JPS596894Y2 - Special corn cave for crushing in corn crusher - Google Patents

Special corn cave for crushing in corn crusher

Info

Publication number
JPS596894Y2
JPS596894Y2 JP1980022351U JP2235180U JPS596894Y2 JP S596894 Y2 JPS596894 Y2 JP S596894Y2 JP 1980022351 U JP1980022351 U JP 1980022351U JP 2235180 U JP2235180 U JP 2235180U JP S596894 Y2 JPS596894 Y2 JP S596894Y2
Authority
JP
Japan
Prior art keywords
crushing
parallel
cave
mantle
cone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1980022351U
Other languages
Japanese (ja)
Other versions
JPS55133244U (en
Inventor
達雄 萩原
博能 末田
滋人 福村
Original Assignee
川崎重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎重工業株式会社 filed Critical 川崎重工業株式会社
Priority to JP1980022351U priority Critical patent/JPS596894Y2/en
Publication of JPS55133244U publication Critical patent/JPS55133244U/ja
Application granted granted Critical
Publication of JPS596894Y2 publication Critical patent/JPS596894Y2/en
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 この考案は、コーンクラツシャの細砕用コーンケーブに
関するものであり、特に処理量を増大すると共に粒形の
良い製品を得るようにした細砕用コーンケーブの改良に
係るものである。
[Detailed description of the invention] This invention relates to a corn cave for crushing a corn crusher, and particularly relates to an improvement of the corn cave for crushing to increase throughput and obtain products with good grain shape. .

周知の様にコーンクラツシャは広く用いられているが該
コーンクラツシャにおいて、その処理量、製品の品質及
びコーンケーブの摩耗との間には、ある有機的な関係の
あることが知られている。
As is well known, corn crushers are widely used, and it is known that there is a certain organic relationship between the throughput, product quality, and wear of the corn cave.

以下この考案の理解を容易にするために図に示した粗砕
用コーンケーブと細砕用コーンケーブを例にして、上記
処理量と製品の品質及びコーンケーブの摩耗との関係を
説明する。
In order to facilitate understanding of this invention, the relationship between the throughput, product quality, and wear of the corncave will be explained using the coarse crushing concave and fine crushing concave shown in the figure as examples.

図において、二点鎖線で示すコーンケーブ1は細砕用コ
ーンケーブであり、又、点線で示すコーンケーブ4は、
粗砕用コーンケーブであり、該両者の相違点は、マント
ル2と所定の角度をなすA部と、該マントル2と平行な
部分Cとの交点B,B’が、マントル2の偏心回転中心
Oからl 1, l 2の距離にあり、この交点がマン
トルの偏心回転中心から遠く離れた方が(下方)粗砕に
なることが理解される。
In the figure, a cone cave 1 indicated by a two-dot chain line is a cone cave for crushing, and a cone cave 4 indicated by a dotted line is a cone cave for crushing.
This is a cone cave for coarse crushing, and the difference between the two is that the intersections B and B' of part A forming a predetermined angle with the mantle 2 and part C parallel to the mantle 2 are located at the eccentric rotation center O of the mantle 2. It is understood that the farther this intersection point is from the center of eccentric rotation of the mantle, the more coarse it will be (downward).

又、上記交点B,B’の位置関係から両者のコーンケー
ブの形状の相違は、マントル2との間の角度の大小と、
平行部Cの長さの点で相違しており、角度が大きく平行
部長さが小さい程粗砕であることが理解される。
Also, from the positional relationship of the above-mentioned intersections B and B', the difference in the shape of both cone caves is due to the size of the angle between them and the mantle 2,
The difference is in the length of the parallel portion C, and it is understood that the larger the angle and the smaller the parallel portion, the coarser the crushing.

そこで、上記両者について、処理量を比較すると、交点
B,B’におけるマントルの直径をDi,D2とすると
(D./D2)X(ハ/l2)だけ細砕用コーンケーブ
1の処理量が減少することが実機によって確認されてい
る。
Therefore, when comparing the throughput for both of the above, if the diameters of the mantle at the intersections B and B' are Di and D2, the throughput of the crushing concave 1 decreases by (D./D2) This has been confirmed by actual equipment.

従って処理量を増大させるには、交点Bをでき得る限り
下方に位置させ、マントルとの角度を大きくすると共に
平行部を少くした方がよいことが理解できる。
Therefore, it can be understood that in order to increase the throughput, it is better to position the intersection B as low as possible, increase the angle with the mantle, and reduce the parallel portion.

これについて、破砕過程の面から検討すると、先ずA部
で粒度の大きな被破砕物が破砕されながら順次平行部C
に被破砕物は移行していく。
When considering this from the perspective of the crushing process, first, while the material to be crushed with a large particle size is crushed in the A part, it is sequentially crushed in the parallel part C.
The materials to be crushed will be transferred to

ところが、マントルとある角度をなして広くなっている
部分Aから平行部Cに至る際に交点B部で急激に狭くな
っているので、被破砕物は、この部分で一旦せき止めら
れ、この部分で処理量が制約されることになる。
However, when reaching the parallel part C from the wide part A forming a certain angle with the mantle, it suddenly narrows at the intersection B, so the material to be crushed is temporarily dammed up in this part, and The amount of processing will be restricted.

又、このせき止めによって被破砕物の充填密度が異り、
せき止め部で最大となりA部よりC部の方が充填密度が
小さくなり、更に摩耗については充填密度が大きい部分
が激しく摩耗する。
Also, due to this damming, the packing density of the material to be crushed differs,
The packing density is highest at the damming part, and the packing density is smaller in the C part than in the A part, and furthermore, the part with the higher packing density wears out more severely.

次に粒形についてみると、一般に被破砕物の充填密度が
高い程良くなることが知られている。
Next, regarding the particle shape, it is generally known that the higher the packing density of the crushed material, the better the particle shape.

更にA部より充填密度が低い平行部Cでの破砕過程をみ
ると、充填密度が低くい場合は、被破砕物同士の摩砕が
行なわれず、比較的偏平な粒形になる場合があり、又、
平行部Cが長過ぎると平行部Cの間でさらに充填密度が
異ることになり、良質な粒形が得られないばかりか、細
粒化が進まないということも実験により知られている。
Furthermore, looking at the crushing process in the parallel section C, where the packing density is lower than that of the section A, it is found that when the packing density is low, the objects to be crushed are not ground together, resulting in relatively flat grain shapes. or,
It has been experimentally known that if the parallel portions C are too long, the packing density will further differ between the parallel portions C, and not only will a good grain shape not be obtained, but grain refinement will not progress.

これらのことからマントルと所定の角度をもって広くし
たA部と、マントルと平行な平行部分Cとの交点Bの位
置をマントルの偏心回転軸中心Oよりでき得る限り遠ざ
け、且つ、破砕面の各部において被破砕物の充填密度が
一様であることが最善であると理解される。
For these reasons, the position of the intersection B between the part A widened at a predetermined angle with the mantle and the parallel part C parallel to the mantle is set as far away as possible from the center O of the eccentric rotation axis of the mantle, and at each part of the fracture surface. It is understood that it is best if the packing density of the material to be crushed is uniform.

そこで、この考案の目的は、上記技術内容をでき得る限
り満足させ得るところの細砕用コーンケーブを得る様に
せんとするものである。
Therefore, the object of this invention is to obtain a cone cave for crushing that can satisfy the above technical contents as much as possible.

上記目的に沿うこの考案は、幾多の実験によって求めた
結果、有効破砕作用面の長さを、コーンケーブの最大径
に対し売〜士の範囲とし、この有効破砕作用面の下方に
マントルに平行な平行部を設け、この平行部の長さを有
効破砕作用面長さの0.5以下の長さとし、この平行部
から段差部にかけて該平行部接線とする様にし、その段
差部でのマントルに対する曲線がO〜2Fの範囲で連続
して力一ブする様にして被破砕物の充填状態を良くする
様にし、続いて該段差部から薄肉部を構威させて粗砕用
コーンケーブと互換性が効く様にしたことを要旨とする
もので゛ある。
This idea, which is in line with the above objectives, is based on the results obtained through numerous experiments. The length of the effective fracturing surface is set in the range of 10 to 100 cm with respect to the maximum diameter of the cone cave, and the length of the effective fracturing surface is set in the range of 1 to 100 mm below the effective fracturing surface, parallel to the mantle. A parallel part is provided, the length of this parallel part is 0.5 or less of the length of the effective crushing surface, and a line tangent to the parallel part extends from this parallel part to the stepped part, and The curve is made to have a continuous force in the range of 0 to 2F to improve the filling condition of the material to be crushed, and then the thin wall part is constructed from the stepped part to make it compatible with the cone cave for coarse crushing. The gist of this is to make it effective.

次にこの考案の実施例を図面を参照して説明すれば以下
の通りである。
Next, an embodiment of this invention will be described below with reference to the drawings.

2点鎖線1は従来の細砕用コーンケーブを示すものであ
り、2はマントルで、偏心の原点Oを中心に偏心して揺
動する。
A two-dot chain line 1 shows a conventional cone cave for crushing, and 2 is a mantle which swings eccentrically around an eccentric origin O.

3はコーンケーブを内装して取付ける外枠ケーシングで
、点線4は従来の粗砕用コーンケーブ、5はコーンケー
ブよりの破砕物出口間隙である。
Reference numeral 3 indicates an outer frame casing to which a cone cave is installed, a dotted line 4 indicates a conventional cone cave for coarse crushing, and 5 indicates an outlet gap for crushed material from the cone cave.

而して、上記細砕用コーンケーブ1及び粗砕用コーンケ
ーブ4は対比上図示してある。
The fine grinding cone cave 1 and the coarse grinding cone cave 4 are shown for comparison.

6はこの考案の要旨となる細砕用のコーンケーブであり
、上部より薄肉部7、それに連続する急激な段差部8、
そして、該段差部8から続くマントル2に対して凸状、
即ち、外方に漸遠する曲面を画く曲線部9、更にB′部
を経て平行部10から戊っている。
6 is a cone cave for crushing, which is the gist of this invention, and has a thinner part 7 from the upper part, a sharp step part 8 continuous to it,
Then, a convex shape with respect to the mantle 2 continuing from the stepped portion 8,
That is, the curved portion 9 forms a curved surface that gradually recedes outward, and further extends from the parallel portion 10 via a portion B'.

該平行部10は上記曲線部9がマントル2に漸近して離
反していく部分の該マントル2に対する平行接線として
形威されている。
The parallel portion 10 is in the form of a parallel tangent to the mantle 2 where the curved portion 9 asymptotically approaches and moves away from the mantle 2.

そして、厚肉の有効破砕作用面を構或する曲線部9と平
行部10との対マントル長Lは前述の理論に従って該コ
ーンケーブの最大内径Dのh−士以内としてあり、加え
て、平行部10の終端B′から段差部8への曲線部9は
その接線のマントル2に対する角度αは実験値よりα゜
=0〜2Fの範囲とする。
According to the above-mentioned theory, the length L of the curved portion 9 and the parallel portion 10, which constitute the thick effective crushing surface, is set to be within h-2 of the maximum inner diameter D of the cone cave, and in addition, the parallel portion The angle .alpha. of the tangent of the curved section 9 from the terminal end B' of 10 to the stepped section 8 with respect to the mantle 2 is set in the range of .alpha..degree.=0 to 2F from experimental values.

ところで、有効破砕作用面の平行部10より上方のマン
トル2及びそれに対するコーンケーブ6の形状は、図示
する角α゜が通常処理物を噛込む事が出来るといわれて
いる角度より大きくしてある状態で上述した形状でも良
いことが設計上考えられなくはないが、その様にすると
実際に細砕用コーンクラツシャを運転する場合にはL部
を最下端に設計することによる処理能力の増大を有効に
利用することは出来ない。
By the way, the shape of the mantle 2 above the parallel part 10 of the effective crushing action surface and the cone cave 6 relative thereto is such that the angle α° shown in the figure is larger than the angle that is said to be able to bite the processed material. Although it is possible to design the shape as described above, when actually operating a cone crusher for crushing, it is possible to effectively increase the throughput by designing the L part at the lowest end. It cannot be used.

蓋し、細砕用コーンクラツシャを運転する際に、一般に
破砕用室の有する最大処理能力を発揮させるには、該破
砕作用室へ該最大処理能力とバランスした一定量の処理
物を連続して円周方向に均一に供給する事が不可欠の条
件であり、該不可欠の条件が満たされ・ば、破砕作用室
は空室となるタイミングはなく常に一定の高い処理物の
充填率が保たれ、最大破砕能力で効率の良い破砕が行わ
れることになり、従って、この為には、破砕作用室上方
に所定高さにまで処理物を貯留しておく必要があるから
である。
When the lid is closed and the cone crusher is operated, generally in order to utilize the maximum processing capacity of the crushing chamber, a certain amount of material to be processed that is balanced with the maximum processing capacity is continuously fed into the crushing chamber in a circular manner. Uniform supply in the circumferential direction is an essential condition, and if this essential condition is met, the crushing chamber will never be empty and a constant high filling rate of the material to be processed will always be maintained, and the maximum This is because efficient crushing is performed using the crushing capacity, and for this purpose, it is necessary to store the processed material up to a predetermined height above the crushing chamber.

そこで、上記コーンケーブ6及びマントル2による破砕
作用室の形状が上記α゜による上延形状であるくさび形
断面を有する形状に構威されていると、そこに貯留され
ている処理物は絶えず揺動運動をしているため、処理物
の貯留高さにより破砕作用室へ入りこもうとする処理物
へ加わる圧力が変化する。
Therefore, if the shape of the crushing chamber formed by the cone cave 6 and the mantle 2 is configured to have a wedge-shaped cross section that is an extended shape due to the above α°, the processed material stored there will be constantly oscillated. Because of the movement, the pressure applied to the material to be processed that is about to enter the crushing chamber changes depending on the storage height of the material to be processed.

勿論、揺動運動がなければある高さ以上に貯留されても
一定値以上圧力は上昇しない。
Of course, if there is no rocking motion, the pressure will not rise above a certain value even if it is stored above a certain height.

従って、上記α゜上延の形状に破砕作用室が設計された
場合は所定高さまで破砕物が貯留される時には前記の不
可欠の条件は満足するもの・、それ以上貯留高さが高く
なると破砕作用室へ入りこもうとする処理物へ加わえら
れる圧力が高くなりすぎ、そのため過供給の状態となり
、コーンクラツシャの各部に無理な力がか・り、図示し
ない駆動用モータが停止してしまったりするおそれが発
生する。
Therefore, if the crushing action chamber is designed in the shape of the above-mentioned α° extension, the above-mentioned essential conditions will be satisfied when the crushed material is stored up to a predetermined height, but if the storage height is higher than that, the crushing action will be effective. The pressure applied to the processed material that is about to enter the chamber becomes too high, resulting in an oversupply condition, which applies unreasonable force to each part of the cone crusher, causing the drive motor (not shown) to stop. There is a risk that this will occur.

そこで、常に貯留高さを最適に保つ必要があるが、それ
は実操業においては不可能であり、過供給によるクラツ
シャ各部への過負荷および停止がおこらないよう最適高
さ以下に処理物がたまっている状態でしか運転できず、
通常最大能力の60〜80%でしか操業できないこと・
なる。
Therefore, it is necessary to always maintain the storage height at an optimum level, but this is impossible in actual operation, and to prevent overloading and stoppage of various parts of the crusher due to oversupply, it is necessary to maintain the storage height below the optimum height. You can only drive when
Can only operate at 60-80% of normal maximum capacity.
Become.

上記問題に対処するためこの考案においては、破砕作用
室形状について前記の如く急激な段差部8を設けており
、その上方は、マントル2に対して極端に間隙寸法が大
きくなる様にコーンケーブ6を平行薄肉にして原石調整
室を形威する様にしている。
In order to deal with the above problem, in this invention, the shape of the crushing chamber is provided with a sharp step 8 as described above, and a cone cave 6 is formed above the step so that the gap size with respect to the mantle 2 is extremely large. The walls are parallel and thin to give the impression of a rough stone adjustment chamber.

従って、図示する様な構戊にした細破砕用コーンクラツ
シャに於ては、処理物の貯留高さが高く変動しても過負
荷による停止が起ることなく、常に破砕作用室の本来有
している最大処理能力で運転することが出来る様にした
ものである。
Therefore, in the cone crusher for fine crushing configured as shown in the figure, even if the storage height of the processed material fluctuates greatly, there will be no stoppage due to overload, and the cone crusher will always maintain the original capacity of the crushing chamber. This allows the system to operate at its maximum processing capacity.

上記構或に於で、図示しない上部投入口より供給される
被破砕物はマントル2と細砕用コーンケーブ6の薄肉部
7との間の破砕室に充填され、続いて段差部8を介して
有効破砕作用部に入る。
In the above structure, the material to be crushed is supplied from the upper input port (not shown) into the crushing chamber between the mantle 2 and the thin walled part 7 of the crushing concave 6, and then passed through the stepped part 8. Enters the effective crushing area.

そして、曲線部9で次第に噛み込み作用と破砕作用を有
効且つ連続的に受けながら平行部10で細粒化作用を受
けて出口間隙5から排出されていく。
Then, while being effectively and continuously subjected to biting action and crushing action at the curved portion 9, the particles are subjected to a fine-graining action at the parallel portion 10, and are discharged from the outlet gap 5.

この間、有効破砕作用面で被破砕物が破砕により加速さ
れた状態でマントル2の斜面をすべり落ちようとしても
(実際には充填度の高い状態なのでこの様なことは余り
起こらない)必ず破砕される。
During this period, even if the object to be crushed is accelerated by crushing on the effective crushing surface and attempts to slide down the slope of mantle 2 (actually, this does not happen much because the degree of filling is high), it will always be crushed. Ru.

尚、実際の設計に当っては投入粒度と電動機出力が決つ
いてる制限があり、投入口の巾Wは、投入塊の最大寸法
とし、マントルとなす角α゜は2「以下として有効破砕
作用面長Lを上記範囲内とすれば、電動機にかかる負荷
は従来品の定格以内におさまる。
In addition, in the actual design, there are restrictions on the input particle size and motor output, so the width W of the input port is the maximum dimension of the input lump, and the angle α° with the mantle is 2" or less, so that the effective crushing action surface is set. If the length L is within the above range, the load on the motor will be within the rating of conventional products.

次に上記実施例に則す実験例を示せば次表の通りである
Experimental examples based on the above embodiments are shown in the following table.

ただし、上記数値は玄武岩を同一投人粒度同一出口間隙
で、電動機の出力が一定になるよう投入量を調整しなが
ら実験した結果である。
However, the above numerical values are the results of an experiment using basalt with the same throwing particle size and the same exit gap, while adjusting the amount of input so that the output of the motor would be constant.

又、立方性とは、最大長と最小長の比が3以下のものが
全体にしめる割合である。
Further, cubicity is the proportion of the whole material having a ratio of maximum length to minimum length of 3 or less.

上記の様にこの考案によれば、細砕用コーンケーブのマ
ントルに対する広い部分と平行な部分との境界部をコー
ンケーブの径のx”o ” +として低位に設け、又、
有効破砕作用面長をマントル斜面の被破砕物の落下長か
ら理論的に必要最小限にし、しかも、細粒化に必要な平
行部その半分以下としたので被破砕物の充填密度が均一
化され、細粒化が促進され、粒形が良いものが得られる
様になる優れた効果が奏される。
As mentioned above, according to this invention, the boundary between the wide part and the parallel part of the crushing concave with respect to the mantle is set at a low position as x"o" + of the diameter of the concave, and
The length of the effective crushing action surface was set to the theoretically necessary minimum based on the falling length of the material to be crushed on the mantle slope, and moreover, it was made less than half of the parallel part required for grain refinement, so the packing density of the material to be crushed was made uniform. This has an excellent effect of promoting grain refinement and producing grains with good shape.

更に、有効破砕作用面に実験に基づいて曲線部をO〜2
Fの範囲内で連続カーブ曲線状とすれば噛み込みが連続
的に作用することとなり、加えて平行部を曲線部のマン
トルに平行な接線としてあるため、噛み込みから細粒化
破砕移行がスムースに行われる効果もあり、又、該平行
部と曲線部との連続部B′がコーンケーブの充分下に設
けられているために偏心スローが大きくなり処理量が極
めて大となる効果もある。
Furthermore, based on experiments, the effective crushing action surface has a curved part of O~2.
If the continuous curve is formed within the range of F, biting will act continuously, and in addition, since the parallel part is a tangent line parallel to the mantle of the curved part, the transition from biting to fine-grained crushing will be smooth. Moreover, since the continuous part B' of the parallel part and the curved part is provided sufficiently below the cone cave, there is also the effect that the eccentric throw becomes large and the throughput becomes extremely large.

そして、図から判る通り上方薄肉部をその内面が断面で
直線になる様に薄くしたことにより従来の細砕用コーン
ケーブに比し材料が半分以下で済むため軽量化が画れ、
更にコストダウンも企れ、投入量も大きくなることに連
がる利点もある。
As you can see from the figure, by making the upper thin-walled part thin so that its inner surface is straight in cross section, it uses less than half the material of a conventional crushing concave, resulting in a significant weight reduction.
There are also benefits associated with cost reduction and increased input volume.

そして、上記の如くコーンケーブに於て破砕作用面の上
方に急激な段差部を介して薄肉の部分を設けたことによ
り前述の様に処理物の貯留高さが高く変動しても過負荷
による装置の停止が起ることがなく、最大処理能力で運
転出来る優れた効果を奏することが出来る。
As mentioned above, by providing a thin section above the crushing surface in the cone cave with a sharp step, it is possible to avoid overloading the device even if the storage height of the processed material fluctuates greatly. It is possible to achieve the excellent effect of being able to operate at maximum processing capacity without causing any stoppage.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はこの考案の実施例を従来技術と対比して説明した
構造断面図である。 9,10, L・・・・・・厚肉部有効破砕作用面、8
・・・・・・段差部、7・・・・・・薄肉部延長面、6
・・・・・・細砕用コーンケーブ、2・・・・・・マン
トル、10・・・・・・平行部、9・・・・・・曲線部
、α・・・・・・開き角。
The drawing is a structural sectional view illustrating an embodiment of the invention in comparison with the prior art. 9, 10, L... Thick wall effective crushing surface, 8
...Stepped portion, 7... Thin wall extension surface, 6
..... Corn cave for crushing, 2 ..... mantle, 10 ..... parallel part, 9 ..... curved part, α ..... opening angle.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 厚肉部の有効破砕作用面と該破砕作用面に急激な段差部
を介して一体的に続続する薄肉部の延長面とから戊るコ
ーンクラツシャの細砕用コーンケーブにおいて、上記厚
肉部の有効破砕作用面の長さLをコーンケーブの最大径
に対してh〜士の範囲とし、該有効破砕作用面の下部に
マントルに平行な平行部を設け、該平行部の長さを前記
有効破砕作用面の長さLの0.5以下の長さとし、該平
行部を接線とするわん曲凸面でもって有効破砕作用面の
曲線部を形或し、上記平行部を接線とする曲線部の接線
を基準線O゜とし、有効破砕作用面の曲線部の各部接線
と前記基準線との間の角度を最大2Fまでの開き角とし
、該開き角最大2Fの任意接線の線点から段差部を形威
し、該段差部に連らなる前記薄肉部の縦方断面形状がそ
の内面を実質的に直線状として或ることを特徴とするコ
ーンクラツシャにおける細砕用特殊コーンケーブ。
In the crushing cone cave of a cone crusher, which is cut from the effective crushing surface of the thick wall portion and the extension surface of the thin wall portion that is integrally continuous with the crushing surface through a sharp step, the effective crushing surface of the thick wall portion is The length L of the working surface is in the range of h to 2 with respect to the maximum diameter of the cone cave, a parallel part parallel to the mantle is provided at the lower part of the effective crushing working surface, and the length of the parallel part is set to the length of the effective crushing working surface. Shape the curved part of the effective crushing surface with a curved convex surface with the parallel part as a tangent, and use the tangent of the curved part with the parallel part as the tangent. The angle between the tangents of each part of the curved part of the effective crushing surface and the reference line is an opening angle of up to 2F, and the stepped part is shaped from the line point of any tangent with the maximum opening angle of 2F. A special cone cave for crushing in a cone crusher, characterized in that the vertical cross-sectional shape of the thin-walled portion continuous with the stepped portion has an inner surface substantially linear.
JP1980022351U 1980-02-25 1980-02-25 Special corn cave for crushing in corn crusher Expired JPS596894Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1980022351U JPS596894Y2 (en) 1980-02-25 1980-02-25 Special corn cave for crushing in corn crusher

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1980022351U JPS596894Y2 (en) 1980-02-25 1980-02-25 Special corn cave for crushing in corn crusher

Publications (2)

Publication Number Publication Date
JPS55133244U JPS55133244U (en) 1980-09-20
JPS596894Y2 true JPS596894Y2 (en) 1984-03-02

Family

ID=28856948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1980022351U Expired JPS596894Y2 (en) 1980-02-25 1980-02-25 Special corn cave for crushing in corn crusher

Country Status (1)

Country Link
JP (1) JPS596894Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4881163A (en) * 1972-01-31 1973-10-30

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4881163A (en) * 1972-01-31 1973-10-30

Also Published As

Publication number Publication date
JPS55133244U (en) 1980-09-20

Similar Documents

Publication Publication Date Title
JP3854904B2 (en) Cone crusher
RU2391138C2 (en) Body for gyratory cone breaker and also gyratory cone breaker
JPS596894Y2 (en) Special corn cave for crushing in corn crusher
CN205628075U (en) Jaw breaker for brickmaking
EP0567077B1 (en) Crushing member of gyrating-type crushers
JPH02174946A (en) Vertical type grinder
JPH0226543B2 (en)
JPH03178349A (en) Vertical grinder
JP2748997B2 (en) Liners for cone crushers
JPH0576786A (en) Crushing equipment
JP2001224973A (en) Vertical type pulverizing machine for manufacturing crushed sand
JPS5826977B2 (en) Crushing machine
KR880002140B1 (en) Method of crushing rock
US619012A (en) Grinding-mill
CN1009342B (en) Ball-tube mill
JP4288079B2 (en) Compression pulverizer
JP3805131B2 (en) Operation method of vertical crusher for crushed sand production
KR820001902B1 (en) Method of crushing rock ore ets
JP2910964B2 (en) Liners for cone crushers
JPH0321353A (en) Cone crusher for fine pulverization
JP2673292B2 (en) Liner for cone crusher
JPH11179223A (en) Vertical pulverizer
JPH04363155A (en) Linner for cone crusher
JPH0152058B2 (en)
JPH03213157A (en) Vertical grinder