JPS596949A - Fluid energy mill - Google Patents

Fluid energy mill

Info

Publication number
JPS596949A
JPS596949A JP11486682A JP11486682A JPS596949A JP S596949 A JPS596949 A JP S596949A JP 11486682 A JP11486682 A JP 11486682A JP 11486682 A JP11486682 A JP 11486682A JP S596949 A JPS596949 A JP S596949A
Authority
JP
Japan
Prior art keywords
fluid
crushed
nozzle
flow path
energy mill
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11486682A
Other languages
Japanese (ja)
Inventor
陣場 直雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP11486682A priority Critical patent/JPS596949A/en
Publication of JPS596949A publication Critical patent/JPS596949A/en
Pending legal-status Critical Current

Links

Landscapes

  • Disintegrating Or Milling (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明け、噴射エネルギーを利用して、石炭、砂石、樹
脂等の被粉砕処理物を粉砕処理するように、粉砕室にノ
ズルを設けると共に、前記ノズルに高圧流体の供給路を
連通接続した流体エネルギーミルに関する。
DETAILED DESCRIPTION OF THE INVENTION According to the present invention, a nozzle is provided in the pulverizing chamber, and a high-pressure fluid is injected into the pulverizing chamber so that the object to be pulverized, such as coal, sandstone, or resin, is pulverized using injection energy. This invention relates to a fluid energy mill in which the supply channels of the fluid are connected in communication.

この種の流体エネルギーミルとしては、従来例えば実開
昭51−100374号公報に記載されているもののよ
うに、ノズルとしての機能を備えさせたラバール管の噴
射口部分に被粉砕処理物を添加させて、ノズルから高速
で噴射される高圧流体と共に被粉砕処理物を壁等の衝突
板に衝突させ、衝突時の衝撃力で被粉砕処理物を粉砕す
るものとか、特公昭45−9306号公報に記載されて
いるもののように、複数のノズル夫々の噴出口に被粉砕
処理物の供給路を設け、ノズルから噴射された流体によ
って被粉砕処理物同士を衝突させ、その衝撃力で被粉砕
処理物を粉砕するものがあった。
Conventionally, this type of fluid energy mill, such as the one described in Japanese Utility Model Application Publication No. 100374/1983, adds the material to be pulverized to the injection port of a Laval tube equipped with a nozzle function. According to Japanese Patent Publication No. 45-9306, the object to be crushed is collided with a collision plate such as a wall together with high-pressure fluid injected from a nozzle at high speed, and the object to be crushed is crushed by the impact force at the time of collision. As shown in the description, a supply path for the material to be crushed is provided at the ejection port of each of a plurality of nozzles, and the fluid jetted from the nozzles causes the materials to be crushed to collide with each other, and the impact force causes the materials to be crushed to be crushed. There was something that would crush it.

ところが、前述の衝突板へ衝突させて粉砕させるタイプ
のもの及び被粉砕処理物同士を衝突させて粉砕させるタ
イプのものいずれにおいても、計算上の粉砕効率よりも
実際の粉砕効率が大巾に低下する欠点があり、特に石炭
、珪石等の被粉砕処理物を粉砕するには長時間を要する
欠点があった。
However, in both the above-mentioned type of crushing by colliding with a collision plate and the type of crushing by colliding the objects to be crushed with each other, the actual crushing efficiency is much lower than the calculated crushing efficiency. In particular, it takes a long time to crush objects to be crushed, such as coal and silica stone.

本発明は、IrJ記の点に鑑み、従来欠点の原因を追求
し、粉砕効率を大幅に向上できるようにすることを目的
とする。
In view of the points mentioned in IrJ, an object of the present invention is to investigate the cause of the conventional drawbacks and to make it possible to significantly improve the pulverization efficiency.

即ち、従来では、高圧流体が最も高速となるノズルの噴
出口近くにおいて被粉砕処理物を供給すれは、被粉砕処
理物に対して最大の運動エネルギーを付与できると観念
されていた。 しかし、考究の結果、流体がジェット流
として高速噴射される箇所では、被粉砕処理物がジェッ
ト流の周部で跳ね返される状態となってジェット流中に
入り込めず、ジェット流の速度の割に被粉砕処理物の粉
砕室への噴出速度が小さく、衝突板に衝突させるもの、
及び、被粉砕処理物同士を衝突させるものいずれにおい
てもその衝撃力が小さく、十分な粉砕を行えないという
事実を見出すに至ったのである。
That is, conventionally, it has been thought that the maximum kinetic energy can be imparted to the object to be crushed by supplying the object to be crushed near the jetting port of the nozzle where the high-pressure fluid is at its highest speed. However, as a result of study, it was found that in places where the fluid is injected as a jet stream at high speed, the material to be crushed is bounced off the periphery of the jet stream and cannot enter the jet stream. Those that eject the material to be crushed into the crushing chamber at a low speed and collide with the collision plate;
Furthermore, they have discovered that in any method in which the objects to be pulverized collide with each other, the impact force is small and sufficient pulverization cannot be achieved.

本発明は、前記事実に着目し、前記目的の達成のために
、冒記した流体エネルギーミルにおいて、前記流体供給
路の途中の前記ノズルから離れた箇所に、被粉砕処理物
の供給路を連通接続する七共に、前記ノズルと被粉砕処
理物供給路からの供給都との間に、流路断面積を急激に
増加する攪乱部を備えた、流体に被粉砕処理物を均等に
混合する混合用助走流路を形成しであることを特徴とす
る。
The present invention has focused on the above fact, and in order to achieve the above object, in the above-mentioned fluid energy mill, a supply path for the material to be crushed is connected to a part of the fluid supply path that is remote from the nozzle. A mixing device for uniformly mixing the material to be crushed into the fluid, which is provided with a stirring section that rapidly increases the cross-sectional area of the flow path between the nozzle and the supply line from the supply path for the material to be crushed. It is characterized by forming a run-up flow path.

つまり、ノズルで高速に加速されるまでの間に混合用助
走流路を形成し、その、ノズル噴射箇所よりも低速で流
動される流体中に被粉砕処理物を供給するから、被粉砕
処理物を流体中に入れ込ませやす(、又、たとえ流動流
体の周部側に偏った状態で供給されたとしても被粉砕処
理物との混合状態で流体が攪乱部に流入するに伴い、急
に失速する状態となって被粉砕処理物が互いに混合攪拌
され、それに伴い、助走流路において良好に均一な混合
状態にでき、その混合状態でノズルにより加速して粉砕
室に噴射するから、高圧流体により被粉砕処理物に十分
な運動エネルギーを付与して粉砕室に噴射でき、衝突板
に衝突させる場合、被粉砕処理物同士を衝突させる場合
のいずれであっても大きな衝撃力が得られ、粉砕効率を
大幅に向上できるようになった。
In other words, a run-up flow path for mixing is formed before the nozzle accelerates the material to a high speed, and the material to be pulverized is supplied into the fluid flowing at a lower speed than the nozzle injection point. (Also, even if the fluid is supplied biased towards the periphery of the fluid, as the fluid flows into the agitation part in a mixed state with the material to be crushed, it will suddenly The materials to be crushed are mixed and stirred together in a state of stalling, and as a result, a well-uniform mixed state can be achieved in the run-up flow path, and in this mixed state, the nozzle accelerates and injects it into the grinding chamber, so that high-pressure fluid By applying sufficient kinetic energy to the material to be crushed, it can be injected into the crushing chamber, and a large impact force can be obtained whether the material is collided with the collision plate or the materials to be crushed are collided with each other. Efficiency can now be significantly improved.

従って、石炭、珪石、石灰石等の被粉砕処理物でも良好
かつ迅速に粉砕できると共に微粉化でき、粉砕処理物を
各種の用途に極めて良好に利用できるようになったので
ある。
Therefore, even materials to be crushed such as coal, silica stone, limestone, etc. can be pulverized well and quickly and pulverized, and the pulverized materials can now be used extremely well for various purposes.

次に、本発明の実施例を例示図に基づいて説明する。Next, embodiments of the present invention will be described based on illustrative drawings.

基台il+に備えられた円筒部(3)に、旋回粉砕分級
室(2)を形成するためのゲージング(4)を取付け、
4個のノズル(5)を、粉砕分級室(2)の周方向に9
0°づつ位相を異ならせて分散配置した状態で、かつ、
噴射に伴って被粉砕処理物及び流体が粉砕分級室(2)
内で中心(P)周りで旋回流前するように向きを設定し
た状態で設け、微粉を取出す回収路(7)を、粉砕分級
室(2)に接続して形成し、もって、流体及びそれに分
散混入された被粉砕処理物をノズル(5)・・夫々から
粉砕分級室(2)内に供給して、粉砕分級室(2)内で
の被粉砕処理物どうしのあるいは被粉砕処理物の粉砕分
級室(2)内壁への衝突によって粉砕処理を行えるよう
に構成すると共に、粉砕分級室(2)内での流体輸送力
と遠心力との作用によって粉砕部からの被粉砕処理物を
微粉と粗粉とに分けるように構成し、かつ、微粉のみ回
収路(7)を通って取出せるように構成しである。
A gauging (4) for forming a rotating crushing and classification chamber (2) is attached to the cylindrical part (3) provided on the base il+,
Four nozzles (5) are installed in the circumferential direction of the crushing and classification chamber (2).
in a state where they are distributed and arranged with a phase difference of 0°, and
With the injection, the material to be crushed and the fluid flow into the crushing and classification chamber (2)
A recovery path (7) for taking out fine powder is connected to the crushing and classification chamber (2), so that the fluid and its The dispersed and mixed materials to be crushed are supplied into the crushing and classification chamber (2) from the respective nozzles (5), and the materials to be crushed are separated from each other or the materials to be crushed in the crushing and classifying chamber (2). The pulverization and classification chamber (2) is configured to perform pulverization by collision with the inner wall, and the material to be pulverized from the pulverization section is pulverized by the action of fluid transport force and centrifugal force within the pulverization and classification chamber (2). It is configured so that it can be separated into coarse powder and coarse powder, and it is configured so that only the fine powder can be taken out through the recovery path (7).

環状流路(8)を形成するパイプ(8a)を、粉砕分級
室(2)に対してほぼ同芯状に配置した状態で円筒部(
3)に支持アーム(6(を介して取付支持させ、環状流
路(8)に、コンプレッサー等の適宜高圧流体供給装置
(9)を流体供給管(1o)により接続すると共に、ノ
ズル(6)夫々と環状流路+8+ (!:を連通管(1
11により各別に接続して流体供給路(R1を構成して
ある。 そして、流体供給管+101を環状流路(8)
に対してその周方向−刃側に向かって開口させると共に
、連通管01)夫々への流体取出口(lla)を環状流
路(8)に対してその周方向他方側に向かって開口させ
、また、細かいあるいは事前に破砕処理されて比較的細
か(なった石炭等の被粉砕処理物を供給する原料ホッパ
(121を、ロータリーフィーダ等の密閉型式で供給量
調節自在な定量供給装置lを介して流体供給管(101
に接続し、その供給装置■から環状流路(8)及び連通
管11D・・を経てノズル(5)に至るまでの間に被粉
砕処理物を流体中に均一的に混合するように混合用助走
流路を形成してあり、もって、連続あるいは連続的に供
給される適当量の被粉砕処理物と流体を、混合状態で流
体供給管(lO]から環状流路(8)内に噴射させ、環
状流路(8)内での流動によって均等に被粉砕処理物を
流体中に分散させると共に、被粉砕処理物を適当な濃度
で分散混入した流体をノズル(5)に供給するように構
成しである。
The cylindrical part (
3) is attached and supported via the support arm (6), and an appropriate high-pressure fluid supply device (9) such as a compressor is connected to the annular flow path (8) by a fluid supply pipe (1o), and the nozzle (6) and the annular flow path +8+ (!:) to the communicating pipe (1
11 to form a fluid supply path (R1). Then, the fluid supply pipe +101 is connected to an annular flow path (8).
The fluid outlet (lla) to each of the communication pipes 01) is opened toward the other side in the circumferential direction relative to the annular flow path (8), In addition, the raw material hopper (121) that supplies the material to be crushed, such as fine or relatively fine coal that has been crushed in advance, is connected to the raw material hopper (121) through a closed-type quantitative feeding device such as a rotary feeder that can freely adjust the supply amount. Fluid supply pipe (101
A mixing device is used to uniformly mix the material to be crushed into the fluid from the supply device (1) to the nozzle (5) via the annular flow path (8) and the communication pipe 11D... A run-up flow path is formed, and an appropriate amount of the material to be crushed and fluid that are continuously or continuously supplied are injected in a mixed state from the fluid supply pipe (lO) into the annular flow path (8). , so that the material to be crushed is evenly dispersed in the fluid by the flow in the annular channel (8), and the fluid containing the material to be crushed at an appropriate concentration is supplied to the nozzle (5). It is.

!lI記混記載助走流路の途中に環状流路(8)を備え
させ、スペースの割に助走流路を十分長くできるように
構成し、そして、流体供給管(lO)よりもパイプ(8
a)を大径にして攪乱部囚を構成してあり1彼粉砕処理
物が環状流路(8)に流体との混合状態で供給されるに
伴い、そこで失速して攪拌される状態となって、より一
層良好な混合状態が得られるようにf1η成しである。
! An annular flow path (8) is provided in the middle of the mixed description run-up flow path described in II, and the run-up flow path is configured to be sufficiently long considering the space, and the pipe (8)
a) is made to have a large diameter to constitute a stirring part.1 As the pulverized material is supplied to the annular channel (8) in a mixed state with the fluid, it stalls there and is stirred. In order to obtain an even better mixed state, f1η is used.

前記回収路(7)に、サイクロン等の適当な固気分離装
置+141 、及び、そのF流側のブロアーポンプ等適
当な流体吸排出装置(15)を接続し、粉砕処理された
微粉を流体から分離して回収できるように構成しである
A suitable solid-gas separator such as a cyclone (141) and a suitable fluid suction/discharge device (15) such as a blower pump on the F flow side are connected to the recovery path (7), and the pulverized fine powder is removed from the fluid. It is constructed so that it can be separated and recovered.

前記実施例では、4本の連通管(1」)・・の流路カ■
面積の総和をパイプ(8a)の流路断面積よυも小に構
成し、環状流路(8)から連通管(II)・・に、被粉
砕処理物との混合状態で流体を加速して流入させるよう
にしているが、本発明としては、前記連通管ull・・
をノズル(5)・・におい−Cのみ加速させるように構
成するものでも良い。
In the above embodiment, the flow path of four communication pipes (1'')...
The total area is configured to be smaller than the flow path cross-sectional area of the pipe (8a), and the fluid is accelerated from the annular flow path (8) to the communication pipe (II) in a mixed state with the material to be crushed. However, in the present invention, the communication pipe ll...
The nozzle (5) may be configured to accelerate only the odor -C.

尚、対象とする被粉砕処理物は、石炭、樹脂、砂石、セ
ラミック等の比重の大きいものから比重の小さいものま
でいかなるものであってもよく、また、利用する流体は
、空気、蒸気が一般的であるが、例えは低温粉砕f!r
:讐する場合には流体窒素又は炭酸ガスを利用する等、
各種変更自在である。
The object to be pulverized may be anything from a high specific gravity such as coal, resin, sandstone, and ceramics to a low specific gravity, and the fluid to be used may be air, steam, etc. Although it is common, an example is low-temperature grinding f! r
: When attacking, use fluid nitrogen or carbon dioxide, etc.
Various changes are possible.

次に、別の実施例を説明する。Next, another example will be described.

(イ)第3図に示すように、IfJ記環成環状流路)と
同軸状に堝牛形の螺旋流路(81f形成し、被粉砕処理
物が混入された流体を一層その螺旋流路を通過させ、そ
の後は前記環状流路(8)に供給するように構成し、設
置スペースを小さくしながらより一層長い混合用助走流
路を形成するようにしても良い。
(B) As shown in Fig. 3, a concave-shaped spiral flow path (81f) is formed coaxially with IfJ annular flow path), and the fluid mixed with the material to be crushed is further passed through the spiral flow path. It may be configured such that the mixture is allowed to pass therethrough and then supplied to the annular flow path (8), thereby forming a longer run-up flow path for mixing while reducing the installation space.

(ロ)螺旋体等の攪拌器(C1を前記螺旋流路FBI内
に設けて、流体と被粉砕処理物とを積極的に混合させる
べ(構成しても良。  この場合において、前記攪拌器
(C1は螺旋体に限らず、自fJ記螺旋流路iBl内に
一部り火きのある邪魔板を多数設けたものでもよい。
(b) A stirrer such as a spiral (C1) may be provided in the spiral flow path FBI to actively mix the fluid and the material to be crushed. In this case, the stirrer ( C1 is not limited to a spiral body, but may be one in which a number of baffle plates each having a torch are provided in the spiral flow path iB1.

(ハ) ノズル(6)を環状流路(8)に直結する。(c) Directly connect the nozzle (6) to the annular flow path (8).

被粉砕処理物を流体供給路1tt+の途中に供給するに
、ホッパー巾と定量供給装置113)から成るものに限
らす、例えばスクリューフィーダ等各種の手段が採用で
き、流体供給路(R)に接続されるものをして被処理物
供給路trlと称する。一本発明に2い−Cは被粉砕処
理物吻の微粉化が可能となり、殊に、燃焼効率を向−E
さ俳るために燃料オイル中に混入する石炭微粉な、効率
良く得ることができ、実用上極めて有用である。
In order to supply the material to be pulverized to the middle of the fluid supply path 1tt+, various means such as a screw feeder can be used, limited to those consisting of a hopper width and a quantitative supply device 113), and connected to the fluid supply path (R). This is referred to as the processing object supply path trl. One of the features of the present invention is that -C enables the pulverization of the material to be pulverized, and particularly improves combustion efficiency.
It is possible to efficiently obtain fine coal powder that is mixed into fuel oil in order to prevent it from burning, and is extremely useful in practice.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明に係る流体エネルギーミルの実施例を示し
、第1図は袋部の概略縦断面図を含むフローシート、第
2図は第1図のU−n線−[面図、第3図は別実施例を
示す太部の4既略縦…[面図を含むフローシートである
The drawings show an embodiment of the fluid energy mill according to the present invention. The figure is a flow sheet including a sectional view of the thick section showing another embodiment.

Claims (1)

【特許請求の範囲】 ■ 粉砕室(2)にノズル(6)を設けると共に、1(
j紀ノズル(6)に高圧流体の供給路(R1を連通接続
した流体エネルギーミルにおいて、前記流体供給路(R
)の途中の前記ノズル(5)から離れた箇所に、被粉砕
処理物の供給路fr+を連通接続すると共に、前記ノズ
ル(5)と被粉砕処理物供給路frlからの供給都との
間に、流路W「面積を急激に増加する攪乱耶fAl f
c@えた、流体に被粉砕処理物を均等に混合する混合用
助走流路を形成しであることを特徴とする流体エネルギ
ーミ ル。 ■ [)0記載合用助走流路に環状流路(8)を備えで
ある特許請求の範囲第0項記載の流体エネルギーミル。 ■ ノズル(5)を前記粉砕室(2)の周方向複数箇所
に分散配置しである特許請求の範囲第0項又は第0項記
載の流体エネルギーミル。
[Claims] ■ A nozzle (6) is provided in the grinding chamber (2), and a nozzle (6) is provided in the grinding chamber (2).
In a fluid energy mill in which a high-pressure fluid supply path (R1) is connected in communication with a J period nozzle (6), the fluid supply path (R
), a supply path fr+ of the material to be crushed is connected to a point away from the nozzle (5), and a supply path fr+ of the material to be crushed is connected between the nozzle (5) and the supply path frl of the material to be crushed. , flow path W "disturbance fAl f that rapidly increases the area
A fluid energy mill characterized by forming a mixing run-up flow path for uniformly mixing a material to be crushed into a fluid. (2) The fluid energy mill according to claim 0, wherein the combined run-up passage according to claim 0 includes an annular passage (8). (2) The fluid energy mill according to claim 0 or 0, wherein the nozzles (5) are distributed at a plurality of locations in the circumferential direction of the grinding chamber (2).
JP11486682A 1982-07-01 1982-07-01 Fluid energy mill Pending JPS596949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11486682A JPS596949A (en) 1982-07-01 1982-07-01 Fluid energy mill

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11486682A JPS596949A (en) 1982-07-01 1982-07-01 Fluid energy mill

Publications (1)

Publication Number Publication Date
JPS596949A true JPS596949A (en) 1984-01-14

Family

ID=14648649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11486682A Pending JPS596949A (en) 1982-07-01 1982-07-01 Fluid energy mill

Country Status (1)

Country Link
JP (1) JPS596949A (en)

Similar Documents

Publication Publication Date Title
KR850000521B1 (en) Comminuttion of pulverizer material by fluid energy
US4018388A (en) Jet-type axial pulverizer
US6951312B2 (en) Particle entraining eductor-spike nozzle device for a fluidized bed jet mill
CN1039679C (en) Pneumatic pulverizer and process for producing toner
US4189102A (en) Comminuting and classifying apparatus and process of the re-entrant circulating stream jet type
US9695047B2 (en) Process for producing fine, morphologically optimized particles using jet mill, jet mill for use in such a process and particles produced
US4934613A (en) Apparatus for crushing brittle material for grinding
CN106040393A (en) Water jet flow pulverizing system
US4750677A (en) Classifier for comminution of pulverulent material by fluid energy
JPS596949A (en) Fluid energy mill
US2602595A (en) Fluid impact pulverizer
JPS6018454B2 (en) Opposed jet mill
JPS6316981B2 (en)
US4638953A (en) Classifier for comminution of pulverulent material by fluid energy
JPH0767541B2 (en) Horizontal swirl type jet mill
GB2045642A (en) Comminuting and classifying mill
JP2010284634A (en) Apparatus for pulverization
JPS596950A (en) Fluid energy mill
RU2188077C2 (en) Countercurrent-type jet mill
KR100239240B1 (en) Crushing method and apparatus
JP3185065B2 (en) Collision type air crusher
JP2942405B2 (en) Collision type air crusher
JPS6242753A (en) Method and apparatus for producing fine powder
KR0167010B1 (en) Method and apparatus for reducing fine grain particles by means of compressed fluid
JP3091281B2 (en) Collision type air crusher