JPS6165213A - Optical system for automatic focusing - Google Patents

Optical system for automatic focusing

Info

Publication number
JPS6165213A
JPS6165213A JP18668584A JP18668584A JPS6165213A JP S6165213 A JPS6165213 A JP S6165213A JP 18668584 A JP18668584 A JP 18668584A JP 18668584 A JP18668584 A JP 18668584A JP S6165213 A JPS6165213 A JP S6165213A
Authority
JP
Japan
Prior art keywords
light
lens
automatic focusing
refractive index
accuracy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18668584A
Other languages
Japanese (ja)
Inventor
Sadahiko Tsuji
辻 定彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP18668584A priority Critical patent/JPS6165213A/en
Publication of JPS6165213A publication Critical patent/JPS6165213A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/30Systems for automatic generation of focusing signals using parallactic triangle with a base line
    • G02B7/32Systems for automatic generation of focusing signals using parallactic triangle with a base line using active means, e.g. light emitter

Abstract

PURPOSE:To increase the accuracy of forming, and widen the range measurable area of automatic focusing and improve the accuracy of range measurement by allowing either of lens systems for projection and photodetection to include a lens made of synthetic resin having a high refractive index, and interposing a ultraviolet-light and visible-light cutting filter at an object side. CONSTITUTION:An image of an object 9 picked up by the photographic system 1 of a camera is formed on a film and the photosensitive surface 2 of an image pickup element. Infrared projection luminous flux from an infrared-light emitting element 3 arranged outside a photographic system is projected upon the object 9 through a projection lens system 4 and the ultraviolet-light and visible-light cutting filter 7 and its reflected light is image-formed on a photodetecting element 6. When the photodetecting element 6 consists of two differential type elements 6A and 6B, the photodetecting element 6 is scanned until the output is zero, and the whole or part of the photographic system 1 is moved associatively with said scanning to attain automatic focusing operation. Consequently, the range measurement area of the automatic focusing is widened and the accuracy is improved, so yellow changing of the lens and a defect in outer appearance such as black dust are prevented.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、カメラのオートフォーカス、特に赤外光を投
光し、被写体からのその反射光全受光して被写体距離を
検知するオートフォーカスのための光学系の構成に関す
るものである。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to autofocus for cameras, particularly for autofocus that emits infrared light and receives all of the reflected light from the subject to detect the distance to the subject. This relates to the configuration of the optical system.

〔発明の背景〕[Background of the invention]

従来この種のオートフォーカス光学系は投光または受光
レンズとして低コストで高性能を得るため、メチルメタ
クリレート樹脂を材料とした非球面レンズを使用するの
が一般的でちった。例えば特開昭55−101915公
報にその例が開示されている。
Conventionally, this type of autofocus optical system has generally used an aspherical lens made of methyl methacrylate resin as a light emitting or light receiving lens in order to achieve high performance at low cost. For example, an example of this is disclosed in Japanese Patent Laid-Open No. 55-101915.

しかし撮影し/)eの大口径化や大ズーム比化に伴いオ
ート7A−カスの検知距離すなわち赤外光の到達距離を
増大することが要求されている。そのための方法として
は高効率の赤外発光素子を使用するか、又は赤外光源に
流す電流値を上げることが考えられるが、前者はコスト
が飛躍的に上シ、後者は消費電力が増え、また発光素子
の寿命が短くなる等の問題がある。他の方法として投光
または受光レンズのFナンバーを小さくすることが考え
られるが、メチルメタクリレートは屈折率が1.492
という低い値であるため、該レンズを六口径比すると収
差量が増大し、オートフォーカスの要求性能を満足せず
、N度低下をひき起こし、また中心肉厚と周辺肉厚の差
が大となり、成形精度が悪くなる。そこで、投光″′!
なは受光レンズに屈折率の高い材料を用いることが収差
上も肉厚差を小とする上でも好ましい。
However, as the aperture of the camera/)e becomes larger and the zoom ratio becomes larger, it is required to increase the detection distance of the auto 7A-scatter, that is, the reachable distance of the infrared light. Possible ways to do this include using a highly efficient infrared light emitting element or increasing the current flowing through the infrared light source, but the former would dramatically increase the cost, and the latter would increase power consumption. Further, there are problems such as a shortened lifespan of the light emitting element. Another method is to reduce the F number of the light emitting or receiving lens, but methyl methacrylate has a refractive index of 1.492.
Because of this low value, when this lens is compared to a six-aperture lens, the amount of aberration increases, it does not satisfy the required performance of autofocus, causes a decrease in N degree, and the difference between the center wall thickness and the peripheral wall thickness becomes large. , molding accuracy deteriorates. So, let the light shine!
It is preferable to use a material with a high refractive index for the light-receiving lens, both from the viewpoint of aberrations and from the viewpoint of minimizing the difference in wall thickness.

しかし高屈折率材料としてガラス材料を用いた場合非球
面は非常にコストが高くなる。一方、高屈折率の合成樹
脂を用いる場合は材料固有の欠点が多いeたとえば紫外
線を受けると短波長光の吸収が増大し黄変するe yi
e)スチロールや、アクリロニトリルとスチロールの共
重合体はこのllX向が著るしい。ポリカーゴネートも
この傾向を持つが、それ以外に成形時に内部に発生する
黒いゴミが問題となる。すなわちポリカーゴネートは流
動性が悪いので面棺度全良ぐするためには高温成形が必
要であるが、ポリカーゴネートは組成としてベンゼン環
を含んでいるため高温成形時に炭化し、内部に黒い異物
が発生する。この黒ゴミは微細であシ結像性能には実害
は生じないけれども外観上重苦しい。
However, when a glass material is used as the high refractive index material, the cost of an aspherical surface becomes extremely high. On the other hand, when using synthetic resin with a high refractive index, there are many disadvantages inherent to the material.For example, when exposed to ultraviolet light, absorption of short wavelength light increases and yellowing occurs.
e) Styrene and copolymers of acrylonitrile and styrene have a remarkable llX orientation. Polycargonate also has this tendency, but another problem is the black dust generated inside during molding. In other words, polycargonate has poor fluidity, so high-temperature molding is necessary to fully improve the facetability, but since polycargonate contains benzene rings in its composition, it carbonizes during high-temperature molding, leaving a black inside. Foreign matter occurs. Although this black dust is minute and does not cause any actual damage to the imaging performance, it is heavy in appearance.

〔発明の目的〕[Purpose of the invention]

本発明の目的は上述従来例の欠点を除去し、高屈折率合
成樹脂を用いて投光又は受光レンズの大口径化および成
形精度の高度化を可能となしてオートフォーカスの測距
可能領域の拡大および測距積度の向上を可能となし、し
かも、レンズの黄変や黒プミの問題を回避し得るカメラ
のオートフォーカス光学系を提供するにある。
The purpose of the present invention is to eliminate the drawbacks of the above-mentioned conventional examples, and to make it possible to increase the diameter of the light emitting or light receiving lens and to improve the molding accuracy by using a high refractive index synthetic resin, thereby increasing the distance measurement range of autofocus. To provide an autofocus optical system for a camera that can improve magnification and distance measurement, and avoid problems such as yellowing and black spots on the lens.

〔発明の概要〕[Summary of the invention]

本発明のオートフォーカス用光学系は、被写体への赤外
光投光用レンズ系および被写体からのその反射光受光用
レンズ系の少くも一方のレンズ系が高屈折率合成樹脂製
レンズを含み、且つ該少くも一方のレンズ系の被写体側
に紫外および可視光力、トフイルターを介。iされてい
ることを特徴とする。
In the autofocus optical system of the present invention, at least one of the lens systems for projecting infrared light onto a subject and the lens system for receiving reflected light from the subject includes a high refractive index synthetic resin lens, In addition, ultraviolet and visible light power is applied to the subject side of at least one lens system through a filter. It is characterized by being i.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施形態を図に従って説明する。第1図にお
いてカメラの撮影系lによる被写体9の像はフィルムや
撮像索子の感光面2に結像される。
An embodiment of the present invention will be described according to the drawings. In FIG. 1, an image of a subject 9 produced by a photographing system 1 of a camera is formed on a photosensitive surface 2 of a film or an imaging probe.

撮影系外に配置された赤外発光素子3、例えば赤外発光
ダイオード又は赤外半導体レーデ−からの赤外投光光束
を投光レンズ氷4で紫外および可視光カットフィルター
7t−通して被写体9に投射し、その反射光を紫外およ
び可視光カットフィルター8、受光レンズ系5によ)受
光素子6、例えばシリコンフォトダイオード上に結像さ
せる。受光素子6が図示の如く2索子の差動型索子6A
、6Bである場合は、その出力がゼロとなる位置まで受
光素子6を走査し、それに連動して撮影系l全体又はそ
の一部を移動させることによ)オートフォーカスを達成
することができる。かかるオート7オーカスの原理は周
知であるから、ここでは詳述しない。
An infrared light beam from an infrared light emitting element 3 disposed outside the photographing system, such as an infrared light emitting diode or an infrared semiconductor radar, is passed through a light projection lens ice 4 through an ultraviolet and visible light cut filter 7t to a subject 9. The reflected light is imaged by an ultraviolet and visible light cut filter 8 and a light receiving lens system 5) on a light receiving element 6, for example, a silicon photodiode. The light-receiving element 6 is a differential type probe 6A with two probes as shown in the figure.
, 6B, autofocus can be achieved by scanning the light receiving element 6 to a position where its output becomes zero and moving the entire photographing system 1 or a part thereof in conjunction with the scanning. Since the principle of such auto7 orcus is well known, it will not be described in detail here.

このような構成の実施例において投光レンズ系および受
光レンズ系4.6の少くとも一方は、収差補正上および
成形精度上の好ましさから、従来のメチルメタクリレー
トよυ屈折率の高い合成樹脂材料にする。高屈折率のポ
リスチレン、アクリロニトリルとスチロールの共重合体
、ポリカーゴネートなどに関する前述の如き紫外線照射
による黄変や成形時の黒ゴミ等の問題については、本実
施例では、上記フィルター7.8は紫外および可視光カ
ットフィルターであるため外部からの紫外線をカットし
て黄変を防ぎ、又、該フィルターを通して内部の投受光
レンズは見えないので、黒ゴミは間逮点とならない、又
、合成樹脂は一般的性質として高屈折率のものは必ず高
分散でちり色収差が大きく発生する傾向がちるが、前記
のオートフォーカス用光源3が赤外の狭いスペクトル分
布を有するものとすれば色収差は問題とならない。
In an embodiment with such a configuration, at least one of the light emitting lens system and the light receiving lens system 4.6 is made of a synthetic resin having a higher υ refractive index than conventional methyl methacrylate for the purpose of aberration correction and molding accuracy. Use it as a material. Regarding the above-mentioned problems such as yellowing due to ultraviolet irradiation and black dust during molding regarding high refractive index polystyrene, copolymer of acrylonitrile and styrene, polycarbonate, etc., in this embodiment, the above-mentioned filter 7.8 is Since it is an ultraviolet and visible light cut filter, it blocks ultraviolet rays from the outside and prevents yellowing.Also, since the internal light emitting and receiving lenses cannot be seen through the filter, black dust does not become an obstruction point, and synthetic resin As a general property, those with a high refractive index tend to have high dispersion and a large amount of dust chromatic aberration, but if the autofocus light source 3 has a narrow infrared spectral distribution, chromatic aberration will not be a problem. No.

前記実施例は撮影系外部にオートフォーカス用光学系を
有する構成でちるが、本発明は赤外投光系および受光系
の双方に撮影系の一部又は全部を共用するTTL方式や
、投光又は受光の一方にこれを共用する半TTL方式に
も適用できる。又、Al1距時に走査を行う部材は、投
光レンズ、受光レンズ、光源。
Although the above embodiment has a configuration in which an autofocus optical system is provided outside the photographing system, the present invention uses a TTL method in which part or all of the photographing system is shared by both the infrared light projecting system and the light receiving system, or a light projecting system. Alternatively, it can also be applied to a half-TTL system in which this is shared for one side of light reception. Also, the members that perform scanning at the time of Al1 distance are a light projecting lens, a light receiving lens, and a light source.

受光素子のうち少くとも一つでちることができる。At least one of the light receiving elements can be used.

又、オートフォーカス用の受光赤外光の検知方式として
前記のような差動出力を利用する方式以外に、−受光素
子で出力最大を検知する方式も可能である。
Furthermore, in addition to the above-mentioned method of using differential output as a method of detecting received infrared light for autofocus, a method of detecting the maximum output using a light-receiving element is also possible.

〔発明の目的〕[Purpose of the invention]

以上説明したように本発明によれば、赤外光を利用する
オートフォーカス用の投光・受光レンズ材料に高屈折率
合成樹脂を用いることにより、これを大口径高性能レン
ズとすることができ、オートフォーカスの測距領域の拡
大と検反の向上をはかることができると共に、紫外およ
び可視光力。
As explained above, according to the present invention, by using a high refractive index synthetic resin as the material for the light emitting/receiving lens for autofocus using infrared light, this can be made into a large-diameter, high-performance lens. , it is possible to expand the range of autofocus and improve inspection, as well as the power of ultraviolet and visible light.

トフィルターを投光・受光レンズの前方に使用するので
レンズの黄変の防止や黒ゴミ等の外観上の欠点の防止を
することができる。
Since the filter is used in front of the light emitting/receiving lens, it is possible to prevent yellowing of the lens and appearance defects such as black dust.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の構成図である。 1・・・撮影系、      3・・・赤外光源、4・
・・投光レンズ、    5・・・受光レンズ、6・・
・受光素子、 7.8・・・紫外および可視光カットフィルタ、9・・
・被写体。 第1図
FIG. 1 is a block diagram of an embodiment of the present invention. 1... Photography system, 3... Infrared light source, 4...
... Light emitting lens, 5... Light receiving lens, 6...
・Photodetector, 7.8... Ultraviolet and visible light cut filter, 9...
·subject. Figure 1

Claims (1)

【特許請求の範囲】 1、赤外光を投光レンズ系を介して被写体に投射し、被
写体からのその反射光を受光レンズを介して受光素子に
受光してその出力から被写体距離を検知するカメラのオ
ートフォーカス用光学系において、投光レンズ系および
受光レンズ系の少くも一方のレンズ系が高屈折率合成樹
脂製レンズを含み、該少くも一方のレンズ系の被写体側
に紫外および可視光カットフィルタを介在させたことを
特徴とするオートフォーカス用光学系。 2、前記高屈折率合成樹脂は屈折率Nd>1.55であ
る特許請求の範囲第1項のオートフォーカス用光学系。
[Claims] 1. Projecting infrared light onto a subject via a light projecting lens system, receiving the reflected light from the subject through a light receiving lens to a light receiving element, and detecting the subject distance from its output. In an autofocus optical system of a camera, at least one of the light emitting lens system and the light receiving lens system includes a high refractive index synthetic resin lens, and the at least one lens system has a lens on the subject side that emits ultraviolet and visible light. An autofocus optical system characterized by interposing a cut filter. 2. The autofocus optical system according to claim 1, wherein the high refractive index synthetic resin has a refractive index Nd>1.55.
JP18668584A 1984-09-06 1984-09-06 Optical system for automatic focusing Pending JPS6165213A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18668584A JPS6165213A (en) 1984-09-06 1984-09-06 Optical system for automatic focusing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18668584A JPS6165213A (en) 1984-09-06 1984-09-06 Optical system for automatic focusing

Publications (1)

Publication Number Publication Date
JPS6165213A true JPS6165213A (en) 1986-04-03

Family

ID=16192845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18668584A Pending JPS6165213A (en) 1984-09-06 1984-09-06 Optical system for automatic focusing

Country Status (1)

Country Link
JP (1) JPS6165213A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7967217B2 (en) 2002-09-26 2011-06-28 Kenji Yoshida Information reproduction/i/o method using dot pattern, information reproduction device, mobile information i/o device, and electronic toy
US9400951B2 (en) 2005-07-01 2016-07-26 Grid Ip Pte Ltd Dot pattern
US9582701B2 (en) 2005-04-28 2017-02-28 Kenji Yoshida Information input/output method using dot pattern

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7967217B2 (en) 2002-09-26 2011-06-28 Kenji Yoshida Information reproduction/i/o method using dot pattern, information reproduction device, mobile information i/o device, and electronic toy
US9372548B2 (en) 2002-09-26 2016-06-21 Kenji Yoshida Information reproduction/I/O method using dot pattern, information reproduction device, mobile information I/O device, and electronic toy using dot pattern
US9773140B2 (en) 2002-09-26 2017-09-26 Kenji Yoshida Information reproduction/I/O method using dot pattern, information reproduction device, mobile information I/O device, and electronic toy using dot pattern
US9946964B2 (en) 2002-09-26 2018-04-17 Kenji Yoshida Information reproducing method, information inputting/outputting method, information reproducing device, portable information inputting/outputting device and electronic toy using dot pattern
US9984317B2 (en) 2002-09-26 2018-05-29 Kenji Yoshida Information reproducing method, information inputting / outputting method, information reproducing device, portable information inputting/ outputting device and electronic toy using dot pattern
US10192154B2 (en) 2002-09-26 2019-01-29 Kenji Yoshida Information reproduction/I/O method using dot pattern, information reproduction device, mobile information I/O device, and electronic toy using dot pattern
US10339431B2 (en) 2002-09-26 2019-07-02 Kenji Yoshida Information reproduction/I/O method using dot pattern, information reproduction device, mobile information I/O device, and electronic toy using dot pattern
US9582701B2 (en) 2005-04-28 2017-02-28 Kenji Yoshida Information input/output method using dot pattern
US9400951B2 (en) 2005-07-01 2016-07-26 Grid Ip Pte Ltd Dot pattern

Similar Documents

Publication Publication Date Title
GB2148026A (en) Dichroic beam splitter
US4370551A (en) Focus detecting device
US4625103A (en) Automatic focusing device in microscope system
JPS6120841B2 (en)
JPS6165213A (en) Optical system for automatic focusing
JPS6233564B2 (en)
JPH0559405B2 (en)
JP2007033653A (en) Focus detection device and imaging apparatus using the same
US4716284A (en) Photographic optical system having enhanced spectral transmittance characteristics
JPH04248509A (en) Multipoint range finder
US6229602B1 (en) Photometering apparatus
JPS6332508A (en) Projecting system for automatic focus detection
US20020186971A1 (en) AF auxiliary light projector for AF camera
JPS63259521A (en) Composite type focusing detection device
JP3337528B2 (en) Distance measuring device
JPS59121011A (en) Focusing position detector
JPH029323B2 (en)
JPS6163811A (en) Optical system for autofocus
JPS6167012A (en) Focus detecting device
JPH01147438A (en) Light receiving device for camera
JPS6033377Y2 (en) Light receiving device that can change the angle of incidence
JPS63139310A (en) Pattern projecting device for detecting focus
JPS5916245B2 (en) How to detect the focus position based on lens chromatic aberration
JPH095618A (en) Auto-focusing device
JPS5994712A (en) Focusing detecting method