JPS596484B2 - electromagnet device - Google Patents

electromagnet device

Info

Publication number
JPS596484B2
JPS596484B2 JP52103504A JP10350477A JPS596484B2 JP S596484 B2 JPS596484 B2 JP S596484B2 JP 52103504 A JP52103504 A JP 52103504A JP 10350477 A JP10350477 A JP 10350477A JP S596484 B2 JPS596484 B2 JP S596484B2
Authority
JP
Japan
Prior art keywords
electromagnet
power source
temperature
excitation
electromagnet device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52103504A
Other languages
Japanese (ja)
Other versions
JPS5437253A (en
Inventor
清孝 小山内
勤 加川
武義 池田
照明 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NICHIDENSHI GIJUTSU SAABISU KK
Original Assignee
NICHIDENSHI GIJUTSU SAABISU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NICHIDENSHI GIJUTSU SAABISU KK filed Critical NICHIDENSHI GIJUTSU SAABISU KK
Priority to JP52103504A priority Critical patent/JPS596484B2/en
Publication of JPS5437253A publication Critical patent/JPS5437253A/en
Publication of JPS596484B2 publication Critical patent/JPS596484B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は核磁気共鳴装置に用いて好適な電磁石装置に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electromagnet device suitable for use in a nuclear magnetic resonance apparatus.

核磁気共鳴装置に用いられる電磁石装置は高い磁場強度
と長時間にわたる高い安定度が要求されるため、一般に
は液体冷却又はガス冷却によつて温度制御された大型磁
石装置が使用される。
Since electromagnet devices used in nuclear magnetic resonance apparatuses are required to have high magnetic field strength and high stability over long periods of time, large magnet devices whose temperature is controlled by liquid cooling or gas cooling are generally used.

ところが斯かる大型磁石装置は熱容量が大きいため、電
源ON後熱的平衡状態に達し測定可能な安定状態になる
までに4〜5時間程度、特に精密な測定を行う場合には
12時間にもわたる長いウォームアップ時間を要してい
た。そこで従来は使用しない夜間も含めて電磁石装置は
昼夜連続運転されており、電力及び冷却に用いる水の浪
費が甚大であつた。本発明は上述した従来の問題点に鑑
みてなされ10たものであり、電源OFF後も電磁石装
置を運転時の平衡温度付近に保ち電源ON後のウォーム
アップ時間を短縮することにより昼夜連続運転の必要性
をなくし、電力及び水の浪費を防ぐことのできる電磁石
装置を提供することを目的とするもの15である。
However, since such a large magnet device has a large heat capacity, it takes about 4 to 5 hours after the power is turned on to reach a thermal equilibrium state and reach a stable state where measurements can be made, and it can take up to 12 hours when performing particularly precise measurements. It required a long warm-up time. Therefore, in the past, electromagnet devices were operated continuously day and night, including at night when they were not in use, resulting in a huge waste of electricity and water used for cooling. The present invention has been made in view of the above-mentioned conventional problems, and it maintains the electromagnetic device at around the equilibrium temperature during operation even after the power is turned off, thereby shortening the warm-up time after the power is turned on, thereby allowing continuous day and night operation. It is an object of the present invention to provide an electromagnetic device that eliminates the need for electromagnets and can prevent waste of power and water.

以下図面を用いて本発明を詳説する。第1図は本発明の
一実施例を示す構成図であり、同図において1は内部に
励磁コイル冷却用配管を有する電磁石である。該電磁石
1は冷却装置2と導水パイプ3によつて結ばれている。
該冷却装置202は熱交換器、循環用ポンプ、弁等より
構成され、純水をポンプによつて電磁石1に供給すると
共に電磁石1で発生した熱を吸収して戻つて来た純水を
水道水CWが弁を介して通水される熱交換器によつて冷
却して再び電磁石に送る様にしている。254は励磁電
源、5は補助電源であり、夫々の電源からの電流は切換
スイッチ6を介して電磁石1へ送られる。
The present invention will be explained in detail below using the drawings. FIG. 1 is a block diagram showing one embodiment of the present invention, and in the figure, numeral 1 denotes an electromagnet having an excitation coil cooling pipe inside. The electromagnet 1 is connected to a cooling device 2 by a water pipe 3.
The cooling device 202 is composed of a heat exchanger, a circulation pump, a valve, etc., and supplies pure water to the electromagnet 1 using a pump, absorbs the heat generated by the electromagnet 1, and returns the purified water to the tap water. Water CW is cooled by a heat exchanger through which water is passed through a valve, and then sent to the electromagnet again. 254 is an excitation power source, 5 is an auxiliary power source, and current from each power source is sent to the electromagnet 1 via a changeover switch 6.

上記補助電源5には温度コントローラTからの制御信号
が供給されている。該温度コントローラ7は電磁石1の
適宜な部位に取付けら30れた温度センサー8からの温
度信号に基づいて制御信号を作成し補助電源5に送る。
又前記冷却装置2は上記切換スイッチ6の操作に連動し
て冷却動作が停止される。上述の如き構成において電磁
石1の運転時には35切換スイッチ6は励磁電源4側に
倒され、電磁石には励磁電流が供給される。
A control signal from a temperature controller T is supplied to the auxiliary power supply 5. The temperature controller 7 generates a control signal based on a temperature signal from a temperature sensor 8 attached to an appropriate part of the electromagnet 1 and sends it to the auxiliary power source 5.
Further, the cooling operation of the cooling device 2 is stopped in conjunction with the operation of the changeover switch 6. In the configuration as described above, when the electromagnet 1 is in operation, the 35 selector switch 6 is turned to the excitation power source 4 side, and an excitation current is supplied to the electromagnet.

そして冷却装置2は該電磁石1に導水パイプ3を介して
純水を循環さ、P!せて電磁石1から発生する熱を吸収
している。
The cooling device 2 circulates pure water to the electromagnet 1 through the water guide pipe 3, and P! In addition, the heat generated from the electromagnet 1 is absorbed.

熱を吸収して温度が上昇した純水は熱交換器において、
水道水によつて冷却され、再び電磁石に送られる。この
様な運転状態において電磁石から発生する熱量と純水に
よつて奪い去られる熱量とは平衡状態にあり、電磁石は
一定の温度に保たれる。従つて電磁石において発生する
磁界も安定したものとなり、この安定した状態で試料の
測定が行われる。そして測定が終了して電磁石1の運転
を停止する際の操作は電磁石が過熱あるいは過冷却され
ないように第2図に示す手順に従つて行われる。
Pure water, whose temperature has increased by absorbing heat, is transferred to a heat exchanger.
It is cooled by tap water and sent to the electromagnet again. Under such operating conditions, the amount of heat generated by the electromagnet and the amount of heat taken away by the pure water are in equilibrium, and the electromagnet is maintained at a constant temperature. Therefore, the magnetic field generated by the electromagnet becomes stable, and the sample is measured in this stable state. When the measurement is completed and the operation of the electromagnet 1 is stopped, the operation is performed according to the procedure shown in FIG. 2 so that the electromagnet is not overheated or overcooled.

即ち第2図aに示す励磁電源4を0FFにした時点では
もはや新しい熱の発生はないが励磁コイルの内部に蓄積
されている熱は即座になくならないため、もし仮に冷却
装置2のポンプを停止して純水の循環をこの時点で0F
Fにするとこの潜熱はどこにも持ち去られるところがな
いため電磁石全体の温度を高めるようになり、電磁石は
一時的ではあるが過熱状態におかれ好ましくない。そこ
で第2図B,cに示す様に励磁電源0FF後も暫時運転
され、励磁コイルの冷却が行われる。そして同図dに示
す様に適宜なタイミングで補助電源5が0Nとされ、そ
の後同図B,Cに示す様にポンプ、水道水の順に0FF
状態にされる。ところで補助電源5が0N1換言すれば
切換スイツチ6が補助電源側に倒されると、電磁石1に
は該補助電源5から予備加熱電流が供給される。
That is, when the excitation power source 4 shown in Fig. 2a is turned off, no new heat is generated, but the heat accumulated inside the excitation coil does not disappear immediately, so if the pump of the cooling device 2 is stopped, and circulate pure water to 0F at this point.
When the temperature is set to F, this latent heat has nowhere to be taken away, so the temperature of the entire electromagnet increases, and the electromagnet is undesirably overheated, albeit temporarily. Therefore, as shown in FIGS. 2B and 2C, the excitation coil is operated for a while even after the excitation power source is turned off, and the excitation coil is cooled. Then, the auxiliary power supply 5 is turned to 0N at an appropriate timing as shown in d of the same figure, and then the pump and the tap water are turned off in that order as shown in B and C of the same figure.
be put into a state. By the way, when the auxiliary power source 5 is ON1, in other words, when the changeover switch 6 is turned to the auxiliary power source side, the preheating current is supplied to the electromagnet 1 from the auxiliary power source 5.

該予備加熱電流は電磁石を運転状態における熱的平衡状
態での温度又はそれに近い保温最適温度に保つための電
流であり、その電流値は冷却装置が停止しているため熱
が奪われることがないので運転時の励磁電流値の一ある
いはそれ以下で十分である。この時温度コントローラ7
はセンサー8によつて電磁石1の温度を検出し、最適温
度と差があるとその差に応じた制御信号を補助電源5に
送り、予備加熱電流を変化させている。そのため電磁石
は運転停止中でも常に保温最適温度に保たれる。従つて
運転を再開する場合電磁石は極めて短かいウオームアツ
プ時間で熱的に平衡な安定状態に到達し得る。以上述べ
た様に本発明によればウオームアツプ時間を著しく短縮
することができるため、従来の様な昼夜連続運転の必要
がなく電力及び水道水の浪費を防ぐことができる。
The preheating current is a current to maintain the electromagnet at a temperature in a thermal equilibrium state during operation or at a temperature close to the optimal temperature for heat retention, and the current value is such that no heat is taken away because the cooling device is stopped. Therefore, an excitation current value of 1 or less during operation is sufficient. At this time, temperature controller 7
The sensor 8 detects the temperature of the electromagnet 1, and if there is a difference from the optimum temperature, a control signal corresponding to the difference is sent to the auxiliary power source 5 to change the preheating current. Therefore, the electromagnet is always kept at the optimum temperature even when the operation is stopped. When restarting operation, the electromagnet can therefore reach a thermally equilibrium stable state in a very short warm-up time. As described above, according to the present invention, warm-up time can be significantly shortened, so there is no need for continuous day and night operation as in the conventional case, and waste of electric power and tap water can be prevented.

尚運転開始にあたつては第2図に示す様に停止と全く逆
の手順を踏めば良いことは言うまでもない。
It goes without saying that when starting operation, the procedure for stopping the engine is completely reversed, as shown in Figure 2.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例の構成を示す図であり、第2
図はその動作を説明するための図である。 1:電磁石、2:冷却装置、4:励磁電源、5:補助電
源、6:切換スイツチ、7:温度コントローラ、8:温
度センサー。
FIG. 1 is a diagram showing the configuration of one embodiment of the present invention.
The figure is a diagram for explaining the operation. 1: Electromagnet, 2: Cooling device, 4: Excitation power supply, 5: Auxiliary power supply, 6: Selector switch, 7: Temperature controller, 8: Temperature sensor.

Claims (1)

【特許請求の範囲】[Claims] 1 励磁コイルと、該コイルに励磁電流を供給する励磁
電源と、該励磁コイルを冷却するための冷却装置とを備
えた電磁石装置において、補助電源を設け、前記電磁石
装置の非運転時に前記補助電源から前記電磁石装置を略
一定温度に加熱するための予備加熱電流を前記励磁コイ
ルに供給すると共に、前記冷却装置の動作を停止するよ
うに構成したことを特徴とする電磁石装置。
1. In an electromagnet device including an excitation coil, an excitation power source that supplies an excitation current to the coil, and a cooling device for cooling the excitation coil, an auxiliary power source is provided, and the auxiliary power source is turned on when the electromagnet device is not in operation. An electromagnet device, characterized in that the electromagnet device is configured to supply a preheating current for heating the electromagnet device to a substantially constant temperature to the excitation coil, and to stop the operation of the cooling device.
JP52103504A 1977-08-29 1977-08-29 electromagnet device Expired JPS596484B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52103504A JPS596484B2 (en) 1977-08-29 1977-08-29 electromagnet device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52103504A JPS596484B2 (en) 1977-08-29 1977-08-29 electromagnet device

Publications (2)

Publication Number Publication Date
JPS5437253A JPS5437253A (en) 1979-03-19
JPS596484B2 true JPS596484B2 (en) 1984-02-13

Family

ID=14355802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52103504A Expired JPS596484B2 (en) 1977-08-29 1977-08-29 electromagnet device

Country Status (1)

Country Link
JP (1) JPS596484B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58153649U (en) * 1982-04-09 1983-10-14 綾部 宏之 Concrete formwork installation equipment
JPS59232539A (en) * 1983-06-15 1984-12-27 株式会社東芝 Nuclear magnetic resonance image pick-up apparatus

Also Published As

Publication number Publication date
JPS5437253A (en) 1979-03-19

Similar Documents

Publication Publication Date Title
WO2018003420A1 (en) Superconducting magnet device and magnetic resonance tomographic imaging device
JPS62165307A (en) Liquid-cooled uniform magnetic field coil
WO2020114062A1 (en) Superconducting protection method, superconducting protection device and superconducting system
JPS596484B2 (en) electromagnet device
EP0211551B1 (en) A superconducting system and method for controlling the same
CN106618574B (en) Cooling system and magnetic resonance equipment
JPS62125604A (en) Constant conduction type nuclear magnetic resonance image pickup apparatus
RU2352009C2 (en) Circulation system for cooling of cryogenic cable
JPS5818870B2 (en) Untenhouhou
JPS6315473B2 (en)
JPS596485B2 (en) electromagnet device
JPS6363446A (en) Magnetic resonance imaging apparatus
JPH049056B2 (en)
JPS6310431Y2 (en)
JPS6157984B2 (en)
JPH01155021A (en) Exhaust heat recovering device for water cooled engine
KR101345410B1 (en) Temperature control apparatus
JPS5482827A (en) Device for cooling and hot water supply
JPS63275105A (en) Magnet device for magnetic resonance imaging
JPS62267573A (en) Engine cooler
JPH063202Y2 (en) Oil temperature control device for autotransmission
JPS6112040U (en) Engine thermal testing equipment
JPH0118607Y2 (en)
JPS613452U (en) cooling water system
JPS5843733Y2 (en) temperature stabilizer