JPH0152058B2 - - Google Patents

Info

Publication number
JPH0152058B2
JPH0152058B2 JP1686582A JP1686582A JPH0152058B2 JP H0152058 B2 JPH0152058 B2 JP H0152058B2 JP 1686582 A JP1686582 A JP 1686582A JP 1686582 A JP1686582 A JP 1686582A JP H0152058 B2 JPH0152058 B2 JP H0152058B2
Authority
JP
Japan
Prior art keywords
crushing
crushing chamber
crushed
mantle
graph
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1686582A
Other languages
Japanese (ja)
Other versions
JPS58133841A (en
Inventor
Fumihiro Nomyama
Shigeto Fukumura
Tsukasa Katayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP1686582A priority Critical patent/JPS58133841A/en
Publication of JPS58133841A publication Critical patent/JPS58133841A/en
Publication of JPH0152058B2 publication Critical patent/JPH0152058B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、旋動式破砕機に係り、特にその破砕
室の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a rotary crusher, and particularly to improvements in its crushing chamber.

[従来の技術] 旋動式破砕機は、コンケーブとマントルとの間
の破砕室に原料を投入し、マントルの旋動運動に
よりマントルが閉じた時原料を圧砕し、開いた時
マントルの傾斜に沿つて原料を落下させ、次の瞬
間閉じた時2回目の圧砕を行い、この圧砕→落下
→圧砕→落下… …を数回繰返して、破砕間隙の
粒度となして機外へ排出するものである。
[Prior art] A rotary crusher inputs raw material into a crushing chamber between a concave and a mantle, crushes the raw material when the mantle closes due to the rotating motion of the mantle, and crushes the raw material on the slope of the mantle when it opens. The raw material is dropped along the line, and the next moment it closes, it is crushed a second time, and this process of crushing → falling → crushing → falling... is repeated several times, and the particle size is the same as the crushing gap and is discharged outside the machine. be.

従来の旋動式破砕機の破砕室には、第1図に示
す如く破砕面1aが直線で形成されたコンケーブ
1と破砕面2aが同様に直線で形成されたマント
ル2とから構成された破砕室3と、第2図に示す
如く破砕面1aが円弧又は円弧に近い直線の連続
で形成されて中高部が膨出したコンケーブ1′と
破砕面2aが直線で形成されたマントル2とから
構成された破砕室4とがある。
As shown in FIG. 1, the crushing chamber of a conventional rotary crusher includes a concave 1 with a straight crushing surface 1a and a mantle 2 with a crushing surface 2a also straight. It consists of a chamber 3, a concave 1' in which the fracture surface 1a is formed by a circular arc or a series of straight lines close to a circular arc and has a bulging middle part, and a mantle 2 in which the fracture surface 2a is formed by a straight line, as shown in FIG. There is a crushing chamber 4.

第1図及び第2図に於いて、破砕室3,4の各
断面に於ける平均径をDy、マントル2の上部軸
受の支点を中心として旋動する旋動運動の旋動量
(或いは圧縮量)である偏心スローをEy、破砕間
隙をSy、マントル2とそれに相対するコンケー
ブ1,1′とで挾む角度つまりニツプアングルを
θyとすると、破砕室上端から下端までのDy,
Ey,Sy,tanθyの変化は、第1図の破砕室3の場
合、マントル2の傾角αy、コンケーブ1の傾角
βyが一定である為、第3図aのグラフで実線に
示す如くニツプアングルθyも一定している。従
つて第3図bのグラフで実線に示す如く破砕室3
の各断面に於ける平均径Dyは直線的に増大し、
増大の割合は一定している。また第3図cのグラ
フで実線に示す如く偏心スローEyは直線的に増
大し、増大の割合は一定であるが、第3図bのグ
ラフの実線に示される破砕室3の各断面に於ける
平均径Dy、第3図dのグラフの実線に示される
破砕間隙Syの変化に比べ非常に小さい。
In Figures 1 and 2, Dy is the average diameter in each cross section of the crushing chambers 3 and 4, and the amount of rotation (or amount of compression) of the rotating motion of the mantle 2 pivoting around the fulcrum of the upper bearing. ), the eccentric throw is Ey, the crushing gap is Sy, and the angle between the mantle 2 and the concave 1 and 1' facing it, that is, the nip angle is θy, then Dy from the top end of the crushing chamber to the bottom end,
In the case of the crushing chamber 3 in Figure 1, the changes in Ey, Sy, and tanθy are as follows: Since the inclination angle αy of the mantle 2 and the inclination angle βy of the concave 1 are constant, the nip angle θy also changes as shown by the solid line in the graph of Figure 3a. It's constant. Therefore, as shown by the solid line in the graph of FIG. 3b, the crushing chamber 3
The average diameter Dy in each cross section increases linearly,
The rate of increase is constant. Furthermore, as shown by the solid line in the graph of Fig. 3c, the eccentric throw Ey increases linearly, and the rate of increase is constant; The average diameter Dy is very small compared to the change in the fracture gap Sy shown by the solid line in the graph of Figure 3d.

一方、第2図の破砕室4の場合、マントル2の
傾角αyは一定であるが、コンケーブ1′の傾角βy
が連続的に変化する為、第3図aのグラフで一点
鎖線に示す如くニツプアングルθyは略直線的に
減少し、減少の割合も略一定している。従つて、
第3図bのグラフで一点鎖線に示す如く、破砕室
4の各断面における平均径Dyは下に膨らんだ放
物線に近い二次曲線に沿つて増大し、増大の割合
は下端部付近で大きくなつている。また第3図c
のグラフで一点鎖線に示す如く偏心スローEyは
前記破砕室3の場合と同様に直線的に増大し、増
大の割合は一定であるが、破砕間隙Syは第3図
dのグラフで一点鎖線に示す如く上に膨らんだ放
物線に近い二次曲線に沿つて減少し、減少の割合
は下端部付近で小さくなつている。
On the other hand, in the case of the crushing chamber 4 shown in Fig. 2, the inclination angle αy of the mantle 2 is constant, but the inclination angle βy of the concave 1' is
Since the nip angle θy changes continuously, the nip angle θy decreases approximately linearly, as shown by the dashed line in the graph of FIG. 3a, and the rate of decrease is approximately constant. Therefore,
As shown by the dashed line in the graph of Figure 3b, the average diameter Dy in each cross section of the crushing chamber 4 increases along a quadratic curve close to a parabola that swells downward, and the rate of increase becomes larger near the lower end. ing. Also, Figure 3c
As shown by the dashed line in the graph of Figure 3, the eccentric throw Ey increases linearly as in the case of the crushing chamber 3, and the rate of increase is constant; As shown, it decreases along an upwardly bulging quadratic curve close to a parabola, and the rate of decrease becomes smaller near the lower end.

然して、前記破砕室3,4で投入された原料が
破砕され、機外へ排出される通過能力Qyは次の
ように求められる。
Therefore, the passage capacity Qy through which the raw materials inputted into the crushing chambers 3 and 4 are crushed and discharged to the outside of the machine is determined as follows.

第6図の破砕室3の任意の位置yiにおける閉→
開→閉の1サイクルに落下する容積を通過容積
(能力)Qyiとすれば、 Qyi∝Dyi×Eyi/tanθyi×Sa+Sb/2×π Sa+Sb/2=Syiであるから Qyi∝Dyi×Eyi/tanθyi×Syi×π ∝Dyi×Eyi×Syi/tanθyiとなる。
Closing at any position yi of the crushing chamber 3 in Fig. 6→
If the volume that falls in one cycle from open to close is the passing volume (capacity) Qyi, then Qyi∝Dyi×Eyi/tanθyi×Sa+Sb/2×π Sa+Sb/2=Syi, so Qyi∝Dyi×Eyi/tanθyi× Syi×π ∝Dyi×Eyi×Syi/tanθyi.

従つて、前記破砕室3,4の通過能力Qyは、 Qy∝Dy×Ey×Sy/tanθとなる。 Therefore, the passage capacity Qy of the crushing chambers 3 and 4 is: Qy∝Dy×Ey×Sy/tanθ.

そして前記の破砕室3,4の通過能力Qyの変
化は、通過能力QyがDy×Ey×Sy/tanθの式に比例す ることから、この式に第3図a乃至dの実線及び
一点鎖線に示すDy,Ey,Sy,tanθyの変化を代
入すると、通過能力Qyの変化は第4図a,bの
ようになる。この第4図a,bは、破砕室3,4
の上端噛込口径、下端排出径、高さ、偏心スロー
を同一にして破砕面形状を直線や曲線で組合わ
せ、各破砕室3,4の容積を上端から下端までブ
ロツトし、容積変化を調べたものである。尚、図
の数値は一例である。
Changes in the passage capacity Qy of the crushing chambers 3 and 4 are proportional to the formula Dy×Ey×Sy/tanθ. By substituting the changes in Dy, Ey, Sy, and tanθy shown, the changes in passing ability Qy become as shown in Figure 4 a and b. This Fig. 4 a and b shows the crushing chambers 3 and 4.
With the upper end biting diameter, lower end discharge diameter, height, and eccentric throw the same, the crushing surface shape is combined with a straight line or a curve, and the volume of each crushing chamber 3, 4 is blotted from the upper end to the lower end to examine the volume change. It is something that Note that the numerical values in the figure are an example.

第4図aのグラフで判るように破砕室3では、
上端から通過能力が上部で局部的に増大するが、
その後減少し、下部で直線的に急激に減少してい
る。また第4図bのグラフで判るように破砕室4
では、上端から通過能力が徐々に増大し、下部で
直線的に急激に増大している。
As can be seen from the graph in Figure 4a, in the crushing chamber 3,
Although the passing ability increases locally at the top from the top,
After that, it decreases, and then it decreases rapidly in a straight line at the bottom. In addition, as can be seen from the graph in Figure 4b, the crushing chamber 4
In this case, the passage capacity increases gradually from the upper end, and rapidly increases linearly at the lower end.

[発明が解決しようとする課題] ところで、破砕室3では、下部で通過能力が急
激に減少するため下部で過密になり易く、また上
部で破砕された処理物が下方に向つて順々に破
砕、落下を繰返して下端から順次排出されるとい
うことが少なく、上部で破砕された処理物は一挙
に下端付近まで落下し、破砕されている。その結
果下端部付近で過圧縮状態を起し易く、この為被
破砕物の破砕処理能力を増大させたり、破砕比を
大きくすることができなかつた。また下端部付近
が局部的に摩耗してマントル2及びコンケーブ1
の寿命が短くなり、さらに過負荷により安定した
運転ができない等の欠点があつた。
[Problems to be Solved by the Invention] By the way, in the crushing chamber 3, the passage capacity rapidly decreases in the lower part, so the lower part tends to become overcrowded, and the processed material crushed in the upper part is crushed downward one after another. However, it is rare that the material is repeatedly dropped and discharged from the bottom end, and the processed material that has been crushed at the top falls all at once to the vicinity of the bottom end and is crushed. As a result, an overcompressed state tends to occur near the lower end, and for this reason, it is not possible to increase the crushing capacity of the object to be crushed or to increase the crushing ratio. In addition, the area near the bottom of the mantle 2 and concave 1 is locally worn.
The lifespan of the motor was shortened, and stable operation was not possible due to overload.

また破砕室4では、上端で破砕された処理物が
下方に向つて順々に破砕、落下を繰返すが、下部
での通過能力の増大の割合が大きくなるため、下
端部付近が過疎になり易く上端で破砕された処理
物はほとんど下端部で破砕されることなく一気に
落下し、破砕室4内から排出されることになるの
で、破砕効率が低下し、破砕製品の粒度に大きな
ばらつきが生じるという欠点があつた。
In addition, in the crushing chamber 4, the processed material that is crushed at the upper end is repeatedly crushed and falls downward, but since the passage capacity increases at a higher rate at the lower part, the vicinity of the lower end tends to become depopulated. The processed material crushed at the upper end falls all at once without being crushed at the lower end and is discharged from the crushing chamber 4, which reduces the crushing efficiency and causes large variations in the particle size of the crushed products. There were flaws.

そこで本発明は、上部から下部にいくに従つて
通過能力が徐々に大きくなり、上端で破砕された
処理物が下方に向つて順々に破砕、落下を繰返し
て円滑に排出できるようにした旋動式破砕機の破
砕室を提供しようとするものである。
Therefore, the present invention has developed a rotating system in which the passing capacity gradually increases from the upper part to the lower part, and the material to be crushed at the upper end can be sequentially crushed and dropped downward to be smoothly discharged. The purpose is to provide a crushing chamber for a dynamic crusher.

[課題を解決するための手段] 上記課題を解決するための本発明の旋動式破砕
機の破砕室は、旋動式破砕機に於けるマントルの
破砕面が上端から下端に向つて徐々に傾角が増大
するよう円弧又は円弧に近い直線の連続で形成さ
れ、これに対応するコーンケーブの破砕面が中高
部で膨出する円弧又は円弧に近い直線の連続で形
成され、前記両破砕面間に構成された破砕室のニ
ツプアングルが上端から下端に向つて連続的に減
少せしめられていることを特徴とするものであ
る。
[Means for Solving the Problems] In order to solve the above problems, the crushing chamber of the rotary crusher of the present invention is such that the crushing surface of the mantle in the rotary crusher gradually moves from the upper end to the lower end. The cone cave is formed by a series of circular arcs or straight lines close to circular arcs so that the inclination angle increases, and the corresponding fracture surface of the cone cave is formed by a series of circular arcs or straight lines close to circular arcs that bulge in the middle and high parts, and between the two fracture surfaces. The crushing chamber is characterized in that the nip angle of the crushing chamber is continuously decreased from the upper end to the lower end.

[作用] 上記のように構成された破砕室によると、上端
で破砕された処理物は、下方に向つて順々に破
砕、落下を繰返して下端から円滑に排出されるの
で、過圧縮状態が起きることが無く、被破砕物の
破砕処理能力が大幅に向上し、破砕比も大きくと
ることが可能となる。また下端部付近の局部的摩
耗が殆んど無くなり、コンケーブ及びマントルの
寿命が延びてこれらの歩留りが向上する。さらに
過負荷の無い運転が可能となる。
[Operation] According to the crushing chamber configured as described above, the processed material crushed at the upper end is repeatedly crushed and dropped downward, and is smoothly discharged from the lower end, thereby preventing overcompression. This does not occur, and the ability to crush the material to be crushed is greatly improved, making it possible to increase the crushing ratio. In addition, local wear near the lower end is almost eliminated, extending the life of the concave and mantle and improving their yield. Furthermore, operation without overload is possible.

[実施例] 本発明による旋動式破砕機の破砕室の実施例を
第5図によつて説明すると、破砕室5は破砕面1
aが円弧又は円弧に近い直線の連続で形成されて
中高部が膨出したコンケーブ1′と破砕面2aが
円弧又は円弧に近い直線の連続で形成されたマン
トル2′とから構成されている。コンケーブ1′の
破砕面1aはその傾角βyが連続的に変化してお
り、これに対応するマントル2′の破砕面2aは
その傾角αyが上端から下端に向つて徐々に増大
していて、両破砕面1a,2a間に構成された破
砕室5のニツプアングルθyは第3図aのグラフ
で二点鎖線に示す如く下に膨らむ放物線に近い二
点鎖線に沿つて減少し、減少の割合は下端部付近
で大きくなつている。従つて第3図bのグラフで
二点鎖線に示す如く破砕室5の各断面における平
均径Dyは下に膨らんだ放物線に近い二点鎖線に
沿つて増大し、増大の割合は下端部付近で大きく
なつている。また第3図cのグラフで二点鎖線に
示す如く偏心スローEyは従来の破砕室3,4の
場合と同様に直線的に増大し、増大の割合は一定
であるが、破砕間隙Syは第3図dの二点鎖線に
示す如く上に膨らんだ放物線に近い二点鎖線に沿
つて減少し、減少の割合は下端部付近で小さくな
つている。
[Example] An example of the crushing chamber of the rotary crusher according to the present invention will be explained with reference to FIG.
It is composed of a concave 1' where a is formed by a circular arc or a series of straight lines close to a circular arc and a bulging middle part, and a mantle 2' whose fracture surface 2a is formed by a circular arc or a series of straight lines close to a circular arc. The inclination angle βy of the fractured surface 1a of the concave 1' changes continuously, and the inclination αy of the corresponding fractured surface 2a of the mantle 2' gradually increases from the upper end to the lower end. The nip angle θy of the crushing chamber 5 formed between the crushing surfaces 1a and 2a decreases along the two-dot chain line, which is close to a parabola that expands downward, as shown by the two-dot chain line in the graph of FIG. It is getting bigger near the area. Therefore, as shown by the two-dot chain line in the graph of FIG. It's getting bigger. Furthermore, as shown by the two-dot chain line in the graph of Fig. 3c, the eccentric throw Ey increases linearly as in the case of the conventional crushing chambers 3 and 4, and the rate of increase is constant, but the crushing gap Sy As shown by the two-dot chain line in FIG. 3d, it decreases along the two-dot chain line close to the upwardly bulging parabola, and the rate of decrease becomes smaller near the lower end.

然して破砕室5の通過能力Qyの変化は、通過
能力QyがDy×Ey×Sy/tanθyの式に比例することか ら、この式に第3図a乃至dの二点鎖線に示す
Dy,Ey,Sy,tanθyの変化を代入すると、通過
能力Qyの変化は第4図cのようになる。この第
4図cは、破砕室3,4との比較のため破砕室5
の上端噛込口径、下端排出径、高さ、偏心スロー
を第1,2図の破砕室3,4と同一にして破砕面
形状を曲線と曲線で組合わせ、破砕室5の容積を
上端から下端までプロツトし、容積変化を調べた
ものであ。尚、図の数値は一例である。
However, since the passage capacity Qy of the crushing chamber 5 is proportional to the formula Dy×Ey×Sy/tanθy, the change in the passage capacity Qy of the crushing chamber 5 is expressed by the equation shown in the dashed double-dashed lines in FIGS. 3a to 3d.
By substituting the changes in Dy, Ey, Sy, and tanθy, the change in passing ability Qy becomes as shown in Figure 4c. This figure 4c shows the crushing chamber 5 for comparison with crushing chambers 3 and 4.
The upper end biting diameter, lower end discharge diameter, height, and eccentric throw are the same as those of the crushing chambers 3 and 4 shown in Figs. The plot was plotted to the bottom and the change in volume was investigated. Note that the numerical values in the figure are just examples.

第4図cのグラフで判るように破砕室5では、
上端から下端に向つて通過能力が徐々に増大する
がその増大の割合は小さい。
As can be seen from the graph in Figure 4c, in the crushing chamber 5,
The passage capacity gradually increases from the upper end to the lower end, but the rate of increase is small.

このように構成された実施例の破砕室5では、
上端で破砕された処理物が下方に向つて順々に破
砕、落下を繰返して下端から円滑に排出される。
そして破砕室5の下端部付近では、従来のように
過圧縮状態が起きることが無くなり、その結果被
破砕物の破砕処理能力が大幅に向上し、破砕比も
大きくとることが可能となる。また、破砕室5の
下端部付近の局部的摩耗が殆んど無くなり、コン
ケーブ1′及びマントル2′の寿命が伸びてこれら
の歩留りが向上する。さらに過負荷の無い安定し
た運転が可能となる。
In the crushing chamber 5 of the embodiment configured in this way,
The processed material crushed at the upper end is repeatedly crushed and fallen downward, and is smoothly discharged from the lower end.
Further, in the vicinity of the lower end of the crushing chamber 5, an overcompression state does not occur as in the conventional case, and as a result, the crushing processing capacity of the object to be crushed is greatly improved, and the crushing ratio can also be increased. Further, local wear near the lower end of the crushing chamber 5 is almost eliminated, extending the life of the concave 1' and the mantle 2' and improving their yield. Furthermore, stable operation without overload is possible.

[発明の効果] 以上の説明で判るように本発明の旋動式破砕機
の破砕室は、上端から下端に向つて通過能力が
徐々に増大するが、その増大の割合は小さいの
で、上端で破砕された処理物が下方に向つて順々
に破砕、落下を繰返して下端から円滑に排出され
る。従つて、被破砕物の破砕処理能力が大幅に向
上し、破砕比も大きくとることが可能である。ま
た破砕室の下端部付近の局部的摩耗が殆んど無く
なり、コンケーブ及びマントルの寿命が伸びてこ
れらの歩留りが向上する。さらに過負荷の無い安
定した運転が可能となる。
[Effect of the invention] As can be seen from the above explanation, the passage capacity of the crushing chamber of the rotary crusher of the present invention gradually increases from the upper end to the lower end, but the rate of increase is small, so that The crushed processed material is repeatedly crushed and fallen downward, and is smoothly discharged from the lower end. Therefore, the ability to crush the material to be crushed is greatly improved, and the crushing ratio can also be increased. In addition, local wear near the lower end of the crushing chamber is almost eliminated, extending the life of the concave and mantle and improving their yield. Furthermore, stable operation without overload is possible.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は従来の旋動式破砕機の破砕
室の概略を示す一部縦断面図、第3図a,b,
c,dは第1,2図に示す従来の破砕室及び第5
図に示す本発明の破砕室に於けるニツプアングル
θy、各断面における平均径Dy、偏心スローEy、
破砕間隙Syの変化を示すグラフ、第4図a,b,
cは第1,2図に示す従来の破砕室と第5図に示
す本発明の破砕室に於ける通過能力を示すグラ
フ、第5図は本発明による旋動式破砕機の破砕室
の概略を示す一部縦断面図、第6図は旋動式破砕
機の破砕室の任意の位置における通過容積(能
力)の説明図である。 1,1′……コンケーブ、1a……破砕面、2,
2′……マントル、2a……破砕面、3,4……
従来の破砕室、5……本発明の破砕室。
Figures 1 and 2 are partial longitudinal sectional views showing the outline of the crushing chamber of a conventional rotary crusher, Figures 3a, b,
c and d are the conventional crushing chamber and the fifth chamber shown in Figures 1 and 2.
In the crushing chamber of the present invention shown in the figure, the nip angle θy, the average diameter Dy in each cross section, the eccentric throw Ey,
Graph showing changes in fracture gap Sy, Figure 4 a, b,
c is a graph showing the passage capacity in the conventional crushing chamber shown in Figures 1 and 2 and the crushing chamber of the present invention shown in Figure 5, and Figure 5 is a schematic diagram of the crushing chamber of the rotary crusher according to the present invention. FIG. 6 is an explanatory diagram of the passing volume (capacity) at any position of the crushing chamber of the rotary crusher. 1,1'... Concave, 1a... Fractured surface, 2,
2'... Mantle, 2a... Fractured surface, 3, 4...
Conventional crushing chamber, 5... crushing chamber of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 旋動式破砕機に於けるマントルの破砕面が上
端から下端に向つて徐々に傾角が増大するよう円
弧又は円弧に近い直線の連続で形成され、これに
対応するコーンケーブの破砕面が中高部で膨出す
る円弧又は円弧に近い直線の連続で形成され、前
記両破砕面間に構成された破砕室のニツプアング
ルが上端から下端に向つて連続的に減少せしめら
れていることを特徴とする旋動式破砕機の破砕
室。
1 The crushing surface of the mantle in a rotary crusher is formed by a circular arc or a series of straight lines close to a circular arc so that the inclination angle gradually increases from the upper end to the lower end, and the corresponding crushing surface of the cone cave is formed at the middle and high part. The nip angle of the crushing chamber formed between the two crushing surfaces is continuously decreased from the upper end to the lower end. The crushing chamber of a dynamic crusher.
JP1686582A 1982-02-04 1982-02-04 Crushing chamber of revolving type crusher Granted JPS58133841A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1686582A JPS58133841A (en) 1982-02-04 1982-02-04 Crushing chamber of revolving type crusher

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1686582A JPS58133841A (en) 1982-02-04 1982-02-04 Crushing chamber of revolving type crusher

Publications (2)

Publication Number Publication Date
JPS58133841A JPS58133841A (en) 1983-08-09
JPH0152058B2 true JPH0152058B2 (en) 1989-11-07

Family

ID=11928105

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1686582A Granted JPS58133841A (en) 1982-02-04 1982-02-04 Crushing chamber of revolving type crusher

Country Status (1)

Country Link
JP (1) JPS58133841A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61263656A (en) * 1985-05-17 1986-11-21 川崎重工業株式会社 Agitation type crusher
US7429978B2 (en) 2003-03-06 2008-09-30 Fujitsu Limited Portable electronic apparatus

Also Published As

Publication number Publication date
JPS58133841A (en) 1983-08-09

Similar Documents

Publication Publication Date Title
JP3854904B2 (en) Cone crusher
JPH0152058B2 (en)
JPH02174946A (en) Vertical type grinder
US3497146A (en) Cone crusher
EP0567077B1 (en) Crushing member of gyrating-type crushers
JPH03232541A (en) Vertical type grinder
JPH03178349A (en) Vertical grinder
US3536267A (en) Bowl liner and mantle with multiple crushing zones
JPS596893Y2 (en) Special corn cave for crushing with corn crusher
JPS5826977B2 (en) Crushing machine
KR880002140B1 (en) Method of crushing rock
JPH0576786A (en) Crushing equipment
SU1039553A1 (en) Jaw crusher
RU209676U1 (en) Centrifugal conical grinder with malleable particle isometrization zone
CA1184550A (en) Double toggle jaw crusher
RU14532U1 (en) CONE CRUSHER
RU2100080C1 (en) Eccentric cone crusher for fine crushing
JPS631101B2 (en)
JPH03213157A (en) Vertical grinder
JPH0243490Y2 (en)
SU867413A1 (en) Cone eccentric crusher
SU1715397A1 (en) Cone crusher
SU1256782A1 (en) Cone-type inertia crusher
JPH03221154A (en) Vertical grinder
JP2002320869A (en) Vertical crusher for producing aggregate