JPS5968711A - Detector for focusing position - Google Patents

Detector for focusing position

Info

Publication number
JPS5968711A
JPS5968711A JP17939782A JP17939782A JPS5968711A JP S5968711 A JPS5968711 A JP S5968711A JP 17939782 A JP17939782 A JP 17939782A JP 17939782 A JP17939782 A JP 17939782A JP S5968711 A JPS5968711 A JP S5968711A
Authority
JP
Japan
Prior art keywords
lens
focal length
light
signal
focus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17939782A
Other languages
Japanese (ja)
Inventor
Kenichi Kaita
健一 戒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP17939782A priority Critical patent/JPS5968711A/en
Publication of JPS5968711A publication Critical patent/JPS5968711A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/36Systems for automatic generation of focusing signals using image sharpness techniques, e.g. image processing techniques for generating autofocus signals

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Automatic Focus Adjustment (AREA)
  • Focusing (AREA)

Abstract

PURPOSE:To obtain always a signal for detecting the focusing of a photographing lens having a long focal length with simple constitution by stopping down the luminous flux which is made incident to a photodetector for detecting focusing according to the focal length of the lens. CONSTITUTION:When the focal length of a photographing lens 2 is changed, the signal in of a moving command corresponding to the focal length is outputted, and a pair of shielding members 12-1, 12-2 slide a sub-mirror 11, thereby opening and closing the same. When the signal ps for detecting the position of the member 12-1 and the signal in of the moving command coincide roughly, the positions of a pair of the mebers 12-1, 12-2 are determined. The luminous flux which is made incident to the photodetector is thus stopped down. More specifically, the device is so arranged that the luminous flux 1 incident to the focusing detector is adequately stopped down according to the case when the focal length of the lens 2 changes such as with a telephotolens. The focusing detection signal is thus always obtd. with the simple constitution with the photographing lens having a long focal length.

Description

【発明の詳細な説明】 本発明は、合焦位置検出装置とくに/眼しフカメラの合
焦位置検出装置の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a focus position detection device, particularly for a back-eye camera.

従来、/眼しフカメラに好適な合焦位置検出装置として
、たとえば、第1図に示される如く、予定されろ結像面
(3)、ならびに該結像面の前後に、各結像状態を検出
する計3個の受光器(4t、5゜乙)を設け、これら受
光器の各出力信号により被写体光のコントラストを比較
し合焦状態を判定するものがある。なお、第1図に於い
て(1)は被写体の光束、(2)は撮影レンズで、該レ
ンズ(2)によって光束(1)を予定の結像面(3)に
収束させる。
Conventionally, as shown in FIG. 1, a focus position detection device suitable for a camera has been used to detect a predetermined image formation plane (3), and to detect each image formation state before and after the image formation plane. There is a method that includes a total of three light receivers (4t, 5°) for detection, and compares the contrast of the subject light based on the output signals of these light receivers to determine the in-focus state. In FIG. 1, (1) is a light beam of an object, and (2) is a photographic lens, and the lens (2) converges the light beam (1) onto a predetermined imaging plane (3).

第2図は、上述の合焦位置検知装置に好適な光分割器(
8)の構造を示すもので、図中(7)は、図示省略のク
イックリターンミラーの後方に設けられるサブミラー、
(9−/、ワー2)は光分割器(8)を構成するハーフ
ミラ−、(9−3)は全反射のミラーである。(10−
/ 、 10−2 、70−3 )は、CCDアレーな
どのライン形状のセンサーからなる受光器群で、こ・れ
ら受光器群(10−/、10−x:1O−3)は、ピン
ト面ならびに、その前後にそれぞれ置かれる。
FIG. 2 shows a light splitter (
8), in which (7) is a submirror provided behind the quick return mirror (not shown);
(9-/, war 2) is a half mirror constituting the light splitter (8), and (9-3) is a total reflection mirror. (10-
/, 10-2, 70-3) is a light receiver group consisting of a line-shaped sensor such as a CCD array, and these light receiver groups (10-/, 10-x: 1O-3) are They are placed on the front and in front and behind each side.

上述のような合焦検出装置は、特開昭55−7に330
g号に述べられており、各受光器(10−/ 、 10
−2 、 / 0−3 )からの各出力信号は、電気的
に処理することにより、第3図に示すようなデフォーカ
ス量に対応したコントラスト値が得られる。なお同図に
おいて、横軸は撮影レンズ(2)の繰り出し量を示し、
縦軸は各受光器C70−/。
The above-mentioned focus detection device was disclosed in Japanese Patent Application Laid-Open No. 55-7, No. 330.
g, each receiver (10-/, 10
-2, /0-3) are electrically processed to obtain a contrast value corresponding to the defocus amount as shown in FIG. In the figure, the horizontal axis indicates the amount of extension of the photographic lens (2),
The vertical axis represents each light receiver C70-/.

10−2.10−3>の各出力を処理して得られる各受
光器位置での光束(2)のコントラストを示している。
10-2 and 10-3>, the contrast of the luminous flux (2) at each light receiver position is shown.

そして、各受光器(10−/、10−λ。And each photoreceiver (10-/, 10-λ.

1O−3)から得られるコントラスト値は、撮影レンズ
(2)の繰り出し量に対して、曲線(F、 、F2゜F
3)の様に変化する。即ち各受光器(10−/。
1O-3), the contrast value obtained from the curve (F, , F2゜F
3) Changes as shown below. That is, each photoreceiver (10-/.

/θ−λ、10−3>は光束(1)のピント位置が各受
光器位置に杼づくにつれて高いコン1゛ラスト値を検出
し、光束(1)のピント位置と受光器位置が一致した際
に、各受光器はコントラスト値のピークを検出する。従
って上記コントラスト値を比較すれば、レンズ(2)の
移動方向がわかり、それによってレンズ(2)を移動し
て、受光器10−2がコントラスト値のピークを検出し
た際に合焦位置となる。
/θ-λ, 10-3>, a higher contrast value was detected as the focus position of the light beam (1) moved to each receiver position, and the focus position of the light beam (1) and the receiver position coincided. In doing so, each receiver detects the peak of the contrast value. Therefore, by comparing the above contrast values, the direction of movement of the lens (2) can be determined, and the lens (2) can be moved accordingly to reach the in-focus position when the light receiver 10-2 detects the peak of the contrast value. .

ところが第3図に示される様に、レンズ繰出し量レンズ
(2)の移動方向を知ることができるが、領域Bにレン
ズ(2)がある場合は、各受光器位置と光束のピント位
置とのズレが非常に大きくなる為、各受光器で検出され
るコントラスト値が非常に小さくなって、それぞれのコ
ントラスト値の比較ができなくなり、レンズ(2)の移
動方向がわからなくなるといった欠点があった。特にモ
ータ等によってレンズ(2)を自動的に合焦位置へ動が
そうとする場合、コントラスト値の比較ができないと、
モータは作動不能となってしまうので非常に問題であっ
た。
However, as shown in Fig. 3, although it is possible to know the amount of lens extension and the direction of movement of the lens (2), if the lens (2) is in area B, the relationship between each light receiver position and the focus position of the light beam can be determined. Since the deviation becomes very large, the contrast values detected by each light receiver become very small, making it impossible to compare the respective contrast values and making it impossible to determine the moving direction of the lens (2). Especially when attempting to automatically move the lens (2) to the focusing position using a motor, etc., if contrast values cannot be compared,
This was a serious problem as the motor would become inoperable.

即し)この問題は、第9図に示す如く各種交換レンスカ
そのレンズの有する焦点距離(0によって繰り出し量の
大きさ、言い換えると、被写体が無限遠状態での該撮影
レンズのピント位置と、被写体が至近状態での該レンズ
のピント位置との差、即ち、ピント移動量(V、〜V4
)が異なるため、撮影レンズの焦点距離(0が短い場合
は撮影レンズの繰出し範囲が、第3図の囚の領域に収ま
るが、撮影レンズの焦点距離(f)が長い場合には、該
撮影レンズの繰出し範囲が、第3図の(Blの領域にが
がってしまう。
As shown in Figure 9, this problem is solved by various interchangeable lenses. is the difference from the focus position of the lens in a close-up state, that is, the amount of focus movement (V, ~V4
) are different, so if the focal length (0) of the photographic lens is short, the range of the photographic lens will fall within the range shown in Figure 3; however, if the focal length (f) of the photographic lens is long, The extension range of the lens deviates to the region (Bl) in FIG.

そこで上述の問題を解決するために、予定の結像面(3
)から大きく隔たった位置に前記の受光器(11,乙)
を設置し、ピント外れが大きくても合焦信号が得られる
ようにしたものがある。しかし、この場合、被写体光で
ある光束(1)を予定の結像面(3)より大きく離れた
所に導くため、光分割器(8)を大型化したり、複雑な
構造にしなければならなし)又、受光器(10−/ 、
 10−2 、10−3 )のほかに、さらにもう一つ
受光器を増加することも考えられるが、この場合もコス
トの増加や光分割器(8)の改造を行なわなければなら
ないことからやはりあまりいい方法ではなかった。
Therefore, in order to solve the above problem, the planned imaging plane (3
) The above photoreceiver (11,
Some cameras are equipped with an in-focus signal so that a focus signal can be obtained even if the focus is significantly out of focus. However, in this case, the light splitter (8) must be made larger or have a more complicated structure in order to guide the light beam (1), which is the subject light, to a place far away from the intended image plane (3). ) Also, the receiver (10-/,
In addition to 10-2 and 10-3), it is also possible to add one more receiver, but this would also increase cost and require modification of the light splitter (8). It wasn't a very good method.

本発明は、上述のような光分割器の改造あるいは受光器
の変更などを行なうことなく、焦点距離の長い撮影レン
ズに対しても常に、合焦検出のための信号が得られる合
焦位置検出装置を提供しようとするものである。
The present invention provides a focus position detection method that allows a signal for focus detection to be always obtained even for a photographic lens with a long focal length without modifying the light splitter or changing the light receiver as described above. The aim is to provide equipment.

以下、本発明による実施例を、説明する。Examples according to the present invention will be described below.

第S図は第1の実施例で、図において(2)は撮影レン
ズ、(11)はサブミラーで、図示省略のクイックリタ
ーンミラーの後方に置かれる。光分割器(8)は、被写
体の光束(1)を、予定結像面(3)ならびに、その前
後はぼ等距離にある受光器(10−7,10−)、1O
−3)群に導く。(4/)は可変抵抗器で、該抵抗器は
望遠レンズ(侵)等を取り付けると、該レンズのピン@
3)によって可動接点(’#) カ移動し望遠レンズ@
ス)等の焦点距離を考慮した移動指令の信号(1n)が
出力される。なお、ピン(lA3)のかわりに、ダイア
ル的)により、望遠レンズ(侵)の焦点距離に応じて、
可動接点■)をスライド移動するようにしても良い。
FIG. S shows a first embodiment. In the figure, (2) is a photographing lens, and (11) is a sub-mirror, which are placed behind a quick return mirror (not shown). The light splitter (8) divides the luminous flux (1) of the subject into the intended image forming plane (3) and the light receivers (10-7, 10-), which are approximately equidistant from each other in front and behind it, 10
-3) Lead to a group. (4/) is a variable resistor, and when a telephoto lens, etc. is attached, the resistor is connected to the pin @ of the lens.
3) The movable contact ('#) moves and the telephoto lens @
A movement command signal (1n) is output that takes into account the focal length of the lens. In addition, instead of the pin (lA3), depending on the focal length of the telephoto lens (dial),
The movable contact (■) may be moved by sliding.

(IIA)も可変抵抗器で、該抵抗器の可動接点(”、
Z’7)は、しや光部材Cl2−/、/2−ス)の一方
に固定されて、該しゃ光部材(/、2−/)の移動と共
にスライド移動し、しや光部材の位置に対応する信号(
ps )を出力する。
(IIA) is also a variable resistor, and its movable contact ('',
Z'7) is fixed to one of the shielding members Cl2-/, /2-s), and slides as the shielding members (/, 2-/) move, changing the position of the shielding member. The signal corresponding to (
ps).

(K)は差動増巾器で、移動指令用の信号(j−n)な
らびに位置検出用の信号(ps)をそれぞれ入力して、
モータ(4’q)を正逆回転する回転信号(rv)を出
力する。モータ(llヲ)の回転ギヤ(7))には、不
図示の、互いに逆ねじにされた/対のウオームが連動し
、しや光部材(/λ−/、/、、2−u)にそれぞれ設
けられた不図示のラック部にかみ合ってモーター(lI
9)の回転により、しや光部材(/2−/、/、2=、
2)を開閉する様になっている。
(K) is a differential amplifier, which inputs the movement command signal (j-n) and the position detection signal (ps), respectively.
A rotation signal (rv) for rotating the motor (4'q) in forward and reverse directions is output. A pair of worms (not shown), which are threaded in opposite directions to each other, are interlocked with the rotating gear (7) of the motor (llwo), and a pair of worms (not shown) are connected to the rotating gear (7)), and a pair of worms (not shown) are connected to the rotating gear (7). The motor (lI
9), the light member (/2-/, /, 2=,
2) It is designed to open and close.

上述の構成において、望遠レンズ(侵)が取り付けられ
、撮影レンズ(2)の焦点距離が変わった場合、該焦点
距離に応じた移動指令の信号(in)が出力され、結果
としてモータ(l19)が回転されて、7対のしや光部
材(/、! −/ 、 /2−2 )が、サブミラー0
1)をスライドし、開閉する。そして、しや光部材(/
2−/ )の位置検出の信号(ps)と、移動指令の信
号(1n)とがほぼ合致したときに差動増巾器IIgの
出力が低レベルとなり、モータ(クラ)の回転が停止さ
れ、/対のしや光部材(/2−/:/2−.2)の位置
が、決定される。これにより、受光器へ入射する光束が
絞り込まれることになる。
In the above configuration, when the telephoto lens (in) is attached and the focal length of the photographing lens (2) changes, a movement command signal (in) corresponding to the focal length is output, and as a result, the motor (l19) is rotated, and the seven pairs of optical members (/, ! -/ , /2-2) are aligned with the sub-mirror 0.
1) Slide to open and close. And Shiyahikari member (/
2-/ ) When the position detection signal (ps) and the movement command signal (1n) almost match, the output of the differential amplifier IIg becomes a low level, and the rotation of the motor (kura) is stopped. , /The position of the pair of edge light members (/2-/:/2-.2) is determined. This narrows down the light flux that enters the light receiver.

即ち、/対のしや光部材(/、2−/、/2−2>は、
撮影レンズ(2)の焦点距離が、望遠レンズ等で変わっ
た場合に応じて、自動的にその位置が切り換えられ、合
焦検出器に入る光束t+1を適宜絞る様にする。なお、
レンズの焦点距離が変わった場合に、/対のしや光部材
(/2−7./2−2>を手動で動かすようにしても良
いことは勿論である。
That is, the /pair of optical members (/, 2-/, /2-2> is
When the focal length of the photographic lens (2) changes due to a telephoto lens or the like, its position is automatically switched and the light flux t+1 entering the focus detector is appropriately narrowed down. In addition,
Of course, when the focal length of the lens changes, the /pair of lenses and the optical member (/2-7./2-2> may be manually moved).

第4図は、第3図と同様な曲線で、図中の(C)は、焦
点距離の短いレンズの繰出し範囲を示し、繰出し量に対
して無限遠から至近まで、合焦検出の可能な範囲(A)
に入っている。又、(D)は焦点距離の長いレンズのく
り出し範囲を示し、繰出し量によっては合焦検出の可能
な範囲(A)がらはみ出して、合焦検出不能な領域(B
)にかかる。
Figure 4 is a curve similar to Figure 3, and (C) in the figure shows the extension range of a lens with a short focal length, and the range in which focus detection is possible from infinity to close range with respect to the extension amount. (A)
It's in. In addition, (D) shows the extension range of a lens with a long focal length, and depending on the extension amount, the focus detection range (A) may extend beyond the focus detection range (B).
).

そこで焦点距離の長いレンズを装着した際には、第S図
に示した様な構成によって、サブミラー01)の有効反
射部(//−/)をしや光部材(/2−/、、/2−.
2)で制限して合焦検出器へ入射する光束(1)を絞る
様にすると焦点深度が深くなって、ぼげ量が小さくなる
ため、第7図の如く、各受光器から検出されるコントラ
スト値は、曲線(Fl’。
Therefore, when a lens with a long focal length is attached, the effective reflecting part (//-/) of the sub-mirror 01) is 2-.
If the light flux (1) entering the focus detector is narrowed down by limiting 2), the depth of focus will become deeper and the amount of blur will be reduced, so that the light beam detected by each light receiver will be detected as shown in Figure 7. The contrast value is expressed by the curve (Fl'.

F2′、F3′)の様になり、撮影レンズの繰出し量が
領域CB)に入っても、出力信号が判別でき合焦検出を
行なう事ができる様になる。
F2', F3'), and even if the amount of extension of the photographic lens falls within the region CB), the output signal can be discriminated and focus detection can be performed.

なお、受光器(10−/、10−ス、1O−3)がライ
ンセンサーである場合、光束i11を絞る方向を該ライ
ンセンサーの並び方向にすることによりラインセンサー
で検出されるコントラスト値は上昇する。しかも全体的
に絞るのに対して、光量の低下を抑えることができるの
で、低輝度の被写体に対して非常に有効となる。
In addition, when the light receiver (10-/, 10-s, 1O-3) is a line sensor, the contrast value detected by the line sensor increases by narrowing the luminous flux i11 in the direction in which the line sensor is arranged. do. Moreover, since it is possible to suppress a decrease in the amount of light compared to stopping down the entire image, it is very effective for shooting low-luminance subjects.

第S図は本発明の第2の実施例で、図中の(+3)はサ
ブミラーであり、(/Il−/ 、 /l−3)は液晶
で、たとえば電圧をかけると拡散面になり、電圧をかけ
ないと全反射面となる。(/1l−2)は全反射のミラ
一部である。液晶(/4−/、/1l−3)に加電する
と、サブミラー0沸のミラ一部(/l−,2)は、各受
光器(10−/、10−λ。
Figure S shows a second embodiment of the present invention, in which (+3) is a submirror, and (/Il-/, /l-3) is a liquid crystal, which becomes a diffusion surface when a voltage is applied, for example. If no voltage is applied, it becomes a totally reflective surface. (/1l-2) is the mirror portion of total reflection. When power is applied to the liquid crystal (/4-/, /1l-3), the mirror part (/l-, 2) of the submirror 0 boils down to each light receiver (10-/, 10-λ).

1O−3)のライン方向に制限されて、ミラ一部(/1
−2)のみとなる。
1O-3), and a part of Mira (/1
-2) only.

第9図は本発明の第3の実施例で、合焦検出装置に入る
光束(1)を制限する可動マスク(/&−115−□2
)を、撮影レンズ(2)内に設けた場合を示しており、
同図は、該マスクが撮影光路内に入って、各受光器(1
0−/ 、10−2.1O−3)のライン方向に、光束
mを制限した状態を示している。
FIG. 9 shows a third embodiment of the present invention, in which a movable mask (/&-115-□2) restricts the light flux (1) entering the focus detection device.
) is provided inside the photographic lens (2),
In the figure, the mask enters the photographing optical path and each light receiver (1
0-/, 10-2.1O-3), the luminous flux m is restricted in the line direction.

尚、上記実施例で示した絞り機構は、対応する焦点距離
に巾をもたせ、ゾーンごとに行なう様にしてもよい。即
ち、たとえばf = 3 Q ran以下、f=700
〜200胴、f=200〜300闘といった焦点距離に
応じて、3段階程度の絞り状態となる絞り機構としても
よい。
Note that the diaphragm mechanism shown in the above embodiment may have a wide range of corresponding focal lengths, and may be configured to operate for each zone. That is, for example, f = 3 Q ran or less, f = 700
The aperture mechanism may have three stages of aperture depending on the focal length, such as f=200 to 200 mm and f=200 to 300 f.

なお、第S、第g、第7図に示した実施例において、絞
り位置が、撮影レンズのFNOを決定する絞り面、ある
いはその近傍以外にある場合、該絞りを絞った時、各受
光器のライン両端部分の光量が低下することがある。こ
の結果、各受光器のライン端の情報が、本来の被写体の
情報でないので、ライン端の情報を電気的にカットする
か、あるいはライン端の部分だけを覆う絞りを設ける必
要がある。
In addition, in the embodiments shown in S, g, and 7, if the aperture position is other than the aperture plane that determines the FNO of the photographing lens or its vicinity, when the aperture is stopped down, each light receiver The amount of light at both ends of the line may decrease. As a result, the information at the line ends of each light receiver is not information about the original object, so it is necessary to electrically cut off the information at the line ends or provide an aperture that covers only the line ends.

一方、第9図において、可動マスク(/、ff−115
−,2)を例えば、電圧を加えない時に透明で、電圧を
加えた時に不透明になる様な液晶マスクに置き換えるこ
ともできるし、さらに撮影レンズのFNOを決定する絞
りを利用するようにしても良いし、かつ該しぼりを撮影
レンズのFNOを決定する絞りと兼用させても良いこと
は勿論である。
On the other hand, in FIG. 9, a movable mask (/, ff-115
-, 2) can be replaced, for example, with a liquid crystal mask that is transparent when no voltage is applied and becomes opaque when a voltage is applied, or it is also possible to use an aperture that determines the FNO of the photographic lens. Of course, the aperture may also be used as the aperture that determines the FNO of the photographic lens.

以上の様に本発明はレンズ交換可能なカメラに於いて、
装着されるレンズの焦点距離に応じて合焦検出用の受光
器に入射する光束を絞り込む様にしたものでカメラに装
着されるレンズが長焦点のものであっても、被写体光の
ピント位置と受光器の検出位置とが大きくズして合焦検
出が不能となってしまう様なことをきわめて簡単な構成
で防止) することができる。
As described above, the present invention provides a camera with interchangeable lenses.
This device narrows down the light flux that enters the focus detection receiver according to the focal length of the lens attached to the camera.Even if the lens attached to the camera has a long focal length, the focus position of the subject light and With an extremely simple configuration, it is possible to prevent a situation where the detection position of the light receiver is greatly misaligned and in-focus detection becomes impossible.

加えて光束を受光器のライン方向に制限することにより
、受光器に入る光量の低下を最小限にとどめて、低輝度
の被写体の場合における合焦検出の能力低下を、最小限
におさえることができる。
In addition, by restricting the light flux to the line direction of the receiver, it is possible to minimize the decrease in the amount of light entering the receiver, thereby minimizing the decrease in focus detection ability in the case of low-brightness subjects. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の合焦位置検出装置の概略図、第2図は/
眼しフに上記合焦位置検出装置組み込んだ場合の概略図
、第9図はレンズの焦点距離とピント移動量の関係を説
明するグラフ第S、第3゜第9図はそれぞれ、本発明に
よる合焦位置検出製関係を示すグラフである。 /:光 束、   2=撮影レンズ。 3:(予定)焦点面。 ダt5+6:10−八10−2 、70−3 :受光器
(光検出器)。 7.2−/ 、/2−2 : (可動)じゃ光部材。 /クー/、/’l−2:液 晶。 /左−/、/、!;−、2:可動マスク。 特許出願人 キャノン株式会社 代  理  人  若  林      忠各受光A1
(二より71土之れ4コ〉トラ人トfJ第  3  図 第  4  図
Figure 1 is a schematic diagram of a conventional focusing position detection device, and Figure 2 is a schematic diagram of a conventional focusing position detection device.
A schematic diagram of the case where the above-mentioned focusing position detection device is incorporated into an eye lens, FIG. 9 is a graph illustrating the relationship between the focal length of the lens and the amount of focus movement, and FIG. 9 is a graph according to the present invention. It is a graph showing the relationship between focus position detection and production. /: Light flux, 2=Photographing lens. 3: (planned) focal plane. Dat5+6: 10-810-2, 70-3: Photoreceiver (photodetector). 7.2-/, /2-2: (Movable) blocking member. /ku/, /'l-2: Liquid crystal. /Left-/,/,! ;-, 2: Movable mask. Patent applicant: Canon Co., Ltd. Agent: Tadashi Wakabayashi Light receiver A1
(From 2, 71 Donore 4 pieces) Torajinto fJ Fig. 3 Fig. 4

Claims (1)

【特許請求の範囲】 +11  レンズからの光によって像の鮮明度を検出す
る受光手段と、上記レンズの焦点距離に応じて該受光手
段に入射する入射光を絞り手段と、を設げることを特徴
とする合焦位置検出装置。 (2)  上記受光手段はラインセンサーであることを
一ヒ記受光手段はラインセンサーであることを特徴とす
る特許請求の範囲第(1)項記載の合焦位置検出装置。 (3)  上記絞り手段は、被写体光を上記ラインセン
サ一方向に絞ることを特徴とする特許請求の範囲第(2
)項記載の合焦位置検出装置。
[Claims] +11 A light-receiving means for detecting the sharpness of an image using light from a lens, and means for narrowing down the incident light entering the light-receiving means according to the focal length of the lens. Features a focus position detection device. (2) The focusing position detection device according to claim (1), wherein the light receiving means is a line sensor.The light receiving means is a line sensor. (3) The aperture means is characterized in that the subject light is constricted in one direction of the line sensor.
The focusing position detection device described in ).
JP17939782A 1982-10-13 1982-10-13 Detector for focusing position Pending JPS5968711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17939782A JPS5968711A (en) 1982-10-13 1982-10-13 Detector for focusing position

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17939782A JPS5968711A (en) 1982-10-13 1982-10-13 Detector for focusing position

Publications (1)

Publication Number Publication Date
JPS5968711A true JPS5968711A (en) 1984-04-18

Family

ID=16065146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17939782A Pending JPS5968711A (en) 1982-10-13 1982-10-13 Detector for focusing position

Country Status (1)

Country Link
JP (1) JPS5968711A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992017805A1 (en) * 1991-03-29 1992-10-15 Olympus Optical Co., Ltd. Apparatus for sensing automatic focusing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992017805A1 (en) * 1991-03-29 1992-10-15 Olympus Optical Co., Ltd. Apparatus for sensing automatic focusing
US5245173A (en) * 1991-03-29 1993-09-14 Olympus Optical Co., Ltd. Automatic focal-point sensing apparatus sensing high and low magnification

Similar Documents

Publication Publication Date Title
US4679919A (en) Ophthalmic photographic apparatus
US7289199B2 (en) Electronic imaging apparatus and microscope apparatus using the same
US4582411A (en) Automatic focusing apparatus
JP2643326B2 (en) Single-lens reflex camera with focus detection device
US4912500A (en) Single lens reflex camera
US4626918A (en) Photometric optical system for single-lens reflex electronic photographic camera
JPS6233564B2 (en)
US3614921A (en) Photoelectric device for detecting the focusing
JPS5968711A (en) Detector for focusing position
US4716284A (en) Photographic optical system having enhanced spectral transmittance characteristics
US5845159A (en) Optical apparatus
US8077251B2 (en) Photometry apparatus and camera
USRE32959E (en) Automatic focusing apparatus
US4536073A (en) Apparatus for detecting a condition of sharpest focus
US5289226A (en) Focus detecting device including a diffusion surface disposed on a predetermined image surface
US4428653A (en) Mirror reflex camera with an electronic range finder
JPS5968712A (en) Device for detecting focussing position
JPS6165213A (en) Optical system for automatic focusing
JPS5912406A (en) Automatic focus detector
JPH0943506A (en) Camera
JPH029323B2 (en)
JPS5910914A (en) Focus detector
JP2018128704A (en) Lens barrel and optical device
JPS60125814A (en) Focusing detector
JPH0629925B2 (en) Fiber optics