emitter, 8 is an oxide film, 26-1.26
-2.28.30 is the aforementioned A7 wiring. As can be seen from FIG. 4, both the P+ layer 6 and the N+ layer 7, which form the tunnel resistance, have a high concentration, and the concentration near the junction is 10
~IO is reached. Also, the signal level propagating within the IL is 0.
.. Since it is less than 7V, the parasitic capacitance of the tunnel resistance is several PF.
is common. In order to reduce this parasitic capacitance, it is possible to use multilayer metal wiring, but this method inevitably increases the cost due to the increase in the number of steps.

本発明の目的は、I2L部のトンネル抵抗により形成さ
れる寄生容量によって同期をとるべき信号ラインの一方
が遅延を生じ誤動作する欠点を解消し−た半導体装置を
提供することである。
An object of the present invention is to provide a semiconductor device which eliminates the drawback that one of the signal lines to be synchronized is delayed and malfunctions due to parasitic capacitance formed by the tunnel resistance of the I2L section.

本発明による半導体装置は、同期をとるべき信号ライン
群の中の1つに交差配線のだめのトンネル抵抗による寄
生容量が入った場合、同期をとるべき他の信号ラインに
も同じPN接合を用いたダミー容量を挿入することによ
って、信号が同じ遅延となるようにし、ひげの発生や誤
動作を防止しようとするものである。
In the semiconductor device according to the present invention, when one of the signal lines to be synchronized has a parasitic capacitance due to the tunnel resistance of the cross wiring, the same PN junction is used for the other signal lines to be synchronized. By inserting a dummy capacitor, the signals have the same delay, thereby preventing the occurrence of whiskers and malfunctions.

以下、図面を参照して本発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the drawings.

第5図は、本発明をNANDゲートに適用した場合の等
価回路図であり、NANDゲート2人の出力とNAND
ゲー)2Bの入力間には第1図のようにトンネル抵抗5
2が挿入されている。又、これと同期をとるべきN A
 N DクーhlAの出力とNANDゲートIBの入力
間には、トンネル抵抗52の容量および抵抗値と等しい
ダミー容量52が投入され“Cいる。これによりP点、
Q点の波形は第6図(a)および(b)のようになって
同じ遅延を示すようになり、ILの論理動作に影響を与
えない。
FIG. 5 is an equivalent circuit diagram when the present invention is applied to a NAND gate.
A tunnel resistor 5 is installed between the inputs of 2B as shown in Figure 1.
2 has been inserted. Also, NA that should be synchronized with this
A dummy capacitor 52 equal to the capacitance and resistance value of the tunnel resistor 52 is inserted between the output of the NAND gate IB and the input of the NAND gate IB.
The waveforms at point Q become as shown in FIGS. 6(a) and 6(b), showing the same delay, and do not affect the logic operation of the IL.

第7図に、第5図に沿って本発明を三信号ラインに適用
した場合のダミー容量の適切な使用例を示す。配線70
と72.74とはパターンレイアウト上交差すべき配線
であり、このため、P型領域6にN型領域7−1を形成
したトンネル抵抗51をつくり、配線70を70−1 
、70−2に分割してこれらをトンネル抵抗51で結び
、配線72.74は領域7−1上を絶縁膜を介して通過
している。
FIG. 7 shows an example of appropriate use of dummy capacitors when the present invention is applied to three signal lines in accordance with FIG. 5. Wiring 70
and 72 and 74 are wirings that should intersect in the pattern layout. Therefore, a tunnel resistor 51 is created in which an N-type region 7-1 is formed in a P-type region 6, and the wiring 70 is connected to 70-1.
, 70-2 and are connected by a tunnel resistor 51, and wirings 72 and 74 pass over the region 7-1 via an insulating film.

配線76は、配線70と同期をとる必要がある配線線で
あり、この配線76にダミー容量をもたせるために、領
域7−1と同じ幅および長さの領域7−2が設けられ、
配線76は76−1.76−2の二つに分割されて領域
7−2で接続されている。
The wiring 76 is a wiring line that needs to be synchronized with the wiring 70, and in order to provide the wiring 76 with a dummy capacitance, a region 7-2 having the same width and length as the region 7-1 is provided.
The wiring 76 is divided into two parts 76-1 and 76-2 and connected in a region 7-2.

領域7−1と7−2とは同じ幅および長さで、しかも近
接配置されているので、領域7−1.7−2の容量値及
び抵抗値はほぼ等しい。従って、二つのライン70.7
6間の点’)’ 、Qにおける遅延時間も第6図のよう
にほぼ一定となる。尚領域6が接地されていることは前
述のとおりである。
Since regions 7-1 and 7-2 have the same width and length and are located close to each other, the capacitance and resistance values of regions 7-1 and 7-2 are approximately equal. Therefore, the two lines 70.7
The delay time at the points ')' and Q between 6 and 6 is also approximately constant as shown in FIG. As mentioned above, the region 6 is grounded.

第8図は、本発明の他の実施例を示す平面図である。配
線80と配線83乃至87とは交差される必要があるか
ら、配線80には領域7−1によるトンネル抵抗が形成
され、この領域7−1上に絶縁膜を介しC5つの配線8
3乃至87が通過している。また、配線80と配線81
.82とはこれらに伝わる信号に同期をとる必要がある
ので、配線81.82にはダミー容量を設ける必要があ
る。しかしながら、第8図では第7図のように配線81
.82の一部にダミー容量のための領域を直列に設ける
のではなく、配線81.82の一部に導体81−1.8
2−2を介して領域7−2.7−3を接続することによ
り、配線81.82と接jt!間に容量を設けている。
FIG. 8 is a plan view showing another embodiment of the present invention. Since the wiring 80 and the wirings 83 to 87 need to intersect, a tunnel resistance is formed in the wiring 80 by the region 7-1, and the C5 wirings 8 are formed on the region 7-1 via an insulating film.
3 to 87 have passed. In addition, the wiring 80 and the wiring 81
.. Since it is necessary to synchronize the signals transmitted to the lines 81 and 82, it is necessary to provide dummy capacitors in the lines 81 and 82. However, in FIG. 8, the wiring 81 as shown in FIG.
.. Rather than providing a region for a dummy capacitance in series in a part of the wiring 81.82, a conductor 81-1.8 is provided in a part of the wiring 81.82.
By connecting the regions 7-2, 7-3 via 2-2, it is connected to the wiring 81.82. A capacity is provided in between.

領域7−1は容量のほかに抵抗成分をもち、配置fij
81,82については容量のみであるが、領域7−1の
抵抗成分はたかだか100Ωであるから、信号遅延にほ
とんど影響ない。従って、第8図のように、ダミー容量
に抵抗成分をもたなくても、同期をとるべき信号間の遅
延はほぼ同一になる。尚、領域7−1と領域7−2.7
−3との容量を同じにするため、同一の幅で同一の長さ
にする。この場合、領域7−1゜7−2の形状を第8図
のようにしないで例えば矩形にしてもよいと考えられる
かもしれないが、容量値は領域7−1.7−2.7−3
の底面および側面の面積の和できまるから、領域7−1
と7−2.7−3との間の幅をかえると、領域7−1゜
7−2.7−3の拡散広がりにより生じる各領域の底面
および側面の面積の変化により容量値のノくラツキが大
きくなり、このため、各領域の幅は同じでかつ長さも等
しくするのがよい。
Region 7-1 has a resistance component in addition to capacitance, and the arrangement fij
81 and 82 have only capacitance, but since the resistance component in region 7-1 is at most 100Ω, it has almost no effect on signal delay. Therefore, as shown in FIG. 8, even if the dummy capacitance does not have a resistance component, the delays between the signals to be synchronized are almost the same. In addition, area 7-1 and area 7-2.7
In order to have the same capacity as -3, make them the same width and length. In this case, it may be thought that the shape of the regions 7-1°7-2 may be made rectangular, for example, instead of the shape shown in FIG. 8, but the capacitance value of the regions 7-1.7-2.7- 3
Since it is determined by the sum of the areas of the bottom and side surfaces, area 7-1
By changing the width between This increases the fluctuation, so it is preferable that each region have the same width and length.

第7図、第8図に於いて、ダミー容量は一つの連続した
領域で形成されているが、もちろん同じ幅でいくつかの
エレメントに分れていてエレメントが相互に接続されて
いても良いし、それらの分割されたダミー容量のいくつ
かは配線の交さに利用してもさしつかえない。この場合
、容量値は、合計としてはそれぞれのダミー容蓋自体相
互に等しくなければならない。上述のような設計を行う
ことによって、マスクレイプラト上の自由度は大幅にふ
え、チップサイズの縮少化を行うことが可能となる。又
、このときダミー容量、トンネル抵抗は容量が相互に一
致性を保つように、抵抗(容量)の幅荀一定とし、また
同一方向で近接配置とすることが望旭・しい。
In Figures 7 and 8, the dummy capacitor is formed in one continuous area, but of course it may be divided into several elements with the same width and the elements may be interconnected. , some of these divided dummy capacitors may be used for wiring intersections. In this case, the capacitance values must be equal to each other in total for each dummy container. By performing the above-described design, the degree of freedom on the mask lay plate is greatly increased, and it becomes possible to reduce the chip size. At this time, it is desirable that the width of the resistance (capacitance) of the dummy capacitor and tunnel resistor be constant, and that they be arranged close to each other in the same direction so that the capacitances maintain consistency with each other.

第9図に本発明のさらに他の実施例を示づ゛。第8図1
では、トンネル抵抗として接地された一導電型領域に形
成されCいる反対導電型領域を用いたが、第9図では、
N型領域7が形成袋れているP型領域6は接地されてお
らず、その代わすAl配線9−1.9−2でPおよびN
型領域6,7は接続されてこれをトンネル抵抗としてい
る。従って、ダミー容量もP型領域6とN型領域7とは
接続されている。この場合、バイアスされているので、
NPNのベース拡散と同時に形成したP+領域6とN型
エピタキシャル層3とで形成される容量は0.1〜0.
3 PF程度であり、前述の容量値より1ケタ小はい。
FIG. 9 shows still another embodiment of the present invention. Figure 8 1
In this case, an opposite conductivity type region formed in a grounded one conductivity type region was used as a tunnel resistance, but in Fig. 9,
The P-type region 6 where the N-type region 7 is formed is not grounded, and instead, the P and N
The mold regions 6, 7 are connected to form a tunnel resistance. Therefore, the dummy capacitor also connects the P type region 6 and the N type region 7. In this case, it is biased, so
The capacitance formed by the P+ region 6 and the N-type epitaxial layer 3 formed at the same time as the NPN base diffusion is 0.1 to 0.
It is about 3 PF, which is one digit smaller than the capacitance value mentioned above.

従っ°c1 この場合には容量値のバランスを考慮する
必要は殆んどない。つまり、形状が多少ちがっていても
よい。第9図の左側は、トンネル抵抗、右側はダミー容
量をそれぞれ示すが、ダミー容量の耐領域6は特になく
てもかまわない。
Therefore, °c1 In this case, there is almost no need to consider the balance of capacitance values. In other words, the shapes may be slightly different. The left side of FIG. 9 shows the tunnel resistance, and the right side shows the dummy capacitance, but the withstand region 6 of the dummy capacitance may not be provided.

また、第9図で示したダミー容量は、第8図の考え方と
同じで、配線9−3は配線9−1.9−2と同期をとる
べき配線に接続されている。
Furthermore, the dummy capacitance shown in FIG. 9 is the same as the concept shown in FIG. 8, and the wiring 9-3 is connected to the wiring to be synchronized with the wirings 9-1 and 9-2.

以上述べたように、本発明を適用したI2Lは、何ら特
殊な工程を付加することなくダミー容量を注意深く設計
上配置することにょっ−〔、I2L部の論理に影響を与
えないで配線交さすることが可能であり、IC規模の増
大すなわち、配線数の急速な増大に伴なって本発明は益
々重要性を増すであろう。
As described above, the I2L to which the present invention is applied can be achieved by carefully arranging dummy capacitors in the design without adding any special process, and by crossing wiring without affecting the logic of the I2L section. The present invention will become increasingly important as the scale of the IC increases, that is, the number of wiring lines increases rapidly.

尚、本発明はI2Lに適用した場合についてのみ述べた
が他の一般的なアナログ回路、MO8LSIにおけるク
ロス配線に適用しても同様な効果が得られるのは自明で
ある。
Although the present invention has been described only when applied to I2L, it is obvious that similar effects can be obtained when applied to other general analog circuits and cross wiring in MO8LSI.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のI2Lに於いてトンネル抵抗が設けられ
た等価回路図、第2図は第1図のP点、Q点に於ける電
圧波形図、第3図は従来のILに於けるデジタル部とト
ンネル抵抗の配置を示す平面図゛、第4図は第3図のA
 −A′で切断したときの断面図、第5図は本発明によ
るトンネル抵抗、ダミー容量が設けられた等価回路図、
第6図は第5図P点、Q点に於ける電圧波形図、第7図
、第8図は本発明を適用したトンネル抵抗、ダミー容量
の望゛ましい配置例を示す平面図、第9図は本発明の他
の実施例を示す構造断面図である。 1・・・・・・P型基板、2・・・・・・N+埋込み層
、3・・・・・N型エピタキシャル層、4・・・・・・
P+絶縁領域、5・・・・・・N+lyラー領域、6・
・・・・・P+領域、7・・・・・・N+領領域8・・
・・・酸化膜、9・・・・・・Al配線、51・・・・
・・トンネル抵抗、52・・・・・・ダミー容量。 第1図 第2区 第3図 1 第4図 第5図 70 6 捗7四 搾6図
Figure 1 is an equivalent circuit diagram of a conventional I2L with a tunnel resistor provided, Figure 2 is a voltage waveform diagram at points P and Q in Figure 1, and Figure 3 is an equivalent circuit diagram of a conventional I2L. A plan view showing the arrangement of the digital section and tunnel resistance, Figure 4 is A in Figure 3.
5 is an equivalent circuit diagram provided with a tunnel resistor and a dummy capacitor according to the present invention,
FIG. 6 is a voltage waveform diagram at points P and Q in FIG. FIG. 9 is a structural sectional view showing another embodiment of the present invention. 1...P type substrate, 2...N+ buried layer, 3...N type epitaxial layer, 4...
P+ insulating region, 5...N+lyr region, 6.
...P+ area, 7...N+ territory 8...
...Oxide film, 9...Al wiring, 51...
...Tunnel resistance, 52...Dummy capacitance. Figure 1, Section 2, Figure 3, Figure 4, Figure 5, Figure 70, 6, Figure 7, Figure 6,

Claims (1)

【特許請求の範囲】[Claims] 信号伝達ライン中に交差配線のために半導体基体内の一
領域を経由するようにした配線を有する半導体装置にお
いて、該配線に伝わる信号と同期した信号が伝わる他の
配線にダミー容量が設けられていることを特徴とする半
導体装置。
In a semiconductor device having a wiring that passes through a region within a semiconductor substrate for cross wiring in a signal transmission line, a dummy capacitor is provided in another wiring through which a signal synchronized with a signal transmitted to the wiring is transmitted. A semiconductor device characterized by:
JP57180241A 1982-10-14 1982-10-14 Semiconductor device Granted JPS5969954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57180241A JPS5969954A (en) 1982-10-14 1982-10-14 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57180241A JPS5969954A (en) 1982-10-14 1982-10-14 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS5969954A true JPS5969954A (en) 1984-04-20
JPH0153512B2 JPH0153512B2 (en) 1989-11-14

Family

ID=16079829

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57180241A Granted JPS5969954A (en) 1982-10-14 1982-10-14 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS5969954A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60254633A (en) * 1984-05-30 1985-12-16 Nec Corp System of equivalent capacitance wiring of circuit

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6722911B1 (en) * 2019-04-18 2020-07-15 株式会社こどもみらい System for presenting time of day based on individual circadian rhythm
WO2021005930A1 (en) * 2019-07-09 2021-01-14 パナソニックIpマネジメント株式会社 Nap estimation system, nap estimation method, and program

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60254633A (en) * 1984-05-30 1985-12-16 Nec Corp System of equivalent capacitance wiring of circuit

Also Published As

Publication number Publication date
JPH0153512B2 (en) 1989-11-14

Similar Documents

Publication Publication Date Title
US3365707A (en) Lsi array and standard cells
Su et al. Experimental results and modeling techniques for substrate noise in mixed-signal integrated circuits
US4928160A (en) Gate isolated base cell structure with off-grid gate polysilicon pattern
WO2013052384A1 (en) Gate array architecture with multiple programmable regions
US4499484A (en) Integrated circuit manufactured by master slice method
US5060046A (en) Semiconductor integrated circuit device having enlarged cells formed on ends of basic cell arrays
IE55821B1 (en) Master slice semiconductor device
US5444288A (en) CMOS integrated circuit having improved power-supply filtering
US4069495A (en) Semiconductor device for integrated injection logic
US3981070A (en) LSI chip construction and method
JPS5969954A (en) Semiconductor device
JPH0127578B2 (en)
JP2001144091A (en) Semiconductor ic
US3478229A (en) Multifunction circuit device
JPS59177944A (en) Semiconductor integrated circuit device
GB2243485A (en) Semiconductor device contact pads
US4857987A (en) Semiconductor device
USH512H (en) Automated universal array
JPH05109913A (en) Wiring structure of semiconductor integrated circuit
JPS643056B2 (en)
US20230411394A1 (en) Offset power rail
Phillips Monolithic integrated circuits
JPS62203351A (en) Interconnection structure of integrated circuit
JPS58143565A (en) Semiconductor circuit wiring body
US3473094A (en) Integrated arrangement for integrated circuit structures