JPS5968170A - Electrode base plate for fuel cell - Google Patents

Electrode base plate for fuel cell

Info

Publication number
JPS5968170A
JPS5968170A JP57178770A JP17877082A JPS5968170A JP S5968170 A JPS5968170 A JP S5968170A JP 57178770 A JP57178770 A JP 57178770A JP 17877082 A JP17877082 A JP 17877082A JP S5968170 A JPS5968170 A JP S5968170A
Authority
JP
Japan
Prior art keywords
layer
carbonaceous layer
electrode substrate
base plate
dense
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57178770A
Other languages
Japanese (ja)
Inventor
Masatomo Shigeta
重田 昌友
Hiroyuki Fukuda
弘之 福田
Kuniyuki Saito
国幸 斉藤
Hisatsugu Kaji
加治 久継
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP57178770A priority Critical patent/JPS5968170A/en
Priority to US06/535,913 priority patent/US4522895A/en
Priority to GB08326048A priority patent/GB2128395B/en
Priority to FR8315622A priority patent/FR2534071B1/en
Priority to CA000438143A priority patent/CA1205857A/en
Priority to DE19833335638 priority patent/DE3335638A1/en
Publication of JPS5968170A publication Critical patent/JPS5968170A/en
Priority to US06/712,655 priority patent/US4580337A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/96Carbon-based electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inert Electrodes (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To prevent such fetal defects of the conventional monopolar electrode base plate having a large contact resistance, an inhomogeneous intercellular temperature distribution and a decreased generation efficiency by using a three- layered electrode base plate consisting of a dense carbonaceous layer and porous carbonaceous layers placed on the surfaces of the dense carbonaceous layer, and providing each porous carbonaceous layer with a group of holes. CONSTITUTION:In a fuel cell constituted by stacking electrode base plates 11 with catalyst layers 2 and an electrolyte layer 3 interposed, the electrode base plate 11 having a three-layered construction is formed by unifying porous carbonaceous layers 7 over both surfaces of a dense carbonaceous layer 8. Each porous carbonaceous layer 7 is provided with a group of holes located preferably in the center of the thickness of the layer 7. These holes 9 extend from one end surface of the base plate 11 to its other end surface, are almost parallel to each other and almost parallel to the electrode surface of the base plate 11. In addition, hole groups 9 located over the surfaces of the dense carbonaceous layer 8 are perpendicular to each other. The sectional shape of the holes 9 may be arbitrarily chosen. When it is supposed to be a circle, the diameter of the circle is preferably 0.5-3mm..

Description

【発明の詳細な説明】 本発明は、燃料電池用電極基板に係シ、更に詳しくは、
三層構造で、チ密炭素質層の両側の多孔性炭素質層に中
空孔道群を有する炭素質燃料電池用正極基板に係る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electrode substrate for fuel cells, and more specifically, to
The present invention relates to a positive electrode substrate for a carbonaceous fuel cell that has a three-layer structure and has hollow hole groups in porous carbonaceous layers on both sides of a dense carbonaceous layer.

従来、不透過性の黒鉛製薄板をリブ細工して得られるパ
イポーラセ、eレータを用いるパイ7ノ?−ラ七ノ9レ
ータ型燃料電池が公知である。
Conventionally, pie-porase obtained by ribbing an impermeable graphite thin plate, and pie-7-no? using an e-lator. - Rana-nine-lator fuel cells are known.

これに対し、一方の面にリブを設け、他方の面が平坦な
電極面となった構造を有し、リブ付き面から反応ガスが
平坦なr!電極面拡散してくるモノポーラ型tH,極基
板が開発されて来ている。
On the other hand, it has a structure in which ribs are provided on one surface and the other surface is a flat electrode surface, so that the reaction gas flows from the ribbed surface into a flat r! A monopolar type tH electrode substrate with diffusion on the electrode surface has been developed.

従来のモノIj?−ラ型セルは、添付の第1図に示すよ
うに、一方の面にリブ5を設は他方の面tま平坦な構造
全有する電極基板1.醜態M2.電解質を含浸させたマ
トリックス3及びセパレーターシート4から成っておシ
、電極基板1のリブ付き面から反応ガス(酸素又は水素
)が平坦な電極面に拡散してくるものである。
Conventional mono Ij? - As shown in the attached FIG. 1, the L-type cell has an electrode substrate 1 having a rib 5 on one side and a flat structure on the other side. Abomination M2. It consists of a matrix 3 impregnated with an electrolyte and a separator sheet 4, and a reactive gas (oxygen or hydrogen) diffuses from the ribbed surface of the electrode substrate 1 to the flat electrode surface.

従来、モノ、l?−ラ型燃料電池用電極基板の製造方法
として、短炭素繊維をベースにしてプレス成形する方法
(特願昭56−48700)、炭素繊維を分散させた抄
造法(%公明53−1.8603)、炭素繊維のウェブ
に熱分解炭素を化学的蒸着する方法(米国特許第3,8
29,327号明細書)が提案されている。これら従来
の製造方法によってIfられる電極基板は、いずれも全
体的に均一な4fIt造の一つの層からなっている。
Traditionally, things, l? - As a manufacturing method for electrode substrates for R-type fuel cells, there is a press-forming method based on short carbon fibers (Japanese Patent Application No. 56-48700), a paper-making method in which carbon fibers are dispersed (% Komei 53-1.8603) , a method of chemical vapor deposition of pyrolytic carbon onto a web of carbon fibers (U.S. Pat. No. 3,8
No. 29,327) has been proposed. All of the electrode substrates produced by these conventional manufacturing methods consist of a single layer of 4fIt structure that is uniform throughout.

このような均質単層の電4へ基板は、その嵩密度が大き
い場合、ガス拡散係数が小さいため限界に流密度が小と
なるとともに電解液の保持−111が充分でないため性
能の低下する時期が早くなる、ずなわぢ寿命が短いとい
う欠点を有する。他方、その嵩密度が小さい場合には、
電気抵抗、熱抵抗が大きく、曲げ強度などの機械的強度
が低いという欠点を有している。
When the bulk density of such a homogeneous single-layer electrolyte substrate is large, the gas diffusion coefficient is small, so the flow density is at its limit, and the electrolyte retention is not sufficient, so there is a period when the performance deteriorates. It has the disadvantage of being faster and having a shorter lifespan. On the other hand, if the bulk density is small,
It has the disadvantages of high electrical resistance and high thermal resistance, and low mechanical strength such as bending strength.

!、た、リブ構造を有する電極基板の場合は、第1図に
示すように5片面が平面でないため断面係数が小さくな
シ、例えばリゾ5の根本のシャープエツジ部6に応力の
集中が起こり、そのため全体とし′Cの強度面でいま一
つ信頼の置けない面があつノこ。従って、成型板として
の強度を保つためには平板部の肉厚を厚くするしかなく
、そのためリブ側から電極面側まで電極基板の全厚さを
通ってガス(酸素又は水素)が拡散する際の拡散抵抗が
大きくなるという欠点があった。その上、リブ頂上平面
部分の平面性を完全なものKすることが内角ICであシ
、セ・Qレータ−との電気的及び熱的接触抵抗が無視し
イ(Iない程大きくなる。一般に、これらの接触抵抗は
基板内の伝達抵抗の数倍にも達するといわれており、従
来のモノポーラ型電極基、板は接触抵抗が大きく、従っ
てセル間温度分布の不均一性、発電効率の低下という決
定的欠点を有していた。
! In addition, in the case of an electrode substrate having a rib structure, as shown in FIG. 1, since one side of the rib 5 is not flat, the section modulus is small. Therefore, in terms of strength as a whole, Atsunoko is a bit unreliable. Therefore, in order to maintain the strength of the molded plate, there is no choice but to increase the wall thickness of the flat plate part, so that when gas (oxygen or hydrogen) diffuses through the entire thickness of the electrode substrate from the rib side to the electrode surface side. The disadvantage was that the diffusion resistance of Moreover, it is necessary to perfect the flatness of the top surface of the rib with an internal angle IC, and the electrical and thermal contact resistance with the center plate is negligible. It is said that these contact resistances are several times as large as the transmission resistance within the substrate, and conventional monopolar electrode substrates and plates have large contact resistances, resulting in uneven temperature distribution between cells and a decrease in power generation efficiency. It had a decisive drawback.

本発明は、上述の如き欠点を解消する燃料電池用電極基
板を提供することを目的とする。
An object of the present invention is to provide an electrode substrate for a fuel cell that eliminates the above-mentioned drawbacks.

本発明の炭素賀燃別電池用電極基板は、チ密炭素質層の
両面に多孔性炭素質層を有する三層構造となりておυ、
各多孔性炭素質層は中空孔道群を有している。
The electrode substrate for a carbon fuel cell of the present invention has a three-layer structure having porous carbonaceous layers on both sides of a dense carbonaceous layer.
Each porous carbonaceous layer has a group of hollow pores.

以下、添附図面を参照して本発明を詳述する。Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

なお図面中間一部分に対しでは第1図及び第2図で同一
の参照番号を附しである。
Note that the same reference numerals are given to the middle portion of the drawings in FIGS. 1 and 2.

第2図に、本発明の電本広基板を使用する燃料電池セル
構造を示す。第2図のセルは、本発明電極基板11を触
媒層2及び電解液層3を介して積層したものであυ、第
1図のセル拾遺に相当する部分を番号10で示す。
FIG. 2 shows a fuel cell structure using the electronic wide substrate of the present invention. The cell shown in FIG. 2 is obtained by laminating the electrode substrates 11 of the present invention with a catalyst layer 2 and an electrolyte layer 3 interposed therebetween, and the portion corresponding to the cell assembly shown in FIG. 1 is designated by the number 10.

本発明の電極基板11は、チ密炭素質層8の両面に多孔
性炭素質層7を一体成形してなる三層の積層構造を有し
ており、この多孔性炭素質層7には、好ましくはその厚
さの中央部に、複数本の中空孔道9からなる中空孔道群
が設けられている。
The electrode substrate 11 of the present invention has a three-layer laminated structure in which a porous carbonaceous layer 7 is integrally formed on both sides of a dense carbonaceous layer 8, and this porous carbonaceous layer 7 includes: Preferably, a hollow hole group consisting of a plurality of hollow holes 9 is provided at the center of the thickness.

この中空孔道9は、電極基板11の一端面から相対する
端面まで連続しておシ、各々の中空孔道9は互いには?
丁平行であシ且つ電極基板11の電極而に対してほぼ平
行であシ、更にチ密炭素質層8を挾んで双方の中空孔道
群9は互いに直角の方位を有する(第2図参照)。
This hollow hole path 9 is continuous from one end surface of the electrode substrate 11 to the opposite end surface, and each hollow hole path 9 is separated from each other.
The holes are parallel to each other and substantially parallel to the electrodes of the electrode substrate 11, and the hollow hole groups 9 on both sides of the dense carbonaceous layer 8 are oriented at right angles to each other (see FIG. 2). .

中空孔道9の断面形状は任意でよく、例えば第2図に示
す如く円形でもよい。この中空孔道9の1!Ji面を円
形と考えた場合の直径に相当する寸法(相当直径と称す
る)は、0.5〜3間が好ましく、この相当直径が05
朋より小さいとガス流動の抵抗が大きくなり過ぎ、3m
mよシ大きいと多孔性炭素質層が厚くなり:1f4iき
゛電極基板を積層したセルの容f+lt効率が減少する
The cross-sectional shape of the hollow hole 9 may be arbitrary, and may be circular as shown in FIG. 2, for example. This Hollow Hole Road 9-1! The dimension corresponding to the diameter when the Ji plane is considered to be circular (referred to as the equivalent diameter) is preferably between 0.5 and 3, and this equivalent diameter is 0.5 to 3.
If it is smaller than mine, the resistance to gas flow will be too large, and the height will be 3 m.
If m is larger, the porous carbonaceous layer becomes thicker: the capacity f+lt efficiency of a cell in which 1f4i electrode substrates are laminated decreases.

本発明電極基板11の多孔性炭素質層71d、均質な多
孔性炭素質層料から構成されており、その平均嵩密度は
0.3〜i、 o gI、、ム好ましくは0.4〜o、
 s 11/artであp、且つガス透過度は20rs
ダ揖・ミツAq。
The porous carbonaceous layer 71d of the electrode substrate 11 of the present invention is composed of a homogeneous porous carbonaceous layer material, and has an average bulk density of 0.3 to 0.0 gI, preferably 0.4 to 0. ,
p at s 11/art, and gas permeability is 20rs
Da I Mitsu Aq.

以上であることが好J、しい。上記範囲の平均8密度及
びガス透過度を南する多孔性炭素質層は、好寸しい機械
的強度例えば曲げ強度を有し、且つ好ましいガス拡散抵
抗を有する。なお、多孔性炭素質層7の細孔は開削孔で
あり、且つその細孔の60チ以上が10〜100μの範
囲内の径を有することが好ましい。
It is good that the above is the case. A porous carbonaceous layer having an average density and gas permeability in the above ranges has good mechanical strength, such as bending strength, and has favorable gas diffusion resistance. In addition, it is preferable that the pores of the porous carbonaceous layer 7 are open pores, and that 60 or more of the pores have a diameter within the range of 10 to 100 microns.

本発明電極基板11のチ密炭素質層8は、1.0グ一以
上の平均嵩密度と0,2 me/cm・扉・朋A’1.
以下のガス透過度を有することが好ましい。平均嵩密度
が1.、OgAより小さいと所望のチ密性が得られない
。又、チ密炭素質J?48はガス透過度が小さいだめ七
ル〜ターシート(第1図4)として機能し得るが、ガス
透過度がQ、2me/crn・汁・朋Aq、より太きい
と七ノ9レータ−シートとしての役割が果たせなくなる
。尚、チ密炭素質層8の厚さは電極基板】Jの全体厚さ
の1/2以下であることが好ましく 、 0.1〜3朋
であるとより好ましい。
The dense carbonaceous layer 8 of the electrode substrate 11 of the present invention has an average bulk density of 1.0 g or more and an average bulk density of 0.2 me/cm.door.A'1.
It is preferable to have the following gas permeability. Average bulk density is 1. , OgA, the desired density cannot be obtained. Also, dense carbon material J? 48 can function as a sheet with a small gas permeability (Fig. 1, 4), but if the gas permeability is Q, 2me/crn, juice, Aq, or thicker, it can function as a sheet. becomes unable to fulfill its role. The thickness of the dense carbonaceous layer 8 is preferably 1/2 or less of the total thickness of the electrode substrate J, and more preferably 0.1 to 3 mm.

本発明の三層袷造を有する炭素質電極基板は以下のよう
に製造される。
The carbonaceous electrode substrate having a three-layer lining structure according to the present invention is manufactured as follows.

多孔性炭素質層用材な1としては、充填刊(短炎素繊維
1粒状活性炭等)を例えば10〜50重量係、結合材(
フェノール樹脂、エポキシ樹脂1石油系及び/又は石炭
系ピッチ等)を例えば10〜40 扉Jil q6、及
び細孔ti杓#7材(ポリビニルアルコール、ポリスチ
レン、71?リプロピレン、ポリ塩化ビニル、砂糖等)
を例えば20〜50重量%混合して得られる混合物を使
用する。
As the material for the porous carbonaceous layer, for example, 10 to 50% by weight of a filler (short flame fiber, 1 granular activated carbon, etc.) and a binder (
Phenol resin, epoxy resin 1 petroleum-based and/or coal-based pitch, etc.) for example 10 to 40 Door Jil q6, and pore Ti ladle #7 material (polyvinyl alcohol, polystyrene, 71?ripropylene, polyvinyl chloride, sugar, etc.) )
A mixture obtained by mixing, for example, 20 to 50% by weight is used.

中空孔道拐としては、クロス状織物、スダレ格子状等の
fJ?リエヂレン、ポリプロピレン1.I?リスクイj
/ン、ポリビニルアルコール、ポリffl化ビニル等の
高分子を使用する。
For hollow holes, fJ? Liedylene, polypropylene 1. I? risky
Polymers such as chlorine, polyvinyl alcohol, and polyvinyl fluoride are used.

ヂ密炭素質層用ロ料としては、黒鉛板、圧縮黒鉛紙等を
使用する方法と、短炭素繊維、炭素前駆体微粉末(特公
昭55−31116号参照)、フェノール樹脂等の結合
口及び活性炭微粒から成る粉末混合物から一体成形する
方法とがある。
As materials for the dense carbonaceous layer, there are two methods: using graphite plates, compressed graphite paper, etc., and methods using short carbon fibers, fine carbon precursor powder (see Japanese Patent Publication No. 55-31116), phenol resins, etc. There is a method of integrally molding a powder mixture consisting of fine particles of activated carbon.

成形はプレス成形法によって行なう。上記多孔性炭素′
R層層群混合物プレス成形用金型内へ供給し、その上に
中空孔道材を入れ、更に多孔性炭素質層用混合物を供給
し、その後チ密炭素質層用材料を入れる。更に、多孔性
炭素質層用混合物、中空孔道拐、多孔性炭素V(馬用混
合物をこの順に供給する。
The molding is performed by a press molding method. The above porous carbon′
The R layer layer group mixture is supplied into a press molding die, a hollow hole material is placed thereon, a mixture for a porous carbonaceous layer is further supplied, and then a material for a dense carbonaceous layer is placed therein. Furthermore, a mixture for porous carbonaceous layer, a hollow hole layer, and a mixture for porous carbon V (for horses) are supplied in this order.

プレス成形条件は、金型加熱温度70〜200tr、成
形圧5〜100に乞1、圧保時間1〜60分間の範囲か
ら適宜選択する。
The press molding conditions are appropriately selected from the following ranges: mold heating temperature of 70 to 200 tr, molding pressure of 5 to 100 liters, and pressure holding time of 1 to 60 minutes.

プレス成形後、得られた成形物を少なくとも2時間以上
後硬化させた後、1000〜3000t:”で焼成する
。この際、低温の熱分解鍋口に於いて、約7(X)Cま
ではゆっくり昇温し、ガス化時の急激な収縮による応力
発生を防ぐことが好寸しい。この低温の熱分解過稈で急
激な昇温を行なうとノタク間剥離、クラック発生の原因
となる。
After press molding, the obtained molded product is post-cured for at least 2 hours and then fired at 1000 to 3000 tons. It is preferable to raise the temperature slowly to prevent the generation of stress due to rapid contraction during gasification.If the temperature is raised rapidly at this low temperature of pyrolyzed overculm, it will cause peeling and cracking.

以上のように製造されろ本発明の電極基板は、機誠的強
肚例えば曲げ強度が大きく、又、薄片化が可能で反応ガ
スの拡散層を薄くできガス拡散抵抗が小さくなシ、電流
密度が大きくなる。更に、チ密炭素質層がモノQレータ
−シートの役割を果たすため、従来のモノ9レータ−シ
ートは不要となシ、価格低減と同時に接触抵抗が皆無と
なる。この結果、積層した場合の全体としての電気抵抗
が激減するなど、多大の効果が発揮される。このように
、本発明の電極基板は理想的なものといえる。因みに、
炭素繊維抄造法による炭素繊維ペー/Q−型に比較して
、曲げ強度が大になると同時にリプ付黒鉛板が不要とな
り、価格の低下、更に電気抵抗の低下が期待できる。
The electrode substrate of the present invention manufactured as described above has mechanical properties such as high bending strength, can be made into thin pieces, allows the diffusion layer of the reaction gas to be made thin, has low gas diffusion resistance, and has a current density. becomes larger. Furthermore, since the dense carbonaceous layer plays the role of a mono-Q layer, the conventional mono-Q layer is unnecessary, and the cost is reduced and contact resistance is completely eliminated. As a result, great effects such as a drastic reduction in electrical resistance as a whole when laminated are achieved. Thus, the electrode substrate of the present invention can be said to be ideal. By the way,
Compared to the carbon fiber P/Q-type produced by the carbon fiber papermaking method, the bending strength is increased and at the same time, a graphite plate with a lip is not required, and a reduction in price and electric resistance can be expected.

本発明の電極基板によって得られる効果を一層明確にす
るため、本発明の電極基板と従来のリプ付モノ7−」?
−ラ型′rk極基板(第1図参照)の諸物性値を比較対
照して第1表に示す。尚、これらの物性値は比較のため
に115’Uとして示すものであp、同様な争件下で測
友したものである。
In order to further clarify the effects obtained by the electrode substrate of the present invention, we will discuss the electrode substrate of the present invention and the conventional lip-attached mono7-''?
Table 1 shows a comparative comparison of various physical properties of the R-type 'rk electrode substrate (see Figure 1). These physical property values are shown as 115'U for comparison, and were measured under similar disputes.

第1表 (2ケ所)。Table 1 (2 locations).

7)  200mA〆ff1T+7)([、。7) 200mA〆ff1T+7) ([,.

以下に、本発明を実施例により更に詳述するが、本発明
は以下の実施例に限定されるものではない。
EXAMPLES The present invention will be explained in more detail below with reference to examples, but the present invention is not limited to the following examples.

実施例1 短脚素繊維(呉羽化学製、MI O4S ) 40wt
%、フェノール樹脂(旭有機拐に、に、製) 30wt
%及びd?リビニルアルコール粒子(日本合成化学製)
 30wt−からなる混合物(多孔性炭素質層用混合物
)を。
Example 1 Short-legged fiber (Kureha Chemical, MI O4S) 40wt
%, phenolic resin (manufactured by Asahi Corporation) 30wt
% and d? Rivinyl alcohol particles (manufactured by Nippon Gosei Kagaku)
A mixture (mixture for porous carbonaceous layer) consisting of 30wt-.

プレス成形用金型に供趙した。続いて、中空孔道材(ス
ダレ格子状;]?リエチ1/ン成形物)を供給し、更に
」二記多孔性炭素質層用混合物を供給した。その後、厚
さ0,6間のカーボン板(東洋カーボン製)を供給した
。史に、上記多孔性炭素質層用混合物、上記中空孔道杓
、上記多孔性炭素質層用混合物をこの110に供給した
It was then placed into a press mold. Subsequently, a hollow pore material (sudare lattice-like molded product) was supplied, and a mixture for a porous carbonaceous layer was further supplied. Thereafter, a carbon plate (manufactured by Toyo Carbon Co., Ltd.) having a thickness of 0.6 mm was supplied. The above porous carbonaceous layer mixture, the hollow hole ladle, and the porous carbonaceous layer mixture were supplied to this 110.

ぞの後、  14oc、40%lで20分間プレス成形
した。成形物を約2時間後硬化させた後、100C/時
で700Cまでゆっくり昇温し、更に2000Cで1時
間焼成した。
After that, press molding was carried out for 20 minutes at 14 oc and 40% liter. After the molded product was post-cured for about 2 hours, the temperature was slowly raised to 700C at 100C/hour, and then fired at 2000C for 1 hour.

得られた電極基板は第2図に示したような三層構造を廟
しており、中空孔道は断面がほぼ円形でその直径は約0
.8朋であった。この電極基板の諸物性値を第2表に示
す。
The obtained electrode substrate has a three-layer structure as shown in Figure 2, and the hollow holes have a nearly circular cross section and a diameter of approximately 0.
.. It was 8 friends. Table 2 shows the physical properties of this electrode substrate.

第2表 注1)中空孔道部分は除く。Table 2 Note 1) Excluding the hollow hole path part.

2)本発明の電極基板(第2図の11)を一体とした値
2) Value when the electrode substrate of the present invention (11 in Fig. 2) is integrated.

実施例2 実施例1で用いたカーボン板の代わりに、焼戻素繊維(
呉羽化学製、M2O2S)20wt%、活性炭微粒(呉
羽化学製)2Owt係、炭素前駆体微粉末(呉羽化学製
、1〜1.)1.) 40wt%及びフェノール樹脂(
旭有椋拐ff1zoilからなる混合物を使用する以外
は、νこ施例1と同様にして、電極基板を製造した。
Example 2 Instead of the carbon plate used in Example 1, tempered plain fibers (
Kureha Chemical Co., Ltd., M2O2S) 20wt%, activated carbon fine particles (Kureha Chemical Co., Ltd.) 2Owt, carbon precursor fine powder (Kureha Chemical Co., Ltd., 1-1.) 1. ) 40wt% and phenolic resin (
An electrode substrate was manufactured in the same manner as in Example 1, except that a mixture consisting of Asahi Yuraku ff1zoil was used.

とのtlj、極基板の物性値′?j:第3表に示す。tlj, the physical property value of the polar substrate'? j: Shown in Table 3.

第3表 2)全体を一体とした値。Table 3 2) The value of the whole.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来のモノ、15−ラ型燃料電池セル構造を
示す斜視図、第2図は、本発明電極基板を用いるセル構
造を示す斜視図である。 代理人弁埠士今  村    元 51壬 辛シ■ン市 1.[暦−r−:flit fi
l 5 フグ112月11111rx’l庁長官名杉和
大殿 1、事イ′1の表示   昭和j)フイ[特h′1願第
178770日?3発明の名称   燃料電池用電極基
板3、ン+1ijrをりる着 事イ11との関1系  特a’l出願人名 称   (
IHI)ヅi羽化学、[]業株](愈着4、代 理 人
   東京都新宿区新宿1丁[11?f′r14号 山
LTJビル5.7+Ii止命令の[1イt1    自
 発8、補正の内容 (1)本願明細書中、特許請求の範囲を別紙のとおυ補
正する。 (2)本願明細書中筒9頁下から第6行目「鉛紙等」と
あるを、「鉛紙(グラファイトシート)等」と補正する
。 (3)同第16頁「4、図面の簡単な説明」の前に別紙
を挿入する。 実施例 3 実施例1で用いたカーボン板の代わりに、厚さ0.3龍
のグラファイトシート(UC(J4グラフオイル)を使
用する以外は実施例1と同様にして、電極基板を製造し
た。 この電極基板の物性値を第4表に示す。尚、中空孔道は
断面がほぼ円形であシ、ぞの直径は約0.8間であった
。 第4表 1 ゲ カ F 曲 短 注 1) 中空孔道部分は除く。 3)第2図の7の一層を示す。 2、特許請求の範囲 (1)チ密炭素質層の両側に多孔性炭素質層を有する三
層4・1・1造であり、前記多孔性炭素質層に中空孔道
群を有する炭素質燃料電池用電極基板。 (2)中空孔道L″C1、多孔性炭素質層の厚さのほぼ
中央部にあり、各中空孔道は、互いに且つ基板の電極面
に対して平行であり、基板の一端向から相対する端面ま
で連続しており、チ密炭素質層を挾んで双方の中空孔道
群は互いに直角の方位を有しており、更に相当直径が0
.5〜3jIt″cあることを特徴とする特許請求の範
囲第1項に記載の’y(L極基板。 (3)  多孔性炭素質層が0.3〜1.OF!/α3
の平均嵩密度及び2Qmt/cmす+r−imAq、以
上のガス透過度を有しでおり、チ密炭素質層が1. O
g 7cm”以上の平均嵩密度及びQ、2me/cm−
hr−FmAq、以下のガス透過度を有していることを
特徴とする特許請求の範囲第1項又は第2項に記載の電
極基板。 (4)多孔性炭素質層の細孔は開削孔であり、且つその
細孔の60チ以上が10〜100μの範囲内の径を有す
ることを特徴とする特許請求の範囲第1項乃至第3項の
いずれかに記載の電極基板。 (5)チ密炭素質層の厚さが基板全体のV2以下であυ
且つ0.1〜3絹でおることを特徴とする特許請求の範
囲第1項乃至第4項のいずれかに記載の電極基板。
FIG. 1 is a perspective view showing a conventional mono-15-L type fuel cell structure, and FIG. 2 is a perspective view showing a cell structure using the electrode substrate of the present invention. Agent Benbushi Imamura Former 51-year-old Shinshin City 1. [Calendar-r-:flit fi
l 5 Pufferfish 11 December 11111rx'l Agency Director Name Sugiwa Daidono 1, Display of matter i'1 Showa j) Hui [Special h'1 application 178770th day? 3. Name of the invention: Electrode substrate for fuel cells 3, N + 1 ijr, connection with 11, Particularly a'l Applicant's name: (
IHI) Tsuiha Chemical, [] Industry Stock] (Delivery 4, Agent: Shinjuku 1-chome, Shinjuku-ku, Tokyo [11?f'r14 Yama LTJ Building 5.7 + Ii Stop Order [1 It 1 Voluntary 8] , Contents of the amendment (1) The scope of claims in the specification of the present application will be amended by attaching a separate sheet. (2) The phrase “lead paper, etc.” in the 6th line from the bottom of page 9 of the specification of the present application will be replaced with “Lead paper, etc.” "Lead paper (graphite sheet), etc." (3) Insert a separate sheet before "4. Brief explanation of drawings" on page 16 of the same. Example 3 In place of the carbon plate used in Example 1 An electrode substrate was manufactured in the same manner as in Example 1, except that a graphite sheet (UC (J4 Graph Oil)) having a thickness of 0.3 mm was used.The physical property values of this electrode substrate are shown in Table 4. The cross section of the hollow hole path was almost circular, and the diameter of the groove was approximately 0.8 mm. Show more. 2. Claims (1) A carbonaceous fuel having a three-layer 4-1-1 structure with porous carbonaceous layers on both sides of a dense carbonaceous layer, and having hollow holes in the porous carbonaceous layer. Electrode substrate for batteries. (2) Hollow hole path L''C1, located approximately in the center of the thickness of the porous carbonaceous layer, each hollow hole path is parallel to each other and to the electrode surface of the substrate, and the end surface facing from one end direction of the substrate The hollow holes on both sides of the dense carbonaceous layer are oriented at right angles to each other, and the equivalent diameter is 0.
.. 'y (L electrode substrate) according to claim 1, characterized in that the porous carbonaceous layer has a thickness of 0.3 to 1.OF!/α3
It has an average bulk density of 2Qmt/cm+r-imAq or more, and the dense carbonaceous layer has an average bulk density of 1. O
Average bulk density of g 7cm” or more and Q, 2me/cm−
The electrode substrate according to claim 1 or 2, having a gas permeability of hr-FmAq or less. (4) The pores of the porous carbonaceous layer are open pores, and 60 or more of the pores have a diameter within the range of 10 to 100μ. The electrode substrate according to any one of Item 3. (5) The thickness of the dense carbonaceous layer is less than V2 of the entire substrate υ
The electrode substrate according to any one of claims 1 to 4, characterized in that the electrode substrate is coated with 0.1 to 3 silk.

Claims (5)

【特許請求の範囲】[Claims] (1)グー密炭素賀層の両側に多孔性炭素質層を有する
三層構造であり、前記多孔性炭素質層に中空孔道群を有
する炭素質燃料電池用電極基板。
(1) An electrode substrate for a carbonaceous fuel cell, which has a three-layer structure having a porous carbonaceous layer on both sides of a dense carbonaceous layer, and has a group of hollow holes in the porous carbonaceous layer.
(2)中空孔道群は多孔性炭素質層の厚さのほぼ中火部
にあり、各中空孔道は、互いに且つ基板の電極面に対し
て平行でちゃ、基板の一端面から相対する端面まで連続
しており、チ密炭素質層を挾んで双方の中空孔道群は互
いに直角の方位を有しておシ、更に相当直径が0.5〜
3朋であることを特徴とする特許請求の範囲第1項に記
載の電極基板。
(2) The hollow holes are located in the middle part of the porous carbonaceous layer, and the hollow holes are parallel to each other and to the electrode surface of the substrate, and extend from one end surface of the substrate to the opposite end surface. The hollow holes are continuous, sandwiching the dense carbonaceous layer, and the hollow holes on both sides are oriented at right angles to each other, and have an equivalent diameter of 0.5~
The electrode substrate according to claim 1, characterized in that the electrode substrate is made of three types.
(3)多孔性炭素質層が0.3〜1.0自の平均嵩密度
及び20m1/cm・hr・mmA16以上のガス透過
反を有しており、チ密炭素質層が1.017d以上の平
均嵩密度及び0.2me/am・hr・朋A11.以下
のガス透過度を有していることを11テ徴とする特許請
求の範囲第1項又tよ第2項に記載の電極基板。
(3) The porous carbonaceous layer has an average bulk density of 0.3 to 1.0 and a gas permeability of 20 m1/cm・hr・mm A16 or more, and the dense carbonaceous layer has a gas permeability of 1.017 d or more. Average bulk density of 0.2 me/am・hr・ho A11. The electrode substrate according to claim 1 or 2, wherein the electrode substrate has the following gas permeability.
(4)多孔性炭素質層の細孔は開削孔であり、且つその
細孔の60%以上が10〜100μの範囲内の径を有す
ることを特徴とする特許請求の範囲第1項乃至第3項の
いずれかに記載の電極基板。
(4) The pores of the porous carbonaceous layer are open pores, and 60% or more of the pores have a diameter within the range of 10 to 100μ. The electrode substrate according to any one of Item 3.
(5)チ密炭素質層の厚さが基板全体の1/2以下であ
り且つ0.1〜3面であることを特徴とする特許請求の
範囲第1項乃至第4項のいずれかに記載の電極基板。
(5) According to any one of claims 1 to 4, wherein the thickness of the dense carbonaceous layer is 1/2 or less of the entire substrate and has 0.1 to 3 sides. The electrode substrate described.
JP57178770A 1982-10-01 1982-10-12 Electrode base plate for fuel cell Pending JPS5968170A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP57178770A JPS5968170A (en) 1982-10-12 1982-10-12 Electrode base plate for fuel cell
US06/535,913 US4522895A (en) 1982-10-05 1983-09-26 Multilayer fuel cell electrode substrate having elongated holes for feeding reactant gases
GB08326048A GB2128395B (en) 1982-10-01 1983-09-29 Fuel cell electrode substrate having elongated holes for feeding reactant gases
FR8315622A FR2534071B1 (en) 1982-10-01 1983-09-30 FUEL CELL ELECTRODE SUBSTRATE HAVING ELONGATE HOLES FOR REACTIVE GAS SUPPLY
CA000438143A CA1205857A (en) 1982-10-05 1983-09-30 Multilayer fuel cell electrode substrate having elongated holes for feeding reactant gases
DE19833335638 DE3335638A1 (en) 1982-10-01 1983-09-30 SUPPORT MATERIALS FOR FUEL CELL ELECTRODES PROVIDED WITH LONG HOLES FOR THE SUPPLY OF THE GAS-SHAPED REACTANT
US06/712,655 US4580337A (en) 1982-10-05 1985-03-18 Process for producing electrode substrate for fuel cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57178770A JPS5968170A (en) 1982-10-12 1982-10-12 Electrode base plate for fuel cell

Publications (1)

Publication Number Publication Date
JPS5968170A true JPS5968170A (en) 1984-04-18

Family

ID=16054312

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57178770A Pending JPS5968170A (en) 1982-10-01 1982-10-12 Electrode base plate for fuel cell

Country Status (1)

Country Link
JP (1) JPS5968170A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5978459A (en) * 1982-10-27 1984-05-07 Toray Ind Inc Electrode plate for fuel cell
JPS60230366A (en) * 1984-04-28 1985-11-15 Fuji Electric Corp Res & Dev Ltd Stacked unit of fuel cell and its manufacture
DE3632651A1 (en) * 1985-09-25 1987-04-16 Kureha Chemical Ind Co Ltd COMPOSED CARBON PRODUCT PRODUCED BY CONNECTING CARBON-CONTAINING MATERIALS WITH TETRAFLUORETHYLENE RESIN AND METHOD FOR THE PRODUCTION THEREOF

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5978459A (en) * 1982-10-27 1984-05-07 Toray Ind Inc Electrode plate for fuel cell
JPH0437545B2 (en) * 1982-10-27 1992-06-19 Toray Industries
JPS60230366A (en) * 1984-04-28 1985-11-15 Fuji Electric Corp Res & Dev Ltd Stacked unit of fuel cell and its manufacture
DE3632651A1 (en) * 1985-09-25 1987-04-16 Kureha Chemical Ind Co Ltd COMPOSED CARBON PRODUCT PRODUCED BY CONNECTING CARBON-CONTAINING MATERIALS WITH TETRAFLUORETHYLENE RESIN AND METHOD FOR THE PRODUCTION THEREOF

Similar Documents

Publication Publication Date Title
US4522895A (en) Multilayer fuel cell electrode substrate having elongated holes for feeding reactant gases
EP1976046A1 (en) Fuel cell separator, process for producing the same, and fuel cell including the separator
US4759989A (en) Electrode substrate for fuel cell
US20060240305A1 (en) Bipolar plate and fuel cell assembly having same
US20080299419A1 (en) Laminated exfoliated graphite composite-metal compositions for fuel cell flow field plate or bipolar plate applications
JPS60236461A (en) Electrode substrate for fuel cell and its manufacture
KR20010070030A (en) Separator for fuel cell
JPH0449747B2 (en)
US4778736A (en) Electrode substrate provided with manifold, for a fuel cell and process for producing the same
JP4441950B2 (en) Manufacturing method of fuel cell separator
JP2009093967A (en) Fuel cell separator
JPS62110262A (en) Electrode substrate for fuel cell with end sealing member and its manufacture
US4794043A (en) Carbon product comprising carbonaceous materials joined together, said carbon product for electrode substrate of fuel cells and process for production thereof
JPS5968170A (en) Electrode base plate for fuel cell
JPS5937662A (en) Electrode substrate for monopolar type fuel cell with two-layer structure
GB2128395A (en) Fuel cell electrode substrate having elongated holes for feeding reactant gases
JP2005100748A (en) Electrolyte membrane electrode bonded laminate, its manufacturing method as well as solid polymer fuel cell
JP2000133281A (en) Separator for fuel cell, its manufacture, and fuel cell
US4666755A (en) Porous fuel cell electrode substrate having elongated holes for feeding reactant gases
JPS6348766A (en) Composite electrode substrate having different rib height and its manufacture
TW548870B (en) Method of manufacturing separator for solid polymer electrolyte fuel cell
JP2002069682A (en) Feeder body for electrochemical cell
JPS6119069A (en) Electrode substrate for fuel cell and its manufacture
JP2005071933A (en) Fuel cell separator and its manufacturing method
JPS5966063A (en) Electrode base plate for fuel cell