JPH049056B2 - - Google Patents

Info

Publication number
JPH049056B2
JPH049056B2 JP59219648A JP21964884A JPH049056B2 JP H049056 B2 JPH049056 B2 JP H049056B2 JP 59219648 A JP59219648 A JP 59219648A JP 21964884 A JP21964884 A JP 21964884A JP H049056 B2 JPH049056 B2 JP H049056B2
Authority
JP
Japan
Prior art keywords
electromagnet
excitation power
power source
temperature
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59219648A
Other languages
Japanese (ja)
Other versions
JPS6198246A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP59219648A priority Critical patent/JPS6198246A/en
Publication of JPS6198246A publication Critical patent/JPS6198246A/en
Publication of JPH049056B2 publication Critical patent/JPH049056B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 この発明は、安定度の高い磁場をつくる電磁石
が停止しているときも運転中と同じ温度を維持す
るようになされている電磁石装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] This invention relates to an electromagnet device that maintains the same temperature even when the electromagnet that creates a highly stable magnetic field is stopped as it is during operation.

〔従来技術とその問題点〕[Prior art and its problems]

電磁石により安定度の高い磁場を作ろうとする
と、この電磁石を励磁する励磁電源が安定してい
なければならないのはもちろんであるが、この電
磁石ならびに励磁電源の温度変動が零または僅小
であることが不可欠である。長時間にわたつて安
定度が高く強い均一な磁場を発生する電磁石が必
要な装置として種々のものがあるが、核磁気共鳴
を利用したコンピユータ断層撮影装置(以下では
NMR−CTと略記する)もその1例である。
In order to create a highly stable magnetic field using an electromagnet, it goes without saying that the excitation power source that excites the electromagnet must be stable, but it is also important that the temperature fluctuations of the electromagnet and the excitation power source be zero or very small. It is essential. There are various devices that require electromagnets that generate a highly stable, strong, and uniform magnetic field over long periods of time.
(abbreviated as NMR-CT) is one example.

NMR−CTは周知のようにがんなどの診断に
大きな威力を発揮する装置であるが、コンピユー
タを使用することや患者を検診することもあつ
て、装置全体が空気調和された室内に設置され
る。ところでこのNMR−CTに使用する電磁石
あるいは励磁電源は純水などの液体冷却により温
度制御されるのであるが、大形電磁石では熱容量
がきわめて大であつて、励磁電源投入後に熱的平
衡状態に達して測定可能な安定状態になるまでに
は4〜5時間という長いウオームアツプ時間を必
要とする。そこで従来はNMR−CTを使用しな
い夜間も含めて電磁石装置は昼夜連続運転をする
方法が採用されているが、そのため冷却用水と電
力を浪費するという欠点を有する。
As is well known, NMR-CT is a device that exerts great power in diagnosing diseases such as cancer, but because it uses a computer and examines patients, the entire device is installed in an air-conditioned room. Ru. By the way, the temperature of the electromagnet or excitation power source used in this NMR-CT is controlled by cooling with a liquid such as pure water, but large electromagnets have an extremely large heat capacity and do not reach a thermal equilibrium state after the excitation power is turned on. It takes a long warm-up time of 4 to 5 hours to reach a measurable stable state. Conventionally, electromagnetic equipment has been operated continuously day and night, including at night when NMR-CT is not in use, but this has the drawback of wasting cooling water and electricity.

〔発明の目的〕[Purpose of the invention]

この発明は、電磁石のウオームアツプ時間を不
要あるいは短縮することにより、非運転時には電
磁石の励磁を遮断して電力や冷却水を節減できる
電磁石装置を提供することを目的とする。
An object of the present invention is to provide an electromagnet device that can cut off excitation of the electromagnet during non-operation and save power and cooling water by eliminating or shortening the warm-up time of the electromagnet.

〔発明の要点〕[Key points of the invention]

この発明は、電磁石とこれの励磁電源ならびに
これらの冷却装置を含めた電磁石装置を設置して
いる室内の空気調和装置を電磁石装置の運転と連
動させて、電磁石装置が非運転のときには励磁電
源と冷却装置の運転を停止させるとともに空気調
和装置により電磁石の温度を運転時と略同一温度
に保つように保温運転することにより、電力と冷
却水の浪費を節減するとともに励磁電源投入後の
ウオームアツプ時間を零または大幅に短縮しよう
とするものである。
This invention allows an indoor air conditioner in which an electromagnet device including an electromagnet, its excitation power source, and a cooling device for these devices is installed to be linked with the operation of the electromagnet device, so that when the electromagnet device is not in operation, the excitation power source is switched on. By stopping the operation of the cooling system and using the air conditioner to maintain the temperature of the electromagnet at approximately the same temperature as during operation, the wastage of electricity and cooling water is reduced, and the warm-up time after turning on the excitation power is reduced. The aim is to reduce this to zero or significantly.

〔発明の実施例〕[Embodiments of the invention]

第1図は本発明の実施例を示す電磁石装置の配
置図であつて、前述したようにNMR−CT用の
電磁石装置の場合である。
FIG. 1 is a layout diagram of an electromagnet device showing an embodiment of the present invention, and as described above, this is a case of an electromagnet device for NMR-CT.

第1図において、電源12からの電力が励磁電
源13に供給され、この励磁電源13からは電磁
石14が発生する磁界が常に一定であるように制
御された励磁電力が供給される。この電磁石14
は大電流で励磁されるので電流を流すコイルは水
冷式にしてその発熱を取除くようにしているのが
電磁石冷却器25であり、励磁電源13にも同様
な励磁電源冷却器24が備えられており、純水パ
イプ23を介して両冷却器に純水を流して発熱を
取去る。この純水は熱交換器22において冷却水
パイプ21に流れる冷却水と熱交換するようにな
つている。この第1図においては励磁電源13は
部屋10の内側に設置されているが、これは室外
にあつてもよく、また熱交換器22は室外に設け
られているが、これは室内に設置されていても差
支えない。
In FIG. 1, power from a power source 12 is supplied to an excitation power source 13, which supplies excitation power controlled so that the magnetic field generated by an electromagnet 14 is always constant. This electromagnet 14
is excited by a large current, so the coil through which the current flows is water-cooled to remove the heat generated by the electromagnetic cooler 25, and the excitation power source 13 is also equipped with a similar excitation power source cooler 24. Pure water is supplied to both coolers via a pure water pipe 23 to remove heat generation. This pure water exchanges heat with the cooling water flowing into the cooling water pipe 21 in the heat exchanger 22. In FIG. 1, the excitation power source 13 is installed inside the room 10, but it may be placed outside, and the heat exchanger 22 is installed outside, but it is installed inside the room. There is no problem even if you do.

コントローラ11は電磁石装置の運転・停止と
その温度ならびに室内の温度管理を司どるもので
あつて、たとえば励磁電源13をオンにして電磁
石14を励磁するとともに熱交換器22を運転し
て、この熱交換器22に出入する冷却水の両を調
節するとともに励磁電源13と電磁石14を循環
する純水の量を調節することで、温度変化に伴う
磁場の強さが変動することを防いでいる。またこ
のコントローラ11は同時に空気調和装置を制御
して部屋10の温度が常に所定値に維持されるよ
うに夏季は冷房運転、冬季ならば暖房運転を行な
わせる。
The controller 11 controls the operation/stopping of the electromagnet device, its temperature, and indoor temperature management. For example, the controller 11 turns on the excitation power source 13 to excite the electromagnet 14 and operates the heat exchanger 22 to remove this heat. By adjusting both the cooling water flowing in and out of the exchanger 22 and the amount of pure water circulating through the excitation power source 13 and the electromagnet 14, fluctuations in the strength of the magnetic field due to temperature changes are prevented. The controller 11 also controls the air conditioner to perform a cooling operation in the summer and a heating operation in the winter so that the temperature of the room 10 is always maintained at a predetermined value.

NMR−CTは患者診断のために昼間は稼働し
ているが、夜間は殆ど運転する必要はない。しか
しこのNMR−CT用の電磁石14は大きな熱容
量を有するために、運転を開始してから温度が一
定するまでに長時間を必要とする。一定安定度が
高い強い均一な磁場を発生させるには当該電磁石
14の温度が一定している必要があるので、従来
はやむを得ず昼夜連続運転をして励磁電力や冷却
水などの資源を無駄使いしていることは既に述べ
たとおりである。そこで保温指令手段としてのコ
ントローラ11の指令により空気調和装置15を
適切に運転させることにより上述せる資源の無駄
使いを零にしようとする。
NMR-CT is operated during the day for patient diagnosis, but there is almost no need to operate it at night. However, since the electromagnet 14 for NMR-CT has a large heat capacity, it takes a long time from the start of operation until the temperature becomes constant. In order to generate a strong and uniform magnetic field with high constant stability, the temperature of the electromagnet 14 must be constant, so conventionally, it was unavoidable to operate continuously day and night, wasting resources such as excitation power and cooling water. As already mentioned, Therefore, by appropriately operating the air conditioner 15 according to commands from the controller 11 as a heat retention command means, it is attempted to reduce the above-mentioned wasteful use of resources to zero.

第2図は第1図に示す電磁石装置の運転ダイヤ
グラムであつて、第2図イはコントローラ11の
指令を、第2図ロは励磁電源13の運転状態を、
第2図ハは熱交換器22を含む冷却装置の運転状
態を、第2図ニは空気調和装置15の運転状態を
それぞれが示しており、横軸はいずれも時間の経
過をあらわしている。
FIG. 2 is an operating diagram of the electromagnet device shown in FIG. 1, in which FIG.
2C shows the operating state of the cooling device including the heat exchanger 22, and FIG. 2D shows the operating state of the air conditioner 15, and both horizontal axes represent the passage of time.

第2図においてNMR−CTの昼間における診
断が終了するとコントローラ11はT1なる時刻
に電磁石装置の運転を停止させる指令を発し、そ
れに従つて励磁電源13はオフとなる。励磁電源
13がオフになればこの励磁電源13と電磁石1
4は新たに熱を発生することはないので、冷却装
置もこの時刻T1に同時にオフしてもよいのであ
るが、このようにするとこれら励磁電源13と電
磁石14に蓄積されている熱が取去られないの
で、この蓄積熱により若干の過熱を招くおそれが
ある。それ故実際には励磁電源13をオフしてか
らある程度の時間を経過した後のT2なる時刻に
冷却装置をオフして冷却水の出入ならびに純水の
循環を停止させる。
In FIG. 2, when the daytime NMR-CT diagnosis is completed, the controller 11 issues a command to stop the operation of the electromagnet device at time T1 , and the excitation power source 13 is accordingly turned off. When the excitation power supply 13 is turned off, this excitation power supply 13 and the electromagnet 1
4 does not generate new heat, the cooling device may also be turned off at the same time at this time T1 , but in this way, the heat accumulated in the excitation power source 13 and the electromagnet 14 will be removed. This accumulated heat can lead to some overheating. Therefore, in reality, the cooling device is turned off at time T2 after a certain amount of time has elapsed since the excitation power source 13 is turned off, and the supply and output of cooling water and the circulation of pure water are stopped.

さらにコントローラ11はT1なる時刻にそれ
まで冷暖房運転により室内温度を所定値に保つよ
うに運転していた空気調和装置15に保温運転指
令を与えて電磁石14または励磁電源13が運転
中と略同じ温度になるように室内の温度を維持さ
せる。なおこの場合空気調和装置15の保温運転
で保温する対象は部屋10の空気温度であるが、
この保温対象を電磁石14あるいは励磁電源13
とその周囲の限定された空間のみにすることでも
差支えない。
Further, at time T1 , the controller 11 gives a heat retention operation command to the air conditioner 15, which had been operating to maintain the indoor temperature at a predetermined value by heating and cooling, so that the electromagnet 14 or the excitation power source 13 is almost in operation. Maintain the indoor temperature at the same temperature. In this case, the temperature of the air in the room 10 is the object to be kept warm by the heat keeping operation of the air conditioner 15.
This heat-insulating object is connected to the electromagnet 14 or the excitation power source 13.
It is also possible to limit the area to a limited area around the area.

病院が再び診療を開始する時刻T3になれば、
コントローラ11は運転開始を指令し、これに従
つて励磁電源13はオンとなり冷却装置も冷却運
転を開始し、これと同時に空気調和装置15も保
温運転から冷房あるいは暖房運転に切換つて
NMR−CTは直ちに診断業務を開始できる。
At time T3 when the hospital resumes medical treatment,
The controller 11 commands the start of operation, and in accordance with this, the excitation power supply 13 is turned on and the cooling device also starts cooling operation, and at the same time, the air conditioner 15 is also switched from heat retention operation to cooling or heating operation.
NMR-CT can immediately begin diagnostic work.

〔発明の効果〕〔Effect of the invention〕

この発明によれば均一で安定な磁場を発生させ
る熱容量の大きな電磁石あるいはこの電磁石を励
磁する励磁電源は、その発生熱を取去つてその温
度を略一定に保つための冷却装置を備えている
が、電磁石非運転時には保温指令手段の指令によ
り励磁電源と冷却装置の運転を停止して新たな熱
が発生しないようにするとともに空気調和装置を
冷暖房運転から保温運転に切換えて電磁石あるい
は励磁電源の温度をこれらが運転中の温度と略同
じ値になるようにする。このようにしておけばこ
の電磁石装置が運転を再開するとき、その温度は
連続運転中の温度になつているので磁場も安定し
ており、直ちに使用することができるので、長い
ウオームアツプ時間は不要となる。その結果従来
のように電磁石非使用時にも励磁を継続し、同時
に冷却装置の運転を継続するという資源の浪費が
排除できる効果を有する。
According to this invention, an electromagnet with a large heat capacity that generates a uniform and stable magnetic field or an excitation power source that excites this electromagnet is equipped with a cooling device that removes the generated heat and keeps the temperature substantially constant. When the electromagnet is not in operation, the excitation power supply and cooling device are stopped in response to a command from the heat retention command means to prevent new heat from being generated, and the air conditioner is switched from cooling/heating operation to heat retention operation to maintain the temperature of the electromagnet or excitation power source. so that these values are approximately the same as the operating temperature. In this way, when the electromagnetic device resumes operation, its temperature will be the same as during continuous operation, the magnetic field will be stable, and it can be used immediately, so there is no need for a long warm-up time. becomes. As a result, it is possible to eliminate the resource waste of continuing to excite the electromagnet even when the electromagnet is not in use and at the same time continuing to operate the cooling device as in the prior art.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す電磁石装置の配
置図であり、第2図は第1図に示す電磁石装置の
運転ダイヤグラムである。 10……部屋、11……保温指令手段としての
コントローラ、12……電源、13……励磁電
源、14……電磁石、15……空気調和装置、2
1……冷却水パイプ、22……熱交換器、23…
…純水パイプ、24……励磁電源冷却器、25…
…電磁石冷却器。
FIG. 1 is a layout diagram of an electromagnet device showing an embodiment of the present invention, and FIG. 2 is an operation diagram of the electromagnet device shown in FIG. DESCRIPTION OF SYMBOLS 10... Room, 11... Controller as heat preservation command means, 12... Power source, 13... Excitation power source, 14... Electromagnet, 15... Air conditioner, 2
1...Cooling water pipe, 22...Heat exchanger, 23...
...Pure water pipe, 24...Excitation power supply cooler, 25...
...Electromagnetic cooler.

Claims (1)

【特許請求の範囲】[Claims] 1 冷却手段を備えた電磁石と、該電磁石を励磁
する冷却手段を備えた励磁電源と、これら電磁石
または励磁電源が設置される室内の温度を略一定
に保つ空気調和手段で構成される電磁石装置にお
いて、前記電磁石非運転時に当該電磁石冷却手段
と励磁電源冷却手段の運転を停止し、前記空気調
和手段により電磁石または励磁電源の温度を運転
時と略同一温度になるような保温指令を発する保
温指令手段とを備えたことを特徴とする電磁石装
置。
1. In an electromagnet device consisting of an electromagnet equipped with a cooling means, an excitation power supply equipped with a cooling means that excites the electromagnet, and an air conditioning means that keeps the temperature in the room where these electromagnets or the excitation power supply are installed at a substantially constant level. , heat retention command means for stopping the operation of the electromagnet cooling means and the excitation power source cooling means when the electromagnet is not in operation, and issuing a heat retention command so that the temperature of the electromagnet or the excitation power source becomes approximately the same temperature as when the electromagnet is in operation by the air conditioning means; An electromagnetic device characterized by comprising:
JP59219648A 1984-10-19 1984-10-19 Electromagnet apparatus Granted JPS6198246A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59219648A JPS6198246A (en) 1984-10-19 1984-10-19 Electromagnet apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59219648A JPS6198246A (en) 1984-10-19 1984-10-19 Electromagnet apparatus

Publications (2)

Publication Number Publication Date
JPS6198246A JPS6198246A (en) 1986-05-16
JPH049056B2 true JPH049056B2 (en) 1992-02-19

Family

ID=16738808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59219648A Granted JPS6198246A (en) 1984-10-19 1984-10-19 Electromagnet apparatus

Country Status (1)

Country Link
JP (1) JPS6198246A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62101233A (en) * 1985-10-28 1987-05-11 株式会社日立製作所 Examination apparatus using nuclear magnetic resonance
JP5242251B2 (en) * 2008-06-24 2013-07-24 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー Cooling device and MRI system
JP5450133B2 (en) * 2010-01-29 2014-03-26 株式会社東芝 Magnetic resonance imaging system

Also Published As

Publication number Publication date
JPS6198246A (en) 1986-05-16

Similar Documents

Publication Publication Date Title
JPH01196468A (en) Method and device for driving cooling and heating load
JPH049056B2 (en)
JP2003222378A (en) Air conditioning system for building
JPH1054619A (en) Air conditioning method and air conditioning system
JPH05223410A (en) Heat pump
KR20100008887A (en) An air cooler of the lowest power consumption using latent heat of vaporization and capillary phenomenon
JPS59107130A (en) Device for operating freezer
JPH09243139A (en) Air conditioner system
JPH0730968B2 (en) Heat pump
JP2875306B2 (en) Thermal storage cooling and heating system
JPS601020A (en) Bus heater
JPH05187735A (en) Heat pump
JPS60196523A (en) Circulating hot water feeding device
JPH0278828A (en) Controller for circulating pump for hot-water heating
JPH03103942U (en)
JPS596484B2 (en) electromagnet device
JPS596485B2 (en) electromagnet device
JPH01244228A (en) Control method for heat accumulation type air-conditioning system
JPS63306355A (en) Space heating boiler
JPH0422175Y2 (en)
JPS63263327A (en) Hot-water supplier used both for hot-water room heater
JPS6021719Y2 (en) Number control device for small absorption chiller/heater
JPS6391444A (en) Operation control method for air conditioner
JPS5944261A (en) Sauna air conditioning system
JPH0526480A (en) District heat source system