JPS5963721A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS5963721A
JPS5963721A JP57174779A JP17477982A JPS5963721A JP S5963721 A JPS5963721 A JP S5963721A JP 57174779 A JP57174779 A JP 57174779A JP 17477982 A JP17477982 A JP 17477982A JP S5963721 A JPS5963721 A JP S5963721A
Authority
JP
Japan
Prior art keywords
prism
wafer
laser beams
laser
laser beam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57174779A
Other languages
Japanese (ja)
Other versions
JPH0352215B2 (en
Inventor
Nobuo Sasaki
伸夫 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP57174779A priority Critical patent/JPS5963721A/en
Publication of JPS5963721A publication Critical patent/JPS5963721A/en
Publication of JPH0352215B2 publication Critical patent/JPH0352215B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02683Continuous wave laser beam
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02598Microstructure monocrystalline
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • H01L21/02678Beam shaping, e.g. using a mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02691Scanning of a beam

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

PURPOSE:To single-crystallize a poly Si by a method wherein two laser lights of different wavelengths are temporarily formed into the same ray flux and made to pass through a prism, and a wafer at a fixed position is irradiated, and the interval between the two light points is arbitrarily controlled. CONSTITUTION:The Ar laser light A and the YAG laser light B are gathered into one beam flux by means of a half mirror 5, further reflected on a mirror 6, and then reciprocated by a scanning system 7 nearly in the direction of y at a constant period and amplitude. Since the laser light A and B have different wavelengths, A branches to right, and B to left, resulting in the generation of the two light points 1 on the wafer 3. The scanning system 7 is a regular hexangular prism, rotates around a shaft 7-3, has reflection mirrors 7-4 on side surfaces, and the bottom surface of the prism 8 is parallel with the x-y plane. The variation of the distance between the wafer and the prism enables to easily control the interval of the light points; when the interval is several ten mum, the single crystallizaton of the poly Si is effectively performed.

Description

【発明の詳細な説明】 (1)  発明の技術分野 本発明はレーザ光線を用いた半導体装置の製造方法に係
り、特に波長の異る複数のレーザ光線を所定間隔を保持
しなからウェハ上に照射する半導体装置の製造方法に関
する。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field of the Invention The present invention relates to a method for manufacturing semiconductor devices using laser beams, and in particular to a method for manufacturing semiconductor devices using laser beams, and in particular, a method for manufacturing a semiconductor device by applying a plurality of laser beams having different wavelengths onto a wafer while maintaining a predetermined interval. The present invention relates to a method of manufacturing a semiconductor device using irradiation.

(2) 技術の背景 近年、半導体装置を製造する際にレーザ光線を利用して
例えばレーザアニールによりイオン注入後の非晶質層に
結晶構造を持たせたり、或いはレーザ光線によりシリコ
ンの単結晶構造を形成して基板として用いることは既に
広く行なわれている。
(2) Background of the technology In recent years, when manufacturing semiconductor devices, laser beams have been used, for example, to give a crystalline structure to an amorphous layer after ion implantation through laser annealing, or to give a single crystal structure to silicon using laser beams. It has already been widely used to form a substrate and use it as a substrate.

(3) 従来技術と問題点 従来半導体基板の形成のため、すなわちポリシリコンを
単結晶化させるためにレーザ光線を複数本用いる場合の
°方法として9例えば第1図(al、 (b)のような
ものが知られている。すなわぢ、2つの固定されたレー
ザ発振器からのレーザ光線Δ、Bニヨるスボノl−1を
ステージ2上のウェハ3に形成し、係るステージ2を前
記2つのレーザ光線A。
(3) Prior Art and Problems Conventionally, a method of using multiple laser beams to form a semiconductor substrate, that is, to single-crystallize polysilicon, is as shown in FIGS. A method is known in which laser beams Δ and B from two fixed laser oscillators are formed on a wafer 3 on a stage 2, and the stage 2 is Laser beam A.

Bのスポットに対して直交する方向に機械的に移動させ
ることによって走査する方−法(第1図(a))と、2
つのレーザ発振器からのレーザ光線A、 Bによるスポ
ット1を固定されたステージ2上のウェハ3に形成し、
前記2つのレーザ光線へ、Bの′スポットに対して直交
する方向に2つのレーザ光線へ、  13を振動させる
ことによって走査する方法(第1図(b))が既に提案
されている。しかしながら、第1の方法はステージの機
械的な動作を精密に行う必要があるためコストが非常に
高くなり。
A method of scanning by mechanically moving the spot in a direction perpendicular to the spot B (FIG. 1(a));
A spot 1 is formed by laser beams A and B from two laser oscillators on a wafer 3 on a fixed stage 2,
A method (FIG. 1(b)) has already been proposed in which the two laser beams are scanned by vibrating the laser beam 13 in a direction orthogonal to the B' spot. However, the first method requires precise mechanical movement of the stage, resulting in a very high cost.

また比較的故障がおこり易い欠点を有している。It also has the disadvantage of being relatively prone to failure.

第2の方法は1例えばミラーを用いて係るミラーを動か
すことによって実現できるため、低コストで高速の走査
装置を形成することが可能である。
The second method can be realized by using, for example, a mirror and moving such a mirror, so that it is possible to form a low-cost and high-speed scanning device.

しかし1例えば2本のレーザ光線を用いて所定の間隔で
走査をすることは2枚のミラーを用いた場合には非常に
調整が邦しいという欠点を有しているため実用化の際の
ネックとなっていた。
However, scanning at a predetermined interval using two laser beams, for example, has the drawback that adjustment is extremely difficult when two mirrors are used, which is a bottleneck in practical application. It became.

(4) 発明の目的 本発明の目的は上記従来の欠点に鑑み、2本のレーザ光
線を混ぜて1本の光線にしてプリズムに入射させること
によって近接した2つのスボソI・をウェハ上に形成し
て効果的な単結晶シリコンの製造方法を提供することに
ある。
(4) Purpose of the Invention In view of the above-mentioned drawbacks of the conventional art, the purpose of the present invention is to form two closely spaced I.sup. An object of the present invention is to provide an effective method for manufacturing single crystal silicon.

(5) 発明の構成 本発明の特徴は、多結晶シリコンの単結晶化に際し、2
種の異なる波長のレーザ光線を一時的に同一光軸を通過
する一本のレーザ光線とし、前記一本となったレーザ光
線をプリズム内に入射させ。
(5) Structure of the Invention The feature of the present invention is that when polycrystalline silicon is made into a single crystal, two
Laser beams of different wavelengths are temporarily turned into a single laser beam passing through the same optical axis, and the single laser beam is made to enter a prism.

前記プリズムを射出し分離した2木のレーザ光線を所定
の位置に設けたステージ上のウェハに照射させ前記2本
のレーザ光線による2つのスポット間隔を任意に制御す
る半導体装置の製造方法を提供することによって達成さ
れる。
To provide a method for manufacturing a semiconductor device, in which a wafer on a stage provided at a predetermined position is irradiated with two separated laser beams emitted from the prism, and an interval between two spots formed by the two laser beams is arbitrarily controlled. This is achieved by

(6) 発明の実施例 以下本発明を用いた一実施例について図面を参照して説
明する。
(6) Embodiment of the Invention An embodiment using the present invention will be described below with reference to the drawings.

第2図(al及びfb)は本発明を用いた一実施例の構
成を示す正面図とその一部の斜視図である。第2図(a
)において、Arレーザ発振器4−1から発生する例え
ば5145人の青緑色のレーザ光線Aと。
FIG. 2 (al and fb) is a front view and a partial perspective view showing the configuration of an embodiment using the present invention. Figure 2 (a
), for example, 5145 blue-green laser beams A are generated from the Ar laser oscillator 4-1.

YAGレーザ発振器4−2から発生ずる1、06μTT
Iの赤外光線13との2種類の波展のレーリ′光とが同
一光軸上で1つの光線束としてまとまるようにハーフミ
ラ−5が設LJられである。そしてハーフミラ−5の後
方には反射鏡6が設けられており、更にウェハ3上に形
成する2つのスポット1を結ぶ向きに対して直交する方
向(y方向)に、係るレーデ光線を往復走査するための
スキャンシステム7が設りられでいる。スキャンシステ
ム7を通過した1つにまとまセた2種のレーザ光線は1
元の別々のレーザ光線として分離させるために例えばク
ラウンガラスからなるプリズム8が設りられている。
1,06μTT generated from YAG laser oscillator 4-2
A half mirror 5 is provided so that the infrared rays 13 of I and the Rayleigh' beams of two types of wave extensions are combined into one beam bundle on the same optical axis. A reflecting mirror 6 is provided behind the half mirror 5, and further scans the radar beam back and forth in the direction (y direction) perpendicular to the direction connecting the two spots 1 formed on the wafer 3. A scanning system 7 is provided for this purpose. The two laser beams that have passed through the scanning system 7 and have been combined into one are 1
A prism 8 made of crown glass, for example, is provided to separate the original, separate laser beams.

へrレーザ発振器4−1及びYAGレーザ発振器4−2
から発生ずる5145人の青緑色のレーザ光線Δ及び1
.06μmの赤外光線Bば1例えばハーフミラ−5に対
してそれぞれ45°をなす方向から受\−フミラ−5に
入射するように両レーザ発振器は配置されている。その
後同−軸上の1本の光線束としてまとまり反射鏡6にて
反射し、更にスキャンシステム7によりほぼy方向に一
定の周期と振幅で往復振動を行う。そして1本の光線束
にまとまり往復振動をなす前記レーザ光線A及びBばプ
リズム8に入射するが波長がそれぞれ異る別種類β)光
線であるため、クラウンガラスからなるプリズム8にお
ける屈折率もA、B異り、従って、プリズム8外を通過
するときそれぞれ別の異なる経路をたどってプリズム8
外へ出る。ずなわら、振動数が大きい稈屈折率は大きい
ためにArレーザ発振器4−1から発生する5145人
の青緑色のレーデ光線へは右方へ、またYAGレーザ発
振器4−2から発生ずる1、06μmの赤外光線Bは左
方へと分れてウェハ3上に2つのスポットlを形成する
Her laser oscillator 4-1 and YAG laser oscillator 4-2
5145 blue-green laser beams Δ and 1 generated from
.. Both laser oscillators are arranged so that infrared rays B1 of 0.6 .mu.m are incident on the receiver half mirror 5 from directions respectively forming an angle of 45 DEG with respect to the half mirror 5, for example. Thereafter, the light beams are gathered together as a single beam on the same axis and reflected by a reflecting mirror 6, and then reciprocated in the y direction with a constant period and amplitude by a scanning system 7. The laser beams A and B, which are combined into a single beam bundle and make reciprocating vibrations, enter the prism 8, but since they are different types of beams with different wavelengths, the refractive index of the prism 8 made of crown glass is also A. , B are different. Therefore, when passing outside the prism 8, the prism 8 follows different paths respectively.
Go outside. However, since the refractive index of a culm with a high frequency is large, the blue-green radar beam of 5145 people generated from the Ar laser oscillator 4-1 is directed to the right, and the culm generated from the YAG laser oscillator 4-2 is directed to the right. The infrared ray B of 0.6 μm is split to the left to form two spots 1 on the wafer 3.

第2図(b)は第2図fa)におりるスキャンシステム
7とその近傍の構成を示しており1例えば正六角柱から
流れる転体7.−1は3両底面7−2の中心部にて回転
軸7−3が設けられており、また6面からなる側面部に
は各々反射鏡7−4が設けられている。そしてクラウン
ガラスからなるプリズム8は図中底面部がx−y平面に
平行になり所定の位置に設りられている。
FIG. 2(b) shows the configuration of the scanning system 7 and its vicinity as shown in FIG. 2fa). -1 is provided with a rotating shaft 7-3 at the center of three bottom surfaces 7-2, and a reflecting mirror 7-4 is provided on each of the six side surfaces. The prism 8 made of crown glass is placed at a predetermined position with its bottom portion parallel to the xy plane in the figure.

例えばx−y平面内を一定の角速度で回転中の回転体7
−1において、同じx−y平面内を進行する1本の光線
束となりまとまった2種類のレーザ光線A及びBは回転
中の回転体7〜1の側面部の反射鏡7−4の任意の点に
て反射されてブリズノ、8へ入射する。1本の光線束と
なりまとまってプリズJ、 Bへ入射した2種類のレー
ザ光線A及びBは係るプリズム8内にて別々の経路をた
どり。
For example, a rotating body 7 rotating at a constant angular velocity in the x-y plane
-1, two types of laser beams A and B, which are bundled into a single beam bundle and proceed in the same x-y plane, are reflected by an arbitrary reflection mirror 7-4 on the side surface of the rotating body 7-1. It is reflected at the point and enters Brizno 8. The two types of laser beams A and B, which entered the prisms J and B as a single beam bundle, follow different paths within the prism 8.

ずなわぢ2本のレーザ光線A、Bに分離してプリズム8
内へ出ていく。換言すれば、プリズム8を介して1本に
まとまっていたレーザ光線Δ、Bはプリズム8を介して
2方向に平行な2木の光線に分れ波長の短いレーザ光線
Aが一2方向へ、波長の長いレーザ光線Bが+2方向に
それぞれ分離する。それと同時に併行して、多角柱の回
転体7−1から構成されるスキャンシステム7によりレ
ーザ光線はX軸に平行な方向への走査が行なわれている
。すなわち、スキャンシステム7を構成する回転体7−
1の所定の角速度での回転により、係る回転体7−1の
側面部に取付けた反射鏡7−7Iも同様に一定の角速度
にて回転運動を行っている。
Zunawaji Separates into two laser beams A and B and passes through prism 8
Go inside. In other words, the laser beams Δ and B, which were gathered into one beam through the prism 8, are split into two parallel beams in two directions through the prism 8, and the laser beam A, which has a short wavelength, goes in two directions. Laser beams B with longer wavelengths are separated into +2 directions. At the same time, the laser beam is scanned in a direction parallel to the X-axis by a scanning system 7 composed of a rotating polygonal column 7-1. That is, the rotating body 7- which constitutes the scanning system 7
1 at a predetermined angular velocity, the reflecting mirror 7-7I attached to the side surface of the rotating body 7-1 also rotates at a constant angular velocity.

一方1反射鏡7−4へ入射するまでのレーザ光線は常に
一定の方向で且つ一定の経路位置上を直進するが、前述
の反射鏡7−4が一定の回転運動を行っているため反射
鏡7−4上でのレーザ光線の入射点位置の軌跡をたどる
と當にx−y平面上Gこのった。すなわぢx−y平面に
平行で且つ一定区間内にあり従って反射鏡7−4での反
射後の光路も6枚の反射6Jt 7−4が全てx−y平
面に垂直なして回転しているためx−y平面上にあり、
所定の幅内を往復振動しながら進行する。その後プリズ
ム8を経て2本のレーザ光線A、’Bに分離するか、x
−y平面上を同様に2本に分離して同一周期で同一の往
復振動しながら進行する。
On the other hand, the laser beam always travels straight in a fixed direction and on a fixed path position until it enters the first reflecting mirror 7-4, but since the above-mentioned reflecting mirror 7-4 performs a fixed rotational movement, When the locus of the incident point position of the laser beam on 7-4 is traced, it becomes G on the xy plane. In other words, it is parallel to the x-y plane and within a certain range, so the optical path after reflection at the reflecting mirror 7-4 is also rotated so that all six reflection mirrors 6Jt 7-4 are perpendicular to the x-y plane. Because it is on the x-y plane,
It advances while reciprocating vibration within a predetermined width. After that, it passes through prism 8 and is separated into two laser beams A and 'B, or x
- It is similarly divided into two pieces on the y plane and moves with the same reciprocating vibration at the same period.

第3図は、プリズム8内の透過光路を示す図である。FIG. 3 is a diagram showing a transmission optical path within the prism 8. FIG.

同図中、入射光線■と射出光線Rとの方向のずれの角度
をδ、プリズムの頂角をαとし、頂点。
In the figure, the angle of deviation in direction between the incident ray ■ and the exit ray R is δ, the apex angle of the prism is α, and the apex.

入射点、入射点における法線と射出点での法線との交点
、射出点の以上4つの点を各々a、  b、  cdと
する。また、入射光線の延長線及び射出光線の延長線の
交点をeとする。また、入射光線、射出光線の法線との
なす角をそれぞれi、ilとする。
Let the above four points of the entrance point, the intersection of the normal at the entrance point and the normal at the exit point, and the exit point be a, b, and cd, respectively. Further, the intersection of the extension line of the incident light ray and the extension line of the exit light ray is assumed to be e. Further, the angles formed by the normal line of the incident ray and the exit ray are defined as i and il, respectively.

la+lC=π  ・ ・ ・ ・ ・ ・ ・ ・ 
・ ・(1)四角形bcdeにおいて le=’1rc−(jb+Zc−1−Zd)=2π−−
(i−トlC,4−i’)・・・(2)+11. +2
1式から 一π−(2π−(i+π−αl i ’ ) 1=i−
)i’−α・・・・・・・・・(:3)従って、ずれの
角δは入射角と射出角と頂角との関係式(3)から決定
される。
la+lC=π ・ ・ ・ ・ ・ ・ ・ ・
・ ・(1) In quadrilateral bcde, le='1rc-(jb+Zc-1-Zd)=2π--
(i-tlC,4-i')...(2)+11. +2
From equation 1, 1π-(2π-(i+π-αl i') 1=i-
) i'-α (:3) Therefore, the deviation angle δ is determined from the relational expression (3) between the incident angle, the exit angle, and the apex angle.

第4図は本発明の構成要素であるプリズJ1とウェハと
の位置関係を示す説明図である。
FIG. 4 is an explanatory diagram showing the positional relationship between the prism J1, which is a component of the present invention, and the wafer.

同図中入射点とウェハ3及び射出点とウエノ\3との距
離をり、lとし2種のレーザ光1fiA、Bのスポット
間の距離をDとする。また、レーザ光線へ、Bによるプ
リズJ・における入射光線と射出光線とのなず尖角を各
々δ 、δ とし、それらQ)差を Δδ−δ −δ   と定義する。
In the figure, the distances between the incident point and the wafer 3 and the exit point and the wafer 3 are subtracted by l, and the distance between the spots of the two types of laser beams 1fiA and B is D. Further, the apex angles between the incident light beam and the exit light beam at the prism J due to B are δ and δ, respectively, and the Q) difference between them is defined as Δδ−δ−δ.

そして Δδ〈〈1のとき   D〜ΔδLまたαが充
分小さい場合には  D〜Δδlとみなしてよい。
When Δδ<<1, it can be regarded as D~ΔδL, or when α is sufficiently small, it can be regarded as D~Δδl.

例えば、入射波の入射点での法線とのなす角iを3(1
’、頂角αを10’とし、へrレーザ発振器4−iの5
145人及びYAGレーザ発振器4−2の1.06μI
nのレーザ光へ、Bの屈折率は各々 1.519゜1.
512であることから δ =  25.22°、   δ = 25.15゜
となり、従って   Δδ−〇、07゜そして、プリズ
ム8からウェハ3までの距離lを例えば8.21111
とする場合の両レーザ光線A、13のスボソ1−の間隔
I)+は D + 〜0.07X (π/ 180 ) X 8.
2 (+u+)〜9 (μm)    となる。
For example, the angle i between the incident wave and the normal at the point of incidence is 3(1
', the apex angle α is 10', and the 5 of the laser oscillator 4-i is
145 people and 1.06μI of YAG laser oscillator 4-2
The refractive index of B is 1.519°1.
512, δ = 25.22°, δ = 25.15°, and therefore Δδ−〇, 07°.Then, the distance l from the prism 8 to the wafer 3 is, for example, 8.21111
In this case, the distance between the two laser beams A and 13 (I) + is D + ~0.07X (π/180) X 8.
2 (+u+) to 9 (μm).

また1例えばプリズム8からウエノX3までの距離lを
24.6mmとするとスポ・ノドの間隔D2はD2〜0
.07X  (π/180 )  X 24.6 (龍
)〜27(μm)    となる。
For example, if the distance l from the prism 8 to the Ueno X3 is 24.6 mm, the spacing D2 between the spout and the nose
.. 07X (π/180) X 24.6 (dragon) ~ 27 (μm).

第5図(al乃至(C1は本発明を用いた2種のレーザ
光線Δ、Bによるウェハ上のスポットの走査を示す平面
図、ウェハ上の光の強度分布図及びし ザ光線の走査に
よる単結晶シリコンの形成分布図を各々示す。
Figure 5 (al to (C1) is a plan view showing the scanning of a spot on a wafer by two types of laser beams Δ and B using the present invention, a diagram of the intensity distribution of light on the wafer, and Each figure shows a formation distribution map of crystalline silicon.

第5図ta+において、2種のレーザ光線A、’Bが真
上からウェハ3上に照射されζおり、さらに同時に両光
線によるスポット1の間隔1〕は−・定に保持されたま
ま上方へスポット1の領域が移動している。レーザ光線
の照射により、スポットの中央部に単結晶Cが形成され
、外周部はポリライクのグレインMが形成されている。
In Fig. 5 ta+, two types of laser beams A and 'B are irradiated onto the wafer 3 from directly above, and at the same time, the distance 1] between the spots 1 caused by both beams is kept constant at -. The area of spot 1 is moving. By irradiating the laser beam, a single crystal C is formed at the center of the spot, and poly-like grains M are formed at the outer periphery.

一一木の同一光線束となり進行して来た2種のレーザ光
線A、Bはプリズム8にて2木の分離された元のレーザ
光線に戻り、所定の距離だけプリズム8から離れた位置
に設けられているステージ2ノウエバ3上に2つの照射
領域であるスポット1が形成されている。係る2つのス
ポットの中心間の距MltDは例えば数十μm程度で、
且つ両スポソ[・の大きさは大きい方が単結晶化する際
の効果ア(大きいことが判った。従って2例えばスポッ
トを大きくするためレンズ等を用いて光束を広げると光
度が弱まりあまり効果が上らないという事実もおこり、
一方、前記の如くスポット間の距^+tDは。
The two types of laser beams A and B, which have been traveling as the same beam bundle of one tree, return to the original laser beams that were separated into two trees at the prism 8, and are separated from the prism 8 by a predetermined distance. Spots 1, which are two irradiation areas, are formed on the stage 2 and the bar 3 provided. The distance MltD between the centers of the two spots is, for example, about several tens of μm,
In addition, it was found that the larger the size of both sposo There is also the fact that it does not rise,
On the other hand, as mentioned above, the distance between the spots ^+tD is.

例えばプリズムとウェハ間の距離a、プリズムの頂角α
、入射角i等の調整で一定に制御できるため効果的な単
結晶の形成が可能となった。
For example, the distance a between the prism and the wafer, the apex angle α of the prism
, the incident angle i can be controlled to a constant value by adjusting the incident angle i, etc., making it possible to form an effective single crystal.

第5図tb+において、光強度ばガウス型と異った分布
を示しており、すなわちピークの山が2つに分かれた分
布図を示している。そしてレーザ照射後のウェハ上にお
いて、走査線上の中央部C領域は半導体の基板となる単
結晶化された部分、その隣の2つの中間領域Mは結晶粒
(グレイン)を含むポリライク部2両周辺領域Fは多結
晶部を構成している。
In FIG. 5 tb+, the light intensity shows a distribution different from the Gaussian type, that is, it shows a distribution map in which the peak is divided into two. Then, on the wafer after laser irradiation, the central region C on the scanning line is a single crystallized region that will become the semiconductor substrate, and the two intermediate regions M next to it are the peripheries of two polylike regions containing crystal grains. Region F constitutes a polycrystalline portion.

例えば、レーザ光線の照射による走査後レーザ光線のス
ポットを浴びない周辺領域Fは、多結晶シリコンで形成
されているためにアトランダムな方向を有する結晶か沢
山あり、その1清接する2つのピーク部の周辺部である
中間領域Mは、レーザ光わnの照射による走査後照射部
の温度の低1;に併って多結晶シリコンを構成する結晶
粒よりは大きな結晶粒(グレイン)ができてポリライク
部が形成される。一方、レーザ光線の照射による走査を
中心部にうりだ中央部領域Cは9両スボソ1N、が所定
の距団11例えば数十pm離れた位:M′で照射を行っ
ζいるために走査中央部は両スポット1に比べて若干温
度か低い領域であったため2つのピーク部よりも時間的
に先に、しかし前述の中間領域Mよりは時間的に後に常
温に戻るために中央部領14Cの温度の低土中に既に中
間領域Mは常温に戻ってポリライク部が形成され゛(い
る。従っ−(、中央rl+ 、!TI域Cの温度の低下
中には中間領域Mのポリライク部の形成により周辺領域
Fにある多結晶シリコンを中央部領域Cから結果的にl
’M4 i”ilfするごとになり、中間領域Mは多結
晶シリコンの影響を受iJずに良好なElχ結晶シリコ
ンが2つのピーク部間に形成されることになる。
For example, the peripheral region F, which is not exposed to the laser beam spot after scanning by laser beam irradiation, is made of polycrystalline silicon, so there are many crystals with at random directions, and one of them has two peaks that are in contact with each other. In the intermediate region M, which is the peripheral part of the laser beam, crystal grains (grains) larger than the crystal grains constituting polycrystalline silicon are formed due to the low temperature of the irradiated part after scanning by the laser beam irradiation. A polylike portion is formed. On the other hand, the central region C that is scanned by the laser beam irradiation is irradiated at a predetermined distance group 11, for example, at a distance of several tens of pm: Since the temperature of the central area 14C was slightly lower than that of both spots 1, the temperature of the central area 14C was returned to room temperature earlier than the two peak areas, but later than the aforementioned middle area M. In the low-temperature soil, the middle region M has already returned to normal temperature and a polylike part is formed. Therefore, during the temperature drop in the central rl+, !TI region C, the polylike part in the middle region M is formed. As a result, the polycrystalline silicon in the peripheral region F is transferred from the central region C to l.
'M4 i''ilf, the intermediate region M is not affected by polycrystalline silicon and good Elχ crystal silicon is formed between the two peak parts.

(7) 発明の効果 以」二述べζきたように本発明を用いると、2木の異な
る波長のレーザ光線を混ぜ゛ζ同一光線束としてブリス
J1に入射させることによって、近接した2つのスポッ
トを形成できるために例えばウェハとプリスムの間の距
離を変えることにより容易に2つのスポット間隔を制御
でき、従ってシリ−1ンのり゛す品情化に効果的な数十
μmのスボ・71間隔の形成が容易に可能となる効果を
有する。
(7) Effects of the Invention As mentioned above, when the present invention is used, two laser beams of different wavelengths are mixed and made to enter the beam J1 as the same bundle of rays, thereby making it possible to combine two adjacent spots. For example, by changing the distance between the wafer and the prism, the spacing between the two spots can be easily controlled. This has the effect of allowing easy formation.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(al及び(b)は従来用いられていたレーザを
用いた中−τ、、1;晶化の力演、第2図ta+及び(
blは本発明の一実施例の正面図とその一部の斜視図、
第31ン1はプリスJ、内の透過晃路を示す図、第4図
は本発明の構成要素であるブリズJオとウェハとの位置
関係を示す説明図、第5図(al及び(blは本発明を
用いたウェハ上のスポットの走査を示す平面図、ウェハ
ーにの光の強度分布図及びレーザ光線の走査による単結
晶シリ、:1ンの形成分布図をそれぞれ示す。 1・・・スポット、   2・・・ステージ、3・・・
ウニr−ハ、  5・・・ハーフミラ−27・・スごト
ヤンシスヲーム、   7−4・・・反射鏡、   )
(・・・プリズム、   Δ・・・5145人のレ−り
゛光イ泉、  B・・・1.06/lntのし・−サ光
線、  0・・・中央部領域、  ■〕・・・両スポッ
ト間隔、  F・・・周辺領域、   I・・・入射光
線、  M・・・中間領域、  R・・・射出光線、 
 α・・・プリズJ・の頂角、δ・・・入射、射出光線
の角度のずれ、  p・・・プリスJオとステージ間の
距離。 第21 −」 (α) 第2暮 (bl 爾3I!l 第LN3EI Ns口
Figure 1 (al and (b) shows the power of crystallization during -τ, 1; Fig. 2 ta+ and (
bl is a front view and a partial perspective view of an embodiment of the present invention;
No. 31-1 is a diagram showing the permeation path in the prism J, FIG. 1 shows a plan view showing the scanning of a spot on a wafer using the present invention, a diagram of the intensity distribution of light on the wafer, and a diagram of the formation distribution of single crystal silicon, :1, by scanning the laser beam. 1... Spot, 2... Stage, 3...
Sea urchin r-ha, 5...Half mirror-27...Sugotyansiswomu, 7-4...Reflector, )
(...prism, Δ...5145 rays of light, B...1.06/lnt beam, 0...central area, ■)... Interval between both spots, F... peripheral area, I... incident ray, M... intermediate area, R... exit ray,
α...Apex angle of prism J., δ...Angle deviation of incident and exit rays, p...Distance between prism J. and stage. 21st -” (α) 2nd night (bl 3I!l 3rd LN3EI Ns mouth

Claims (2)

【特許請求の範囲】[Claims] (1)  多結晶シリコンの単結晶化に際し、2種の異
なる波長のレーザ光線を一時的に同一光軸を通過する一
本のレーザ光線とし、前記一本となったレーデ光線をプ
リズム内に入射さ−U、前記プリスムを射出し分離した
2本のレーザ光線を所定の位置に設けたステージ上のウ
ェハに照射さ−U前記2本のレーザ光線による2つのス
ポット間隔を任意に制御することを特徴とする半導体装
置の製造方法。
(1) When monocrystalizing polycrystalline silicon, two types of laser beams with different wavelengths are temporarily made into a single laser beam passing through the same optical axis, and the single laser beam is input into a prism. S-U: The prism is emitted and two separated laser beams are irradiated onto a wafer on a stage provided at a predetermined position.-U: The interval between the two spots by the two laser beams is arbitrarily controlled. A method for manufacturing a featured semiconductor device.
(2) 前記一本となったし゛−ザ光線を、多角形の回
転体に取付けた反射鏡にて反射させるごとにより前記レ
ーザ光線を振動さ・Uて走査を行うことを特徴とする特
許請求の範囲第1項記載の半導体装置の製造方法。
(2) A patent claim characterized in that each time the single laser beam is reflected by a reflecting mirror attached to a polygonal rotating body, the laser beam is vibrated and scanned. A method for manufacturing a semiconductor device according to item 1.
JP57174779A 1982-10-05 1982-10-05 Manufacture of semiconductor device Granted JPS5963721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57174779A JPS5963721A (en) 1982-10-05 1982-10-05 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57174779A JPS5963721A (en) 1982-10-05 1982-10-05 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5963721A true JPS5963721A (en) 1984-04-11
JPH0352215B2 JPH0352215B2 (en) 1991-08-09

Family

ID=15984512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57174779A Granted JPS5963721A (en) 1982-10-05 1982-10-05 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5963721A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01246828A (en) * 1988-03-28 1989-10-02 Tokyo Electron Ltd Beam annealing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01246828A (en) * 1988-03-28 1989-10-02 Tokyo Electron Ltd Beam annealing device

Also Published As

Publication number Publication date
JPH0352215B2 (en) 1991-08-09

Similar Documents

Publication Publication Date Title
US6717105B1 (en) Laser annealing optical system and laser annealing apparatus using the same
JP7120903B2 (en) LASER PROCESSING APPARATUS AND LASER PROCESSING METHOD
US11811185B2 (en) Laser dicing device, method of laser beam modulation, and method of dicing a substrate
JP2001156018A5 (en)
JPS613102A (en) Optical lens and manufacture thereof
JP2004200497A (en) Light emitting device and laser annealing device
US20040124184A1 (en) Method and apparatus for forming periodic structures
KR100541126B1 (en) An optical system for uniformly irradiating a laser beam
JPS5963721A (en) Manufacture of semiconductor device
JP2003287703A (en) Optical system for uniformly irradiating laser beam
JP2003287706A (en) Optical system for uniformly irradiating laser beam
EP0974853A1 (en) Method for producing chirped in-fibre bragg grating
JP3537423B2 (en) Laser beam uniform irradiation optical system
JPH10333077A (en) Beam homogenizer and production of semiconductor thin film
JP3762773B2 (en) Laser beam uniform irradiation optical system
JPH065537A (en) Method for annealing semiconductor layer
WO2021145176A1 (en) Laser annealing device and laser annealing method
JP3537424B2 (en) Laser beam uniform irradiation optical system
JP2005129916A (en) Beam homogenizer, laser irradiation system, and semiconductor device production method
JPH03289128A (en) Manufacture of semiconductor thin film crystal layer
KR100498546B1 (en) laser irradiation equipment and the application method
JP2003039188A (en) Laser beam machining method and laser beam machining device
JPH02187017A (en) Formation of semiconductor layer into single crystal
KR20200001968A (en) Laser dicing device for suppressing scattering
JP2006080205A (en) Device and method for laser machining