JPS5965451A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPS5965451A
JPS5965451A JP17560682A JP17560682A JPS5965451A JP S5965451 A JPS5965451 A JP S5965451A JP 17560682 A JP17560682 A JP 17560682A JP 17560682 A JP17560682 A JP 17560682A JP S5965451 A JPS5965451 A JP S5965451A
Authority
JP
Japan
Prior art keywords
chip
lsi
master
gates
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17560682A
Other languages
Japanese (ja)
Inventor
Tomoji Takada
高田 知二
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP17560682A priority Critical patent/JPS5965451A/en
Publication of JPS5965451A publication Critical patent/JPS5965451A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/118Masterslice integrated circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

PURPOSE:To realize a master slice LSI without leaving almost all unused region within the one master chip and remarkably improve yield of chip by including two or more logic circuits having independent functions within only one chip. CONSTITUTION:A plurality of independent logic circuits are formed within one master chip as many as the gates of master chip (a number of basic cells included in one chip) are used sufficiently. On the occasion of executing a die sort test of a composite logic function LSI obtained, if one logic function is not normal, it is not considered as defective. The test is further conducted for the other functions. When at least one logic function is normal, such LSI is considered as normal. Such LSI is cut as the final LSI from the wafer and it is built into a package for actual use.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、半導体集積回路(以下LSI  と略称す
る)に係り、とくにマスタースライス方式のLSI  
に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a semiconductor integrated circuit (hereinafter abbreviated as LSI), and in particular to a master slice type LSI.
Regarding.

〔発明の技術的背縦とその問題点〕[Technical advantages of the invention and its problems]

マスタースライス方式とは、1個の半導体チップの中に
、通常複数の素子(トランジスタ等の能動素子及び、抵
抗等の受動素子を含む)からなる基本セルを、予めマト
リックス状に多数集積形成してなるマスターチップブを
半導体ウェハー上に形成しておき、開発品種に応じた配
線マスクによって、基本セル内の素子を結合して、所望
の論理機能を有する論理回路を適宜実現【7、これを複
数接続して、最終LSI  を完成するものである。
The master slicing method is a method in which a large number of basic cells, which usually consist of multiple elements (including active elements such as transistors and passive elements such as resistors), are integrated in a matrix in one semiconductor chip. A master chip is formed on a semiconductor wafer, and the elements in the basic cell are connected using a wiring mask according to the developed product to realize a logic circuit with the desired logic function as appropriate [7. They are connected to complete the final LSI.

上記マスターチップは通常、1チツプ内に含まれる基本
セルの数(便宜上、この数を以後ゲート数と称する)に
よって、段階的に複数品種用意するのが普通である。こ
のマスターチップOR)品種の代表的な例を下表に示す
。表には、それぞれの入出力パッドの数及びチップ→J
−イズを示す。
Generally, a plurality of types of master chips are prepared in stages depending on the number of basic cells included in one chip (for convenience, this number will be referred to as the number of gates hereinafter). Representative examples of this master chip OR) variety are shown in the table below. The table shows the number of input/output pads and chip→J
- Indicates is.

従来技術によるこれらのマスターチップの使い方では、
まず最終LSI  の論理回路から、これをマスタース
ライスの基本セルで実現した場合に使用する基本セル数
(ゲート数)を計算する。
The use of these master chips according to conventional technology is as follows:
First, from the logic circuit of the final LSI, the number of basic cells (number of gates) to be used when this is realized with the basic cells of the master slice is calculated.

次に、そのゲート数を使用するに足る最小のゲート数を
持つマスターチップを選んで、これに合った配線パター
ンを設計し、最終LSI  を実現する。たとえば、あ
る2つの論理回路のゲート数を計算したところ4.5に
ゲート及び15にゲートになったとし、これらに最碑な
マスターチップを上記の表から選定すると、それぞれ6
にゲート及び2にゲートのマスターチップが選ばれる。
Next, a master chip with the minimum number of gates is selected to allow use of that number of gates, a wiring pattern is designed to match this, and the final LSI is realized. For example, suppose that the number of gates in two logic circuits is calculated to be 4.5 gates and 15 gates, and if the most important master chip for these is selected from the table above, each has 6.5 gates and 15 gates.
The master chip of gate 1 and gate 2 is selected.

すなわち、4.5K及び1.5 Kゲートを実現するこ
とのできる最小のマスターチップがそれぞれ6に、2に
ゲートである。この場合6にゲートのマスターチップ中
に1.5にゲート分の未使用の領域が発生することにな
り、また2にゲートのマスク−手ツブの中に0.5にゲ
ート分の未使用の領域が発生することになる。この領域
は、回路として不必要であるばかりでなく、本来必要な
素子面積よl)も、チップサイズを無駄に大きくし、そ
のため、1枚のウェハーから得られるチップの数(チッ
プグロス)を少なくするという有害な領域でもある。
That is, the minimum master chips that can realize 4.5K and 1.5K gates are 6 and 2 gates, respectively. In this case, an unused area for 1.5 gates will be generated in the gate master chip at 6, and an unused area for 0.5 gates will be generated in the gate mask-handle at 2. A region will be generated. This area is not only unnecessary for the circuit, but also increases the chip size unnecessarily compared to the originally required device area, thus reducing the number of chips obtained from one wafer (chip gross). It is also a harmful area.

〔発明の目的〕[Purpose of the invention]

この発明は、設計の労力を増加させることな〈従来技術
によるマスターチップの使い方で発生するL記問題点、
すなわち、マスターチップ内の未使用域側の発生をほと
んどなく1−1これまで不良としてすてられていたチッ
プの多くを1K品と17で使用するようにした半導体1
%積回路装置を提供することを目的とする。
This invention solves the following problems without increasing the design effort.
In other words, there is almost no occurrence of unused areas in the master chip. 1-1 Most of the chips that were previously discarded as defective are now used in 1K products and 17.
% product circuit device.

〔発明の概要〕[Summary of the invention]

この発明では、1つのマスター千・ツブ内に形成する論
理回路を1回路に限定することなく、そのマスターチッ
プのもつゲート数を部分に使用するまで、複数の互いに
独立な論理回路を組み合せて形成する。こうして得らA
した複合論理機能L S I  を、ダイソートテスト
する際には、1つの論理機能が正常動□作しなくても、
すぐに不良とせず、他の論理機能についてのテストも行
い、少なくとも1つの論理機能が正常に動作するなら、
これを良品とし、正常動作をする論理機能をもった最終
LSI  としてウェハーから切I)出12、パ・ソケ
ージ等に組み込んで使□用すればよい。
In this invention, the logic circuit formed in one master chip is not limited to one circuit, but is formed by combining multiple mutually independent logic circuits until the number of gates of the master chip is used for the part. do. Thus obtained A
When performing a die sort test on a complex logic function LSI, even if one logic function does not operate normally,
Don't immediately mark it as defective, test other logic functions, and if at least one logic function works normally,
This can be used as a non-defective product, cut from the wafer as a final LSI with logic functions that operate normally, and incorporated into a computer, etc.

〔発明の効果] こうすることによって、1つのマスターチップ内に不必
要でかつ有害な未使用領域をほとんど残すことなく、マ
スタースライスLSI  を実現17、さらに、そのチ
ップの歩留りも著しく向上させることができる。また、
設計工程における自動化にさらに適したLSI  を実
現できる。
[Effect of the invention] By doing so, a master slice LSI can be realized without leaving almost any unnecessary and harmful unused area in one master chip17, and the yield of the chip can also be significantly improved. can. Also,
It is possible to realize an LSI that is more suitable for automation in the design process.

〔発明の実施例〕[Embodiments of the invention]

前記4,5に及び1.5にゲートの論理回路を実現する
例をとり上げてみる。この場合、4.5K及び1.5に
ゲートの論理回路を同時に実現するために最適のマスタ
ーチップは6にゲートチ・ツブであり、これを使用する
と、マスターチップ中に残る未使用部分は全くかくなる
。したがって、前記問題点は完全に解決される。マスタ
ースライス方式のLSI  の設計手法は、最近は、は
とんど完全自動化されており、論理回路の接続情報を計
算機にインプットして、その回路を実現する配線マスク
パターンをアウトプットと゛して得るというのが一般的
である。この場合、図に示すように、4.5にゲート及
び1.5にゲートの2つの回路接続情報1および2から
、それらをまとめた6にゲートの回路接続データ3を得
るには、これらの回路が互いに独立であるため、はとん
ど回路接続データ内に手を加える必要はなく、ただ両者
を1[ねるだけでよい。したがって、4.5R及び1.
5にゲートで2度の計算機処理を行うよりも、6にゲー
トの1度ですませられるだけ設削における人間の手をわ
ずられせる工程も少なくなり、それだけミスも少なくて
すむ。
Let us take up an example of realizing the gate logic circuit in 4, 5, and 1.5. In this case, the optimal master chip to simultaneously realize a 4.5K and 1.5K gate logic circuit is a 6K gate chip, and if this is used, there will be no unused portion left in the master chip. Become. Therefore, the above problems are completely solved. Recently, the master slice LSI design method has become completely automated, and the connection information of a logic circuit is input into a computer, and the output is a wiring mask pattern that realizes the circuit. This is common. In this case, as shown in the figure, in order to obtain the circuit connection data 3 of the gate 6, which is the summation of the two circuit connection information 1 and 2 of the gate 4.5 and the gate 1.5, these Since the circuits are independent of each other, there is no need to modify the circuit connection data, and it is only necessary to change both once. Therefore, 4.5R and 1.
Rather than performing computer processing twice in 5th and 5th gates, only one time in 6th gates is required, which reduces the number of processes that require human hands during cutting, and reduces the number of errors.

さらに歩留りについて考えてみると、いま、マスタース
ライス方式LSI  の常として−1ゲ−ト当l)の歩
留りをα(0〈αく1)と仮定すると、4.5にゲート
使用のLSI  でt−1: +その歩留I)がα4.
5にとなI)、従来方式の使用力1′ノミで6Iぐゲー
トマスターチ゛ツブで4.5にゲートのマスターチ・ツ
ブを実現した場合、残り(1−α4・5K)の割合で不
向チップが発生していた。
Considering the yield further, if we assume that the yield of -1 gate (l) is α (0 < α × 1) as usual for master slice type LSI, then t is 4.5 for LSI using gates. -1: +The yield I) is α4.
5 I) If you achieve a gate master tube of 4.5 with a gate master tube of 6I with the conventional method of using force 1', the remaining ratio (1-α4・5K) will be unsuitable. Tipping was occurring.

ところが、この発明では、従来の不良骨(1−α4°5
K)  のうちα1°5に分が良品として使用可能なわ
けだから、全体とじて(α4°5に→−(1−α  )
α  )の割合で良品が得られる。いまα−0,999
85とするとα  =0.51となり、従来方式で4.
5にのLSI  を実現するには、6 Kマスターのう
ち約半分を不良としてすててしまうことなるが、この発
明では、(α4°5に、+ (1−α4°5K)α1・
5K)兵0.90 となり−完全不良は、約1−0%に
まで減少する。
However, in this invention, the conventional defective bone (1-α4°5
Since α1°5 of K) can be used as a good product, the total (α4°5→−(1−α))
Good products can be obtained at a ratio of α). Now α-0,999
85, α = 0.51, and the conventional method is 4.
In order to realize an LSI of 5.5K, approximately half of the 6K masters would be discarded as defective, but in this invention, (α4°5, + (1-α4°5K)α1・
5K) becomes 0.90 - completely defective, which decreases to about 1-0%.

このLSI  をグイソートテストするには、複合論理
回路のうち、まずそのゲート規模の人λい回路から、ゲ
ート規模の小さい回路へと順にダイソートテストして行
くのがよい。nil記の例では、まず4.5にゲートの
回路のテストを行い、α=0.99985  の場合−
51%の良品が得られる。次に残1149%の手ツブに
対して1.5にゲートの回路のテストを行い、このうち
α  −80%を良品として、20%を完全不良品とし
て判別する。こうして、51%の4.5にゲートのLS
I、39%の1.5にゲートのLSI、10%の完全不
良が判定される。
In order to perform a die sort test on this LSI, it is best to perform a die sort test on the complex logic circuits, starting with the circuits with the smallest gate scale and then proceeding to the circuits with the smallest gate scale. In the example written in nil, first test the gate circuit in 4.5, and if α=0.99985 -
51% of good products were obtained. Next, the gate circuits of the remaining 1149% of the parts are tested in step 1.5, and α -80% of them are determined to be good products, and 20% are determined to be completely defective products. Thus, the LS of the gate is 4.5, which is 51%.
It is determined that the gate LSI is completely defective at 1.5 of I, 39%, and 10%.

一般に、マヌタースライス方式のT、SI  は、少量
多品種のLSI  の生産を指向しており、またほとん
どの設計工程の完全自動化がなされている。この発明は
、マスタースライス方式ノL記特徴を生かし、さらに、
自動化に適t7、少量多品種LSI  に適1.たもの
である。
In general, T,SI using the manutar slice method is aimed at producing a large variety of LSIs in small quantities, and most of the design process is fully automated. This invention takes advantage of the characteristics of the master slice method, and furthermore,
Suitable for automation T7, suitable for low-volume, high-mix LSI 1. It is something that

【図面の簡単な説明】[Brief explanation of drawings]

図は、この発明による複合論理回路の計算機入力データ
の作成ラフ法の例を示すものである。
The figure shows an example of a rough method for creating computer input data for a complex logic circuit according to the present invention.

Claims (1)

【特許請求の範囲】[Claims] 半導体チップに複数の能動素子からなる基本セルをマ)
 IJラックス状集積形成し、配線パターンの設計によ
り所望の論理機能を実現するマスタースライス方式の半
導体集積回路装置において、1つのチ・ツブの中に互い
に機能が独立した2個以且の論理回路を含ませたことを
特徴とする半導体集積回路装置。
Mapping a basic cell consisting of multiple active elements on a semiconductor chip)
In a master slice type semiconductor integrated circuit device that is integrated into an IJ rack and realizes a desired logic function by designing a wiring pattern, two or more logic circuits with independent functions are installed in one chip. A semiconductor integrated circuit device comprising:
JP17560682A 1982-10-06 1982-10-06 Semiconductor integrated circuit device Pending JPS5965451A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17560682A JPS5965451A (en) 1982-10-06 1982-10-06 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17560682A JPS5965451A (en) 1982-10-06 1982-10-06 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPS5965451A true JPS5965451A (en) 1984-04-13

Family

ID=15999029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17560682A Pending JPS5965451A (en) 1982-10-06 1982-10-06 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS5965451A (en)

Similar Documents

Publication Publication Date Title
US6075381A (en) Programmable logic block in an integrated circuit
US4631686A (en) Semiconductor integrated circuit device
US4600995A (en) Method for manufacturing a custom-circuit LSI, and a gate array device
JPS6114734A (en) Manufacture of semiconductor integrated circuit device
US7222325B2 (en) Method for modifying an integrated circuit
JPS6262471B2 (en)
Rahman et al. A fault tolerant voter circuit for triple modular redundant system
KR102337595B1 (en) Multiplexer
JPH0677403A (en) Semiconductor integrated circuit device and designing method therefor
JPS5911670A (en) Semiconductor integrated circuit device
JPS5965451A (en) Semiconductor integrated circuit device
JPH09185641A (en) Arrangement design method for standard cell
EP0609047A2 (en) Process for fabricating an ASIC device having a gate-array function block
JPS63108741A (en) Semiconductor integrated circuit device
JP2001085528A (en) Design method and manufacture of semiconductor integrated circuit
JPS5858809B2 (en) Manufacturing method of semiconductor device
JP2671883B2 (en) Semiconductor integrated circuit device
JPS59175747A (en) Semiconductor integrated circuit
JP3214332B2 (en) Layout method for semiconductor integrated circuit device
JPH02237065A (en) Manufacture of semiconductor integrated circuit device
JPS62254445A (en) Analog-digital semiconductor integrated circuit
JPS58121646A (en) Semiconductor device
Patterson et al. Wafer scale integration
JPS59134864A (en) Method and device for forming semiconductor integrated circuit
JPH03157022A (en) Parity checking circuit and its semiconductor integrated circuit device