JPS596386B2 - Automatic correction method for electrolyte resistance drop - Google Patents

Automatic correction method for electrolyte resistance drop

Info

Publication number
JPS596386B2
JPS596386B2 JP53117850A JP11785078A JPS596386B2 JP S596386 B2 JPS596386 B2 JP S596386B2 JP 53117850 A JP53117850 A JP 53117850A JP 11785078 A JP11785078 A JP 11785078A JP S596386 B2 JPS596386 B2 JP S596386B2
Authority
JP
Japan
Prior art keywords
electrode
drop
circuit
electrolytic current
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53117850A
Other languages
Japanese (ja)
Other versions
JPS5544554A (en
Inventor
俊明 小玉
哲雄 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO
Original Assignee
KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO filed Critical KAGAKU GIJUTSUCHO KINZOKU ZAIRYO GIJUTSU KENKYU SHOCHO
Priority to JP53117850A priority Critical patent/JPS596386B2/en
Publication of JPS5544554A publication Critical patent/JPS5544554A/en
Publication of JPS596386B2 publication Critical patent/JPS596386B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は電解質抵抗降下の自動的補正方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for automatically correcting electrolyte resistance drops.

電解工業、電気防食などにおいて、適正な電解条件ある
いは防食条件を見い出すために、電解電流の与えられて
いる電極の電位を参照電極を用いて測定する必要がある
が、通常の測定方法では電解質抵抗と電解電流の積によ
り生ずる電圧降下(以下iR降下とよぶ)が加算された
値を読みとることになる。
In the electrolytic industry, electrolytic protection, etc., in order to find appropriate electrolytic conditions or anti-corrosion conditions, it is necessary to measure the potential of the electrode to which electrolytic current is applied using a reference electrode. The value obtained by adding the voltage drop (hereinafter referred to as iR drop) caused by the product of the electrolytic current and the electrolytic current is read.

但し、この場合iは電解電流で、Rは土壌又は電解質溶
液などの電気抵抗である。特に電解質抵抗の高い純水、
淡水あるいは土壌のような環境に置かれた電極の電位測
定においては、iR降下による誤差が大きく、誤まつた
情報を与えてしまう。従来、電解質抵抗によるiR降下
の補正法としては、電流遮断法(currentint
erruption法)が知られている。
However, in this case, i is the electrolytic current, and R is the electrical resistance of the soil or electrolyte solution. Especially pure water with high electrolyte resistance,
When measuring the potential of an electrode placed in an environment such as freshwater or soil, errors due to iR drop are large, giving erroneous information. Conventionally, as a correction method for iR drop due to electrolyte resistance, the current interruption method (current interruption method) has been used.
erruption method) is known.

これは電極に電流を与えた状態から、電流を単発的にO
FFにし、そのときの電位応答をオシロスコープあるい
は記録計等で波形観察を行ない、iR降下と電極反応に
因づく分極Edとを分離し、iR降下の補正が行われて
いる。この状況は第1図に示される。すなわち、同図a
は電解電流iをON−OFFしたときの電解電流の経時
変化で、同図bはそのときの電極電位Eの経時変化であ
る。図bのごとくiR降下の時定数が電極反応分極Ed
の時定数に比して十分高速であるという原理に基づき電
解質によるiR降下を除去した電極電位Ep−iRが求
められる。しかし、従来の電流遮断法ではオシログラフ
の図形解析を行なわねばならず、操作が煩雑であり、か
つ精度が低かつた。本発明はかかる従来のiR降下補正
法の欠点を除去することを目的とするものであり、電解
電流のスイッチング回路と電位の演算回路を用いてiR
降下のみをもしくはiR降下を除去した電位を電圧出力
として、高精度に血続することを可能ならしめる回路か
ら成つている。
This is done by changing the current from the state where the current is applied to the electrode to
The FF is turned on, and the potential response at that time is observed as a waveform using an oscilloscope or a recorder, and the iR drop is separated from the polarization Ed due to the electrode reaction, and the iR drop is corrected. This situation is illustrated in FIG. In other words, the figure a
shows the change over time in the electrolytic current when the electrolytic current i is turned on and off, and b in the figure shows the change over time in the electrode potential E at that time. As shown in Figure b, the time constant of iR drop is the electrode reaction polarization Ed
Based on the principle that Ep-iR is sufficiently fast compared to the time constant of Ep-iR, the electrode potential Ep-iR is obtained by removing the iR drop caused by the electrolyte. However, the conventional current interruption method requires graphical analysis of an oscilloscope, which is complicated to operate and has low accuracy. The present invention aims to eliminate the drawbacks of the conventional iR drop correction method, and uses an electrolytic current switching circuit and a potential calculation circuit to improve the iR drop correction method.
It consists of a circuit that enables high-precision blood connection by outputting a potential with only the drop or with the iR drop removed.

以下、実施例を図面により具体的に説明する。Examples will be specifically described below with reference to the drawings.

第2図は電解電流スイツチング回路のプロツク図の1例
である。同図において電流源1は半導体スイツチ2を介
在させて電解系3のセルCEと結合する。半導体スイツ
チ2は制御ゲートCGを有する電解効果トランジスター
、トライアツクあるいはサイリスターなどから構成され
ている。矩形波発振回路4は矩形波のデユーテイ比の調
節回路5と結合し、デユーテイ比の一定な矩形波を電解
系3に送るため半導体スイツチ2の制御ゲートCGに結
合してある。電解系3は電解質中に置かれた試験極TE
l対極CEおよび参照極REの3個の電極からなり、電
解電流は対極CE一試験極TE間を流れ、参照極REに
は電流が流れないようにする。電流源1と電解系3の間
に置かれた半導体スイツチ2は制御ゲートCGでデユー
テイ比の一定な矩形波信号を受け、これと同期して電解
電流を周期的に0N−0FFする。なお0N一0FFの
制御信号は端子CTより他の目的に利用できるようにす
る。電解電流のスイツチングにおいて電解電流0FF′
の時間TOFFは、電極反応分極(第1図のEd)の時
定数に比して十分短かくなるよう設定する。
FIG. 2 is an example of a block diagram of an electrolytic current switching circuit. In the figure, a current source 1 is coupled to a cell CE of an electrolytic system 3 with a semiconductor switch 2 interposed therebetween. The semiconductor switch 2 is composed of a field effect transistor, triax, or thyristor having a control gate CG. The rectangular wave oscillation circuit 4 is connected to a rectangular wave duty ratio adjustment circuit 5, and is connected to the control gate CG of the semiconductor switch 2 in order to send a rectangular wave having a constant duty ratio to the electrolytic system 3. Electrolytic system 3 is a test electrode TE placed in an electrolyte.
It consists of three electrodes: a counter electrode CE and a reference electrode RE, and the electrolytic current flows between the counter electrode CE and the test electrode TE, and no current flows through the reference electrode RE. A semiconductor switch 2 placed between a current source 1 and an electrolytic system 3 receives a rectangular wave signal with a constant duty ratio at a control gate CG, and in synchronization with this, periodically turns the electrolytic current from 0N to 0FF. Note that the 0N-0FF control signal can be used for other purposes from the terminal CT. When switching the electrolytic current, the electrolytic current is 0FF'
The time TOFF is set to be sufficiently short compared to the time constant of electrode reaction polarization (Ed in FIG. 1).

具体的にはTOFF≦10msとするのが好ましい。こ
のような条件で電解電流を周期的に0N−0FFしたと
きの参照極RE一試験極TE間の電圧、すなわち電極電
位Eは、発振回路から調節回路を経て得られたデユーテ
イ比の一定な第3図aに示す矩形波に対して、第3図b
の如く、直流電圧と矩形波を重ね合わせた波形を与え、
その矩形波のピーク・ピーク差値がIR降下となり、T
OFF時に対応する電位Eの値はIR降下をさし引いた
電極電位Ep−1Rとなる。以下、第2図のスイツチン
グ回路と結合して、IRもしくはEp−1Rを求めるた
めの演算回路の例を示す。
Specifically, it is preferable that TOFF≦10ms. When the electrolytic current is periodically changed from 0N to 0FF under these conditions, the voltage between the reference electrode RE and the test electrode TE, that is, the electrode potential E, is determined by the voltage at a constant duty ratio obtained from the oscillation circuit through the adjustment circuit. For the rectangular wave shown in Fig. 3a, Fig. 3b
Gives a waveform that is a superimposition of a DC voltage and a rectangular wave, as shown in
The peak-to-peak difference value of the square wave becomes the IR drop, and T
The value of the potential E corresponding to the OFF state is the electrode potential Ep-1R after subtracting the IR drop. An example of an arithmetic circuit for determining IR or Ep-1R in combination with the switching circuit of FIG. 2 will be shown below.

第4図は電位Eを入力として、電解電流の0N時と0F
F時との電極電位のピーク・ピーク差値を演算し、出力
としてIRを与えるためのビーク・ピーク差値演算回路
の一例である。
Figure 4 shows the electrolytic current at 0N and 0F with potential E as input.
This is an example of a peak-to-peak difference value calculation circuit for calculating the peak-to-peak difference value of the electrode potential with respect to the F time and providing IR as an output.

入力端RElは参照極RE(第2図)と接続され、入力
信号は高域通過フイルタ一6を通ることにより交流矩形
波となり、これをさらに直線整流回路7および定数倍回
路8を通過させることによりビーク・ピーク差値を直流
電圧出力として得る。この場合、電解電流0N−0FF
のデユーテイ比は50%とすると、高域通過フイルタ一
6を通過後の交流矩形波は正負両方向に対称となり、整
流回路7によりリツプルの少ない直流出力を得ることが
できる。デユーテイ比5070のとき定数倍回路8にお
ける定数値は2となる。第5図は電極電位Eを入力とし
、Ep−1Rを出力として得るための電圧ホールド回路
の1例である。
The input terminal RE1 is connected to the reference pole RE (FIG. 2), and the input signal passes through a high-pass filter 16 to become an AC rectangular wave, which is further passed through a linear rectifier circuit 7 and a constant multiplier circuit 8. The peak-to-peak difference value is obtained as a DC voltage output. In this case, electrolytic current 0N-0FF
When the duty ratio is 50%, the AC rectangular wave after passing through the high-pass filter 16 becomes symmetrical in both positive and negative directions, and the rectifier circuit 7 can obtain a DC output with less ripple. When the duty ratio is 5070, the constant value in the constant multiplier circuit 8 is 2. FIG. 5 shows an example of a voltage hold circuit for receiving electrode potential E as input and obtaining Ep-1R as output.

但し、Epは電解電流を流したとき(0N時)の電極電
位である。入力端子RE2は参照極RE(第2図)と、
端子CT2はCT(第2図)と接続される。Sは制御端
をもつアナログ・スイツチであり、電解電流0FF時(
TOFF)にSは0Nとなるよう設定する。したがつて
、コンデンサーCはTOFFにおける電位がサンプルお
よびホールドさへ演算増幅器0P2による電圧フオロワ
一を介して出力される電圧はEp−1Rを与える。演算
増幅器0P1による電圧フオロワ一は場合によつては省
略できる。このとき、電極電位Eは電解電流の0N−0
FFのデユーテイ比に依存するため、これを一定としな
ければならない。
However, Ep is the electrode potential when an electrolytic current is applied (at 0N). The input terminal RE2 is connected to the reference pole RE (Fig. 2),
Terminal CT2 is connected to CT (FIG. 2). S is an analog switch with a control end, and when the electrolytic current is 0FF (
TOFF), S is set to 0N. Therefore, capacitor C samples and holds the potential at TOFF so that the voltage output via the voltage follower by operational amplifier 0P2 gives Ep-1R. The voltage follower by operational amplifier 0P1 can be omitted in some cases. At this time, the electrode potential E is 0N-0 of the electrolytic current.
Since it depends on the duty ratio of the FF, it must be kept constant.

直流電解条件下におけるEp一IRを求めるためには、
TON/TOFF比は大きぃほど良い。実施例 1 電解系の等価回路および電解系を被測定系とし本発明方
法の検定を行なつた。
In order to find Ep-IR under DC electrolysis conditions,
The larger the TON/TOFF ratio, the better. Example 1 The method of the present invention was tested using an equivalent circuit of an electrolytic system and the electrolytic system as a system to be measured.

第6図は電解質中に置かれた金属電極の等価回路を表わ
し、界面に生ずる起電力e1容量成分Cdおよびこれと
並列に存在する抵抗成分Rdlおよび電解質抵抗Reの
直列から成る。
FIG. 6 shows an equivalent circuit of a metal electrode placed in an electrolyte, consisting of an electromotive force e1 generated at the interface, a capacitance component Cd, a resistance component Rdl existing in parallel with this, and an electrolyte resistance Re in series.

この模擬として乾電池、抵抗器およびコンデンサーを用
いて第6図の回路を作り、電流1を与えたときReによ
る降下1Reが端子10に接触することなく直読できる
ことを確認するための実験を第2図および第4図に示さ
れる回路を用いで行なつた。ここで端子9は試験極TE
に、端子11は対極CE参照極REおよび入力端REl
にそれぞれ接続される。このとき第3図における出力1
RはIReを与えるはずである。0N時の電解電流をi
=1mAとし、Cd=10PF..Rd−100Ωとし
、Reを種々変化させたときのIRe値の本発明にもと
づく実測値と計算値の比較は第1表に与えられ、両者は
良い一致を示した。
As a simulation of this, we created the circuit shown in Figure 6 using a dry battery, a resistor, and a capacitor, and conducted an experiment to confirm that when a current of 1 is applied, the drop 1Re due to Re can be directly read without contacting the terminal 10 as shown in Figure 2. and the circuit shown in FIG. Here terminal 9 is the test electrode TE
, the terminal 11 is connected to the counter electrode CE, the reference electrode RE and the input terminal REl.
are connected to each. At this time, output 1 in Fig. 3
R should give IRe. The electrolytic current at 0N is i
= 1mA, Cd = 10PF. .. Table 1 shows a comparison of the IRe values measured based on the present invention and the calculated values when Rd-100Ω and Re was variously changed, and the two showed good agreement.

なお電解電流スイツチング周波数は5KHzであり、デ
ユーテイ比は50%であつた。本等価回路実験における
時定数、CdRdlは1msecと、実在の電解系の時
定数(通常1sec以上)に比してはるかに小さい値で
あるにもかかわらず良好な一致を示している。
Note that the electrolytic current switching frequency was 5 KHz, and the duty ratio was 50%. The time constant CdRdl in this equivalent circuit experiment is 1 msec, which shows good agreement even though it is a much smaller value than the time constant of an actual electrolytic system (usually 1 sec or more).

したがつて電解系ではさらに高精度の値を与えるものと
予測される。実施例 2実在の電解系における1R降下
測定は次のようになされた。
Therefore, it is expected that electrolytic systems will provide even more accurate values. Example 2 1R drop measurements in an actual electrolytic system were carried out as follows.

比抵抗5kΩ儂の水道水に軟鋼あるいは亜鉛メツキ鋼を
置き、これを試験極TEとし、ステスレス鋼を対極CE
とし、また銀/塩化銀電極を参照極として、TEの電気
化学的分極挙動を求めた。その結果は第7図に示された
Aは軟鋼に対するデータを、Bは亜鉛メツキ鋼に対する
データである。第7図において点線は、IR降下を補正
しない分極曲線であり、実線は本発明により、IR降下
を求めこれを補正した分極曲線である。IR降下測定は
1測定点につき1秒以内に完了し、読み取り精度は1m
Vであつた。本発明はその要旨を変更しない範囲内で種
々変形して実施できるものである。
Place mild steel or galvanized steel in tap water with a specific resistance of 5 kΩ, use it as the test electrode TE, and use stainless steel as the counter electrode CE.
The electrochemical polarization behavior of TE was determined using a silver/silver chloride electrode as a reference electrode. The results are shown in FIG. 7, where A is the data for mild steel and B is the data for galvanized steel. In FIG. 7, the dotted line is a polarization curve without correcting the IR drop, and the solid line is a polarization curve obtained by determining the IR drop and correcting it according to the present invention. IR drop measurements are completed within 1 second per measurement point and have a reading accuracy of 1m
It was V. The present invention can be implemented with various modifications without changing the gist thereof.

以上述べたように、本発明は周期的に、0N一0FFさ
れ、かつその0FF時間が電極反応の分極時定数に比し
て十分短かくなるような電解電流を電解系に与え、電極
電位のピーク・ビーク差を求めるか、あるいは電流0F
F時の電極電位をホールドすることにより極めて短時間
にまた高精度に電解質抵抗によるIR降下を補正するこ
とを可能ならしめるものである。
As described above, the present invention periodically applies an electrolytic current to the electrolytic system that is 0N-0FF and whose 0FF time is sufficiently short compared to the polarization time constant of the electrode reaction, thereby increasing the electrode potential. Find the peak-to-peak difference or set the current to 0F
By holding the electrode potential at F, it is possible to correct the IR drop due to electrolyte resistance in an extremely short time and with high precision.

この発明によつてとくに電気防食の管理が容易になる他
、電気化学における電極電位の測定が容易になる。
This invention particularly facilitates the management of cathodic protection, as well as the measurement of electrode potential in electrochemistry.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来法の電流遮断法の概念図、第2図は本発明
における実施態様を示す電解電流の0N一0FF回路の
プロツク図、第3図は第2図の回路で得られる電流およ
び電極電位波形図、第4図は第3図bの波形よりIRを
演算するためのビーク・ピーク差値演算回路の1例を示
すプロツク図、第5図は第3図bの波形よりEp−1R
を演算するための電圧ホールド回路の1例を示すプロツ
ク図、第6図は電極界面の等価回路図、第7図は本発明
を用いた1実測例を示す図である。 1・・・・・・電流源、2・・・・・・半導体スイツチ
、3・・・・・・電解系、4・・・・・・矩形波発振回
路、5・・・・・・デユーテイ調節回路、6・・・・・
・高域通過フイルタ一、7・・・・・直線整流回路、8
・・・・・・定数倍回路、TE・・・・・・試験極、C
E・・・・・・対極、RE・・・・・・参照極、CG・
・・・・・半導体スイツチの制御端。
Fig. 1 is a conceptual diagram of a conventional current interrupting method, Fig. 2 is a block diagram of an electrolytic current 0N-0FF circuit showing an embodiment of the present invention, and Fig. 3 shows the current and Electrode potential waveform diagram, FIG. 4 is a block diagram showing an example of a peak-to-peak difference calculation circuit for calculating IR from the waveform of FIG. 3b, and FIG. 1R
FIG. 6 is an equivalent circuit diagram of an electrode interface, and FIG. 7 is a diagram showing an example of actual measurement using the present invention. 1... Current source, 2... Semiconductor switch, 3... Electrolytic system, 4... Square wave oscillation circuit, 5... Duty Adjustment circuit, 6...
・High-pass filter 1, 7... Linear rectifier circuit, 8
...Constant multiplier circuit, TE...Test electrode, C
E... Counter electrode, RE... Reference electrode, CG.
... Control end of semiconductor switch.

Claims (1)

【特許請求の範囲】 1 電極反応分極の時定数に比して十分短いOFF時間
を有する周期的なON−OFF電解電流で電気分解し、
その時の電極電位Eをピーク・ピーク差値演算回路へ与
えることによりその出力として電解質抵抗による電圧降
下iR(但しiは電解電流、Rは電解質の電気抵抗)を
求めることを特徴とする電解質抵抗降下の自動的補正方
法。 2 ピーク・ピーク差検出回路が高域通過フィルターお
よび線形整流回路からなる回路を含むものである特許請
求の範囲第1項記載の電解質抵抗降下の自動的補正方法
。 3 電極反応分極の時定数に比して十分短いOFF時間
を有する周期的なON−OFF電解電流で電気分解し、
そのときの電極電位Eを電解電流のOFF時のみの電圧
ホールド回路へ与えることによりその出力として電圧降
下iR(但しiは電解電流、Rは電解質の電気抵抗)を
除去した電極電位Ep−iR(但しEpは電解電流ON
時の電極電位)を得ることを特徴とする電解質抵抗降下
の自動的補正方法。
[Claims] 1. Electrolyzing with a periodic ON-OFF electrolytic current having a sufficiently short OFF time compared to the time constant of electrode reaction polarization,
An electrolyte resistance drop characterized in that the electrode potential E at that time is given to a peak-to-peak difference calculation circuit to obtain the voltage drop iR due to the electrolyte resistance (where i is the electrolytic current and R is the electrical resistance of the electrolyte) as its output. automatic correction method. 2. The method for automatically correcting electrolyte resistance drop according to claim 1, wherein the peak-to-peak difference detection circuit includes a circuit consisting of a high-pass filter and a linear rectifier circuit. 3 Electrolysis with a periodic ON-OFF electrolytic current having a sufficiently short OFF time compared to the time constant of electrode reaction polarization,
By applying the electrode potential E at that time to a voltage hold circuit only when the electrolytic current is OFF, its output is the electrode potential Ep-iR ( However, Ep is electrolytic current ON
A method for automatically correcting electrolyte resistance drop, characterized in that the electrode potential at
JP53117850A 1978-09-27 1978-09-27 Automatic correction method for electrolyte resistance drop Expired JPS596386B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53117850A JPS596386B2 (en) 1978-09-27 1978-09-27 Automatic correction method for electrolyte resistance drop

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53117850A JPS596386B2 (en) 1978-09-27 1978-09-27 Automatic correction method for electrolyte resistance drop

Publications (2)

Publication Number Publication Date
JPS5544554A JPS5544554A (en) 1980-03-28
JPS596386B2 true JPS596386B2 (en) 1984-02-10

Family

ID=14721818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53117850A Expired JPS596386B2 (en) 1978-09-27 1978-09-27 Automatic correction method for electrolyte resistance drop

Country Status (1)

Country Link
JP (1) JPS596386B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57192850A (en) * 1981-05-25 1982-11-27 Toyota Central Res & Dev Lab Inc Detecting device for limit current system oxygen concentration performing internal resistance compensation

Also Published As

Publication number Publication date
JPS5544554A (en) 1980-03-28

Similar Documents

Publication Publication Date Title
US3969667A (en) Device for determining the state of charge in batteries
US5059908A (en) Amperimetric measurement with cell electrode deplating
JPS62242849A (en) Method and apparatus for testing performance of electrode for electrode measuring system
US3868578A (en) Method and apparatus for electroanalysis
JPS6325300B2 (en)
AU2013389649A1 (en) Estimation of the state of charge of a positive electrolyte solution of a working redox flow battery cell without using any reference electrode
CN103257174A (en) Measuring arrangement and method for registering analyte concentration in measured medium
JPH071289B2 (en) Method and apparatus for measuring conductivity without influence of polarization
EP0598380B1 (en) Method of monitoring constituents in plating baths
US4687996A (en) Method and apparatus for measuring remaining charge of galvanic cell
JPS596386B2 (en) Automatic correction method for electrolyte resistance drop
US4040931A (en) Corrosion ratemeter
US3950706A (en) Voltage sweep generator with bistable current source providing linear sweep voltages
US3850736A (en) Device for measuring accelerated corrosion rate
US2842736A (en) Polarograph
Czajkowski et al. Automatic apparatus for precise measuring and recording of pzc value of liquid electrodes and its application
US2972102A (en) Method and device for the titration of various solutions and similar purposes
RU2106620C1 (en) Method for measuring potential of live main electrode of electrochemical cell
RU2135987C1 (en) Coulometric plant with controlled potential
Senda et al. Studies on AC Polarogroaphy. II. Fundamental Circuit and Some Experimental Results
JPS6097247A (en) Continuous liquid-concentration measuring device
SU1345106A1 (en) Device for measuring resistance of extended operating electrode of electrochemical cell
JPS6313486Y2 (en)
SU739330A1 (en) Method of measuring surface area of electrically conducting object
JPS62207968A (en) Conductivity meter circuit