JPS5965446A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS5965446A
JPS5965446A JP17572082A JP17572082A JPS5965446A JP S5965446 A JPS5965446 A JP S5965446A JP 17572082 A JP17572082 A JP 17572082A JP 17572082 A JP17572082 A JP 17572082A JP S5965446 A JPS5965446 A JP S5965446A
Authority
JP
Japan
Prior art keywords
film
groove
etching
etched
oxidation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17572082A
Other languages
Japanese (ja)
Inventor
Hideaki Shimoda
秀明 下田
Tadanaka Yoneda
米田 忠央
Kazuya Kikuchi
菊池 和也
Haruhide Fuse
玄秀 布施
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP17572082A priority Critical patent/JPS5965446A/en
Publication of JPS5965446A publication Critical patent/JPS5965446A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76224Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials
    • H01L21/76227Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using trench refilling with dielectric materials the dielectric materials being obtained by full chemical transformation of non-dielectric materials, such as polycristalline silicon, metals

Abstract

PURPOSE:To form an element isolating region even under the condition where a groove is narrow and deep by forming a side etching at the time of etching a substrate, leaving poly-Si at the side surface of groove utilizing an overhanging and filling such groove by oxidation. CONSTITUTION:A first SiO2 film 2 is formed on a wafer and an Si3N4 film 3 is deposited. Thereafter, a photo resist pattern 4 for isolation is formed. The first SiO2 film 2 and the Si3N4 film 3 are etched. Thereafter, a groove 5 is formed by etching the wafer 1 in such a way that the side etching of the specified amount is generated. A second SiO2 film 21 is formed on the bottom surface and side surface of the groove 5, and a poly-Si film 22 is deposited. When the poly-Si film 22 is etched, the first SiO2 film 2 and Si3N4 film 3 under the overhanging part are not etched. Thereby the poly-Si film 22 can be left only under the overhanging part. Thereafter, the poly-Si film 22 is oxidized and the isolating region 23 can be formed.

Description

【発明の詳細な説明】 −産業上の利用分野 本発明は半導体集積回路の製造方法に関するものであり
特に高密度L−3Iの素子間分離形成方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION - Industrial Field of Application The present invention relates to a method for manufacturing a semiconductor integrated circuit, and particularly to a method for forming high-density L-3I isolation between elements.

従来例の構成とその問題点 従来のL OCOS 酸化法を利用した絶縁分離の方法
を第1図a −’−eに示す。
Conventional Structure and Problems The conventional insulation isolation method using the LOCOS oxidation method is shown in FIGS. 1a-'-e.

まず基板(以下ウェハという)11:[第1のS z 
02  膜2を例えば3oO〜200o人位形成し、そ
の上に第1のS Z 3N4膜3を例えば1000〜2
0oO人位堆積後、分離パターン形成用の感光性樹脂(
以下フォトレジストという)パターン4を形成する(第
1図a)。
First, a substrate (hereinafter referred to as a wafer) 11: [first S z
02 Film 2 is formed at a thickness of, for example, 300 to 200 degrees, and the first S Z 3N4 film 3 is formed thereon at a thickness of, for example, 1000 to 200 degrees.
After 0oO deposition, photosensitive resin (
A pattern 4 (hereinafter referred to as photoresist) is formed (FIG. 1a).

次に上記フォトレジストパターン4をマスクとして、リ
アクティブイオンエツチング等の異方性エツチング法を
用い、まず上記第1のS 102  膜2と第1のS 
i3N4膜3をエツチングし、その後、さらに異方性エ
ツチング法でウェハ1をエノチングすることにより、分
離パターン用の溝5を形成する(第1図b)。
Next, using the photoresist pattern 4 as a mask, an anisotropic etching method such as reactive ion etching is used to first remove the first S 102 film 2 and the first S 102 film 2.
The i3N4 film 3 is etched, and then the wafer 1 is further etched by an anisotropic etching method to form grooves 5 for separation patterns (FIG. 1b).

ウェハ1上に第2のSi3N4膜6を堆積する(第1図
C)。次に第2のS i 3N4膜6を異方性のドライ
エツチング法で全面エノチーノグし、溝5の側面部分に
のみ第2のSi3N4膜6を残す(第1図d)。
A second Si3N4 film 6 is deposited on the wafer 1 (FIG. 1C). Next, the entire surface of the second Si3N4 film 6 is etched using an anisotropic dry etching method, leaving the second Si3N4 film 6 only on the side surfaces of the grooves 5 (FIG. 1d).

その後ウェハ1を酸化して、溝5内に第3のS iO2
膜7を形成して、分離を行なう(第1図e)。
The wafer 1 is then oxidized to form a third SiO2 layer in the groove 5.
Separation is performed by forming a membrane 7 (FIG. 1e).

上記の方法ではSi3N4膜3をマスクとして、基板を
酸化するために、酸化の際基板にひずみが入り結晶欠陥
をひきおこしやすいとともに、溝の側面部分に細くて急
使な溝を生じゃすい欠点がある。
In the above method, since the substrate is oxidized using the Si3N4 film 3 as a mask, the substrate is likely to be strained during oxidation, causing crystal defects, and also has the drawback of forming narrow, courier grooves on the side surfaces of the grooves. be.

また溝のエツチングを行なう時にデーパがついてしまう
と溝の側面にセルファラインSi3N4膜を残す時に非
常に残りにくぐなり、第3の酸化膜を形成する工程にお
いてバードビークを発生しやすくなる。
Furthermore, if a taper is formed when etching the trench, the self-line Si3N4 film will be left behind on the side surface of the trench and will be left behind, making it easy to cause bird's beak in the step of forming the third oxide film.

埋め込み方式による素子間分離方法の一例を第2図a 
−dに示す。
An example of the inter-element isolation method using the embedding method is shown in Figure 2a.
- Shown in d.

まずウェハ1上に熱酸化法により第1の5lo22を3
oo〜500八位形成し、その上にプラズマCVD法テ
st N  3 、第2の5io211を形  4 成したのち分離形成用のフォトレジストパターン4を形
成する(第2図a)。
First, a first layer of 5lo22 is deposited on the wafer 1 using a thermal oxidation method.
A photoresist pattern 4 for isolation formation is formed after a plasma CVD test N 3 and a second 5io211 are formed thereon (FIG. 2a).

フォトレジストパターン4をマスクとしてドライエツチ
ング法により第1のSiO2,Si3N43、第2の8
10211をエツチングし、その後異方性ドライエツチ
ング法を用いて基板をエツチングし溝5を形成する。
Using the photoresist pattern 4 as a mask, the first SiO2, Si3N43 and second 8
10211, and then the substrate is etched using an anisotropic dry etching method to form grooves 5.

次に熱酸化法により溝5の底面および側面に第3の31
02膜12を形成後、減圧CVD法によりPo1ySi
  13を堆積する(第2図b)。
Next, a third layer 31 is formed on the bottom and side surfaces of the groove 5 by thermal oxidation.
After forming the 02 film 12, Po1ySi is deposited by low pressure CVD method.
13 (Figure 2b).

その後ウェットエツチング法によ′すPo1y 5i1
3をエツチングして、溝5内にのみPo1y 5i13
を残す(第2図C)。
After that, the wet etching method is applied to
Etch 3 and add Po1y 5i13 only in groove 5.
(Figure 2C).

次に熱酸化法により、Po1ySi  13を酸化し第
4のS 10214を形成する(第2図d)。
Next, the Po1ySi 13 is oxidized by a thermal oxidation method to form a fourth S 10214 (FIG. 2d).

上記の方法では、Po1y St  を溝の深さ分だけ
完全に埋め込む必要があるため、溝の深さが浅い場合に
は微細パターン化することができるが、溝の深さが深く
なると、パターン幅の寸法によっては溝の中へPo1y
 St  が堆積されず、空洞が発生するという事態が
生じてしまい溝の深さによりパターン幅が制約され微細
パターン化も制約されてしまう欠点がある。
In the above method, since it is necessary to completely bury PolySt by the depth of the groove, it is possible to form a fine pattern when the depth of the groove is shallow, but as the depth of the groove increases, the pattern width Po1y into the groove depending on the dimensions of
There is a drawback that St 2 is not deposited and cavities are generated, and the pattern width is restricted by the depth of the groove, and fine patterning is also restricted.

発明の目的 本発明は基板をエツチングする際にサイドエツチングを
形成しておき、そのひさしを利用してPo1y Si 
 を溝の側面に残しておい−C1その後の酸化工程によ
って溝を埋め込むことにより、溝の幅が狭く溝の深さが
深くても素子間分離を形成することが可能な方法を提供
するものである。
Purpose of the Invention The present invention forms side etching when etching a substrate, and uses the eaves of the side etching to form PolySi
By leaving -C1 on the sides of the trench and filling the trench through a subsequent oxidation process, we provide a method that allows isolation between elements to be formed even if the trench is narrow and deep. be.

発明の構成 本発明は埋め込み方式による素子間分離方法において、
基板をエツチングする際サイドエツチングを起こしひさ
しを形成し、そのひさしを利用してセルファライン的に
ひさしの下νこPo1y Si  を残したのち、Po
1y Si  膜を酸化して学写て溝を完全に埋め込む
ものである。
Structure of the Invention The present invention provides an inter-element isolation method using a embedding method.
When etching the substrate, side etching is performed to form a canopy, and using the canopy, a layer of Po1ySi is left under the canopy in a self-line manner, and then Po1ySi is etched.
The 1y Si film is oxidized to completely fill the groove.

実施例の説明 本発明の第1の実施例を第3図a”we、第4図に示す
DESCRIPTION OF THE EMBODIMENTS A first embodiment of the present invention is shown in FIG. 3a"we and FIG. 4.

まずウェハ1上に熱酸化法により第1のSi○2膜2を
0.03〜0.1 p m位形成し、その上にSi3N
4膜3を例えば0.05〜0.2μm位減圧CVD法等
により堆積後、分離形成用のフォトレジストパターン4
を形成する(第3図a)。
First, a first Si○2 film 2 of about 0.03 to 0.1 pm is formed on a wafer 1 by a thermal oxidation method, and a Si3N film is formed on it.
4 film 3 is deposited to a thickness of, for example, 0.05 to 0.2 μm by low-pressure CVD, etc., a photoresist pattern 4 for separation formation is formed.
(Figure 3a).

フォトレジストパターン4をマスクとして第1のSio
2 膜2とSi3N4膜3を異方性のドライエツチング
法によりエツチングし、その後ウニノ・1を所定量例え
ば0.2〜1.0μm位のサイドエツチングが生じるよ
うに、異方性エツチング十等方性エツチングあ゛るいは
サイドエツチングの生じるドライエツチング法等により
エツチングして溝5を形成する(第3図b)。
Using the photoresist pattern 4 as a mask, the first Sio
2. Film 2 and Si3N4 film 3 are etched by an anisotropic dry etching method, and then a predetermined amount of UNINO. The grooves 5 are formed by etching using a dry etching method that causes side etching or the like (FIG. 3b).

次に熱酸化法により溝5の底面および側面に第2の5i
02  膜21例えば0.2〜0.5 p m位を形成
し、Po1y Si  膜22を例えば0.2〜1.0
μm位減圧CVD法等により堆積する0、この時Po1
y St膜22の膜厚はその後の酸化工程で昔5を埋め
ることが可能な厚さを選択する(第3図C)。
Next, a second 5i is applied to the bottom and side surfaces of the groove 5 by thermal oxidation.
02 film 21 is formed to have a thickness of, for example, 0.2 to 0.5 pm, and the PolySi film 22 is formed to have a thickness of, for example, 0.2 to 1.0 pm.
0 deposited by low pressure CVD method etc. on the order of μm, at this time Po1
The thickness of the ySt film 22 is selected to be such that it can fill up the pores 5 in the subsequent oxidation process (FIG. 3C).

次にPo1y Si  膜22を異方性エツチング法に
よりSi3N4膜3があられれるまでエツチングを行な
うと、第1のSiO2膜2と513N4膜3のひさしの
下はエツチングされないためにひさしの下にのみPo1
y Si  膜22を残すことができる(第3図d)。
Next, when the Po1ySi film 22 is etched by an anisotropic etching method until the Si3N4 film 3 is etched, the area under the eaves of the first SiO2 film 2 and the 513N4 film 3 is not etched, so Po1 is etched only under the eaves.
The y Si film 22 can be left behind (FIG. 3d).

その後上記Po1y Si  膜22を溝らが埋め込め
る程度まで熱酸化法により酸化し−C汁離領域23を形
成する(s3図e)。
Thereafter, the PolySi film 22 is oxidized by a thermal oxidation method to the extent that the grooves can be filled, thereby forming a -C separation region 23 (FIG. s3 e).

第4図に示すように、溝を形成する場合に溝側面にテー
バが付いてしまった時を考えると、側面にテーパが付い
ていても、poly Si  の異方性エツチングを行
々うと第1のS z 02  膜2とSi3N4膜3の
ひさしの下はエツチングさり、ないだめにひさしの下に
容易にPo1y Si膜22 イc残すことができる。
As shown in Fig. 4, when forming a groove, if we consider the case where the side surface of the groove is tapered, even if the side surface is tapered, if polySi is anisotropically etched, the first The S z 02 film 2 and the Si3N4 film 3 under the eaves are etched, and the Po1ySi film 22 can be easily left under the eaves.

本発明の第2の実施例を第5図a−fに示す。A second embodiment of the invention is shown in Figures 5a-f.

まずウェハ1上に熱酸化法により第1のS iO2膜2
をo、03〜0.111m位形成し、その上に第1の8
13N4膜3を例えば0.05〜0.2μn位減圧CV
D法等により堆積後、分離形成用のフォトレジストパタ
ーン4を形成する(第6図a)。
First, a first SiO2 film 2 is formed on a wafer 1 by thermal oxidation.
o, about 0.3 to 0.111 m, and the first 8 m
The 13N4 membrane 3 is subjected to a reduced pressure CV of, for example, about 0.05 to 0.2 μn.
After deposition by the D method or the like, a photoresist pattern 4 for isolation formation is formed (FIG. 6a).

フォトレジストパターン4をマスクとして上記第1の3
102  膜2と第1の313.Na膜3を異方性のド
ライエンチング法によりエツチングし、その後ウニノ・
1を所定量例えば0.2〜1.0μm位のサイドエツチ
ングが生じるように、異方性エツチング十等方性エツチ
ングあるいはサイドエツチングのあるドライエツチング
法等により工、ノチングして溝5を形成する(第5図b
)。
Using the photoresist pattern 4 as a mask, the first 3
102 membrane 2 and first 313. The Na film 3 is etched using an anisotropic dry etching method, and then
1 is processed and notched by anisotropic etching, isotropic etching, dry etching with side etching, etc. to form grooves 5 so as to cause side etching of a predetermined amount, for example, about 0.2 to 1.0 μm. (Figure 5b
).

次に熱酸化法rより溝5の底面および側面に第2の51
o2  膜21を例えば0.2〜0.511m 位形成
し、その後第2の513N4膜31を例えば0.05〜
0.2μm 位減圧CVD法等により堆積する(第5図
C)。
Next, a second layer 51 is formed on the bottom and side surfaces of the groove 5 by thermal oxidation.
The o2 film 21 is formed to a thickness of, for example, 0.2 to 0.511 m, and then the second 513N4 film 31 is formed to a thickness of, for example, 0.05 to 0.511 m.
It is deposited to a thickness of about 0.2 μm by low-pressure CVD or the like (Fig. 5C).

次にPo1y、 St 膜22を例えば0.2〜1.0
1tm位を減圧CVD法等により堆積する。この時Po
1y St  膜22の膜厚はその後の酸化工程で溝5
を埋めることが可能な厚さを選択する(第5図d)。
Next, the Po1y, St film 22 is made of, for example, 0.2 to 1.0
A thickness of about 1 tm is deposited by low pressure CVD method or the like. At this time Po
The thickness of the 1y St film 22 is increased by the groove 5 in the subsequent oxidation process.
(Fig. 5d).

Po1y St  膜22を異方性ドライエツチング法
により第1813N4膜3があられれる寸でエツチング
を行うと、第1のSiO2膜2と第1のSi3N4膜3
のひさしの下はエツチングされないだめだひさしの下に
のみPo1y、Si  膜22を残すことができる(第
6図e)。
When the PolySt film 22 is etched by an anisotropic dry etching method to the extent that the 1813N4 film 3 is etched, the first SiO2 film 2 and the first Si3N4 film 3 are etched.
The Po1y, Si film 22 can be left only under the canopy which is not etched (FIG. 6e).

その後Po1y St  膜22を溝5が叩めこめる程
度まで熱酸化法により酸化し分肉[1領域23を形成す
る(第6図f)。寸だ溝にテープが生じた場合について
は第1の実施例と同様である。
Thereafter, the PolySt film 22 is oxidized by a thermal oxidation method to the extent that the groove 5 can be drilled into it to form a thinning region 23 (FIG. 6f). The case where tape is formed in the groove is the same as in the first embodiment.

J、J、□。よ9.□3へヘモ41゜ヵよ、あ□ばユい
溝を形成してもPo1y Si  を溝の深さ分も堆積
する必要がなく、はぼパターン幅の1y4以上位堆積す
ればあとは酸化時Po1y Si  膜が膨張すること
により溝を埋めることができる/辷めPo1y Stの
膜厚を薄くすることができバター7幅を小さくすること
が非常に容易となる。
J, J, □. Yo9. To □3, it's 41 degrees, □ Even if a groove is formed, there is no need to deposit Po1ySi to the depth of the groove.If it is deposited at least 1y4 of the pattern width, the rest is done during oxidation. Grooves can be filled by the expansion of the PolySi film/The thickness of the PolySt film can be made thinner, making it very easy to reduce the width of the butter 7.

またPo1y Si  を残す工程はサイドエツチング
によって生じたひさしを利用するだめ、セルファライン
的にひさしの下にのみPo1y St  を残すことが
でき工程も簡単でちる。
In addition, the process of leaving PolySi requires the use of the eaves created by side etching, and PolySt can be left only under the eaves in a self-aligned manner, which simplifies the process.

なお本実施例では堆積したPo1y Si  を全部酸
化しているが、溝を埋め込んだ後に酸化されていないP
o1y Si が残っていても良いことは言うまでもな
いとともに、第2の実施例のようにPo1ySi膜を堆
積する前にSi3N4膜を堆積しておくことによ!l)
 Po1y St  を酸化する場合酸化時間が長くな
りすぎてオーバに酸化されても、基板は酸化されること
がないため余裕を持って酸化を行なうことができる。
In this example, all of the deposited PolySi was oxidized, but after filling the trench, the unoxidized P
It goes without saying that o1ySi may remain, and if the Si3N4 film is deposited before depositing the Po1ySi film as in the second embodiment! l)
When oxidizing PolySt, even if the oxidation time becomes too long and the substrate is overoxidized, the substrate will not be oxidized, so the oxidation can be carried out with ample time.

本実施例は埋め込む材料としてPo1y Si  を用
いたがこれは何らかの処理を行なうことにより膨張して
埋め込むことが可能な材料でも良いことばゆうまでもな
い。
In this embodiment, PolySi was used as the embedding material, but it goes without saying that it may be a material that expands and can be embedded through some kind of treatment.

発明の効果 以上述べたように本発明の方法であれば、溝の深さに対
して堆積するPo1y Si  等の膜の膜厚を薄くす
ることができるとともに、Po1y Si  等の膜を
溝の中に残す工程もひさしを利用しセルファライン的に
行なうことが可能となり、容易にかつ確実に素子間分離
?行なうことができその工業的価値は大きい。
Effects of the Invention As described above, with the method of the present invention, it is possible to reduce the thickness of the film such as PolySi deposited with respect to the depth of the groove, and also to reduce the thickness of the film such as PolySi deposited within the groove. It is now possible to perform the process of leaving a cell in a self-aligned manner using the canopy, allowing for easy and reliable isolation between elements. It has great industrial value.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a−e、第2図a、dはf羊来の素子間分離方法
の工程断面図、第3図a−e、第4図および第5図a〜
fはそれぞれ本発明のを、手間分離方法の第1および第
2の実施例の工程断面図である。 1・・・・・・基板、2・、・・・・SiC膜、3,3
1・・・・・・513N4膜、4・・・・・・フォトレ
ジストパターン、5・・・・・・m、22・・・・・・
Po1y Si  膜。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第 2 図 f4 f3 第3図 第3図 第4図
Fig. 1 a-e, Fig. 2 a, d are cross-sectional views of the process of F Yorai's device isolation method, Fig. 3 a-e, Fig. 4, and Fig. 5 a-
f is a process sectional view of the first and second embodiments of the labor separation method of the present invention, respectively. 1...Substrate, 2...SiC film, 3,3
1...513N4 film, 4...Photoresist pattern, 5...m, 22...
PolySi film. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 2 Figure f4 f3 Figure 3 Figure 3 Figure 4

Claims (3)

【特許請求の範囲】[Claims] (1)基板上に少なくとも耐酸化性の膜を形成する工程
と、所定の上記爵j酸化性の膜パターンを形成する工程
と、所定部分の上記基板を−に記耐酸化性の膜パターン
より所定量だけ内側−\入るようにエツチングを行ない
溝部を形成する工程と、少なくとも上記基板のエツチン
グされた面に絶縁膜を形成する工程と、後処理により膨
張する膜を形成する工佇壬記膨張する膜を異方性の」エ
ツチング方法でエツチングする工程と、上記11剃jj
(する膜を膨張させ上記溝部を埋める工程とを有するこ
とを特徴とする半導体装置の製造方法。
(1) forming at least an oxidation-resistant film on the substrate; forming a predetermined oxidation-resistant film pattern; and forming a predetermined portion of the substrate from the oxidation-resistant film pattern described in -. A process of forming a groove by etching a predetermined amount inward, a process of forming an insulating film on at least the etched surface of the substrate, and an expansion process of forming a film that expands by post-processing. a step of etching the film by an anisotropic etching method;
(a step of expanding a film to fill the trench).
(2)絶縁膜が耐酸化性の膜であることを特徴とする特
許請求の範囲第1項に記載の半導体装置の製造方法。
(2) The method for manufacturing a semiconductor device according to claim 1, wherein the insulating film is an oxidation-resistant film.
(3)絶縁膜が絶縁膜と耐酸化性の膜の二層となってい
ることを特徴とする特許請求の範囲第1項に記載の半導
体装置の製造方法。
(3) The method for manufacturing a semiconductor device according to claim 1, wherein the insulating film has two layers: an insulating film and an oxidation-resistant film.
JP17572082A 1982-10-06 1982-10-06 Manufacture of semiconductor device Pending JPS5965446A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17572082A JPS5965446A (en) 1982-10-06 1982-10-06 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17572082A JPS5965446A (en) 1982-10-06 1982-10-06 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS5965446A true JPS5965446A (en) 1984-04-13

Family

ID=16001054

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17572082A Pending JPS5965446A (en) 1982-10-06 1982-10-06 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5965446A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61187344A (en) * 1985-02-15 1986-08-21 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device
FR2675310A1 (en) * 1991-04-09 1992-10-16 Samsung Electronics Co Ltd Process for insulating elements of semiconductor devices
US5399525A (en) * 1991-07-16 1995-03-21 Thomson-Csf Semiconducteurs Specifiques Process for manufacturing integrated circuits with very narrow electrodes
US5661073A (en) * 1995-08-11 1997-08-26 Micron Technology, Inc. Method for forming field oxide having uniform thickness
US5753962A (en) * 1996-09-16 1998-05-19 Micron Technology, Inc. Texturized polycrystalline silicon to aid field oxide formation
US6001705A (en) * 1995-03-31 1999-12-14 Consorzio Per La Ricerca Sulla Microelettronica Nel Mezzogiorno Process for realizing trench structures
KR100468712B1 (en) * 1998-06-19 2005-04-06 삼성전자주식회사 Trench element isolation method for semiconductor devices not including thermal oxidation
US11075123B2 (en) * 2019-09-16 2021-07-27 Taiwan Semiconductor Manufacturing Co., Ltd. Method for forming isolation structure having improved gap-fill capability

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61187344A (en) * 1985-02-15 1986-08-21 Nippon Telegr & Teleph Corp <Ntt> Semiconductor device
FR2675310A1 (en) * 1991-04-09 1992-10-16 Samsung Electronics Co Ltd Process for insulating elements of semiconductor devices
US5399525A (en) * 1991-07-16 1995-03-21 Thomson-Csf Semiconducteurs Specifiques Process for manufacturing integrated circuits with very narrow electrodes
US6001705A (en) * 1995-03-31 1999-12-14 Consorzio Per La Ricerca Sulla Microelettronica Nel Mezzogiorno Process for realizing trench structures
US6362072B1 (en) 1995-03-31 2002-03-26 Stmicroelectronics S.R.L. Process for realizing trench structures
US5661073A (en) * 1995-08-11 1997-08-26 Micron Technology, Inc. Method for forming field oxide having uniform thickness
US6103595A (en) * 1995-08-11 2000-08-15 Micron Technology, Inc. Assisted local oxidation of silicon
US5753962A (en) * 1996-09-16 1998-05-19 Micron Technology, Inc. Texturized polycrystalline silicon to aid field oxide formation
US6114218A (en) * 1996-09-16 2000-09-05 Microm Technology, Inc. Texturized polycrystalline silicon to aid field oxide formation
KR100468712B1 (en) * 1998-06-19 2005-04-06 삼성전자주식회사 Trench element isolation method for semiconductor devices not including thermal oxidation
US11075123B2 (en) * 2019-09-16 2021-07-27 Taiwan Semiconductor Manufacturing Co., Ltd. Method for forming isolation structure having improved gap-fill capability

Similar Documents

Publication Publication Date Title
EP0423722B1 (en) Method of making complete dielectric isolation structure in semiconductor integrated circuit
US5393692A (en) Recessed side-wall poly plugged local oxidation
US6825544B1 (en) Method for shallow trench isolation and shallow trench isolation structure
US5371036A (en) Locos technology with narrow silicon trench
JPS5965446A (en) Manufacture of semiconductor device
EP1184902A1 (en) Method for forming an isolation trench in a SOI substrate
JP2715972B2 (en) Method for manufacturing semiconductor device
JPH04151850A (en) Manufacturing method of trench dielectric isolation type semiconductor integrated circuit
JPH05267448A (en) Method of isolating element of semiconductor device
JPS61228650A (en) Manufacture of semiconductor device
JP2815255B2 (en) Method for manufacturing semiconductor device
JPH04209534A (en) Manufacture of semiconductor device
JP2669724B2 (en) Method for manufacturing semiconductor device
JPS60142535A (en) Manufacture of semiconductor device
JPS63299361A (en) Manufacture of semiconductor device
JPS584458B2 (en) How to use hand tools
JPS58213444A (en) Manufacture of semiconductor device
JPS58157137A (en) Manufacture of semiconductor device
JPS61176133A (en) Manufacture of semiconductor device
JPH03229421A (en) Manufacture of semiconductor device
JPH08250582A (en) Manufacture of semiconductor device
JPS61287233A (en) Manufacture of semiconductor device
JPH02211630A (en) Manufacture of semiconductor device
JPH03203350A (en) Manufacture of semiconductor device
JPH0917852A (en) Manufacture of semiconductor device