JPS5963613A - Laminated conductor - Google Patents

Laminated conductor

Info

Publication number
JPS5963613A
JPS5963613A JP17084882A JP17084882A JPS5963613A JP S5963613 A JPS5963613 A JP S5963613A JP 17084882 A JP17084882 A JP 17084882A JP 17084882 A JP17084882 A JP 17084882A JP S5963613 A JPS5963613 A JP S5963613A
Authority
JP
Japan
Prior art keywords
resistance
resistance value
present
planar
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17084882A
Other languages
Japanese (ja)
Other versions
JPH06101246B2 (en
Inventor
勝次 中原
松浦 和夫
大島 桂典
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP17084882A priority Critical patent/JPH06101246B2/en
Publication of JPS5963613A publication Critical patent/JPS5963613A/en
Publication of JPH06101246B2 publication Critical patent/JPH06101246B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Non-Insulated Conductors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は積層型導電体に関するものであり、特に高抵抗
領域で抵抗値の安定性がよく、バラツキの少ない面状導
電体に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a laminated conductor, and particularly to a planar conductor that has good resistance value stability in a high resistance region and less variation.

導電体としては各種金属が古くから広範に利用されてい
るが、近年科学技術の進歩に伴ない、面方向に特定の導
電性(電気抵抗)を有する導電体の需要が高まると共に
、要求特性も本来の導電性に加え種々の特性の具備を要
求されるようになってきており、金属材料では不都合の
場合が少なくない。たとえば、ある種の抵抗素子、面状
発熱体、静電記録や電子写真などの導電基板は10〜1
09Ω/口の表面電気抵抗を要し、これらにはバルクな
金属材料以外の導電体が用いられている。これらの導電
体としては、(1)一般に絶縁性基板に導電性有機高分
子を塗布したもの、 (2)絶縁性基板に金属材料や導電性金属化合物を蒸着
、スパッタリング、イオンプレーティングなどの方法で
薄膜形成したもの、 (3)導電性粉体を有機高分子結着剤中に分散したもの
、などがある。しかしながら、これらのものは、次のよ
うにそれぞれ欠点があり、要求に対応しきれていないの
が実状である。たとえば(1)のものは、有機高分子が
4級アンモニウムやスルホン酸ナトリウムなどの高分子
電解質であり、要するに吸湿によって導電性を発現させ
ているために湿度変化によって導電性が大幅に変化する
欠点を有し、安定使用できない。(2)のものは、導電
層が本来強靭性がない上に高々1μという薄膜であるた
めに、耐摩耗性がなく、耐久性に乏しいなどの欠点があ
り、表面に露出するような形状では使用できない。(3
)のものは、相対的低抵抗を目的とすると導電粉を多量
に要するため強靭性、可撓性がなく、相対的高抵抗を目
的とすると導電粉の分散に著しく高精度な微調節を必要
とししかも均一な抵抗を有したものが得にくい。
Various metals have been widely used as conductors for a long time, but with the advancement of science and technology in recent years, the demand for conductors with specific conductivity (electrical resistance) in the plane direction has increased, and the required characteristics have also increased. Metal materials are often required to have various properties in addition to their original conductivity, and metal materials often have disadvantages. For example, certain resistance elements, sheet heating elements, conductive substrates for electrostatic recording and electrophotography, etc.
They require a surface electrical resistance of 0.9 Ω/hole, and use conductors other than bulk metal materials. These conductors are (1) generally coated with a conductive organic polymer on an insulating substrate, and (2) methods such as vapor deposition, sputtering, ion plating, etc. of metal materials or conductive metal compounds on an insulating substrate. (3) conductive powder dispersed in an organic polymer binder, etc. However, these methods each have their own drawbacks as described below, and the reality is that they do not fully meet the demands. For example, in (1), the organic polymer is a polymer electrolyte such as quaternary ammonium or sodium sulfonate, and in short, it develops conductivity through moisture absorption, so the drawback is that the conductivity changes significantly with changes in humidity. It cannot be used stably. In the case of (2), since the conductive layer is not inherently tough and is a thin film with a thickness of at most 1 μm, it has drawbacks such as lack of wear resistance and poor durability, and it cannot be used in a shape that is exposed on the surface. I can not use it. (3
) requires a large amount of conductive powder when aiming for relatively low resistance, so it lacks toughness and flexibility; when aiming for relatively high resistance, extremely high-precision fine adjustment is required for the dispersion of the conductive powder. However, it is difficult to obtain a material with uniform resistance.

このように、たとえば10〜109Ω/口の表面抵抗を
要する領域では、抵抗値が、環境条件的にも、経時的に
も、機械的にも、安定で、しかも抵抗値のバラツキの少
ない面状の導電体は未だ開発されていす、そのため装置
やその使用方法を工夫して実用しているのが実情である
In this way, for example, in a region that requires a surface resistance of 10 to 109 Ω/hole, the resistance value is stable under environmental conditions, over time, and mechanically, and the surface shape has little variation in resistance value. The current state of conductors is still being developed, and therefore devices and methods of use must be devised to put them into practical use.

本発明の目的は従来知られた面状導電体の欠点を克服し
、抵抗値のバラツキが少なく、環境条件的にも、経時的
にも、機械的にも安定な面状導電体を提供することにあ
る。
The purpose of the present invention is to overcome the drawbacks of conventionally known planar conductors, and to provide a planar conductor that has little variation in resistance value and is stable under environmental conditions, over time, and mechanically. There is a particular thing.

かかる本発明の目的は、実質的に金属および/または半
導体のみからなる面状導電性物質(A)表面に、平均粒
子径が10μ以下で体積固有抵抗が10−6〜108Ω
・cmの導電粉末を絶縁性有機高分子中に0.05〜1
5wt%添加したものの層(B)を付設してなる積層体
構成物により達成される。
The object of the present invention is to provide a surface conductive material (A) consisting essentially of metals and/or semiconductors with an average particle diameter of 10 μm or less and a volume resistivity of 10 −6 to 10 8 Ω.
・0.05 to 1 cm of conductive powder in an insulating organic polymer
This is achieved by a laminate structure having a layer (B) added with 5 wt%.

本発明において、面状導電性物質(A)が強度保持力を
有していればそれは単体で構成成分として用いることも
できるが、箔もしくは薄膜状物である場合等にあっては
、必要に応じ、紙、プラスチックシート、プラスチック
フィルム、ガラス、セラミック、布などの絶縁性基板(
C)上に積層して用いることもできる。この場合該絶縁
性基板との積層は接着剤や粘着剤を用いて行なってもよ
いし、それらを用いず該絶縁性基板表面にメッキ、真空
蒸着、化学蒸着、スパッタリング、イオンブレーティン
グなどの方法で薄膜形成したものであってもよい。面状
導電性物質(A)の材料は金属(合金を含む)および半
導体から選ばれる。たとえば、Al、Cu、Sn、Zn
、Pd、Ag、Au、Pt、Rh。
In the present invention, if the planar conductive material (A) has strength retention power, it can be used alone as a constituent component, but if it is a foil or thin film, etc., it may be necessary to Depending on the situation, insulating substrates such as paper, plastic sheets, plastic films, glass, ceramics, cloth, etc.
It can also be used by laminating it on top of C). In this case, lamination with the insulating substrate may be carried out using adhesives or pressure-sensitive adhesives, or by methods such as plating, vacuum deposition, chemical vapor deposition, sputtering, ion blating, etc. on the surface of the insulating substrate without using adhesives or adhesives. It may be formed into a thin film. The material of the planar conductive substance (A) is selected from metals (including alloys) and semiconductors. For example, Al, Cu, Sn, Zn
, Pd, Ag, Au, Pt, Rh.

Fe、Co、Cr、、Ni、ステンレス、真ちゅう、パ
ーマロイ、その他多くの金属や合金類やSi、C、In
2O3、SnO2、CdO、CdS、In2O3−Sn
02などの半導体があり、これらは単独で用いてもよい
し、2種類以上が積層されたり、混合されたりしていて
もよい。これらの面状導電性物質の表面抵抗としては1
09Ω/口以下であることがよい。表面抵抗が109Ω
/口を越えると本発明の目的である10〜109Ω/口
の表面抵抗を有する構成物が得にくく好ましくない。
Fe, Co, Cr, Ni, stainless steel, brass, permalloy, and many other metals and alloys, Si, C, In
2O3, SnO2, CdO, CdS, In2O3-Sn
There are semiconductors such as 02, and these may be used alone, or two or more types may be stacked or mixed. The surface resistance of these planar conductive materials is 1
It is preferable that the resistance is 0.09 Ω/mouth or less. Surface resistance is 109Ω
If the resistivity exceeds 1/2, it will be difficult to obtain a structure having a surface resistance of 10 to 10<9 >Ω/0, which is the object of the present invention, and this is not preferred.

本発明における該面状導電性物質(A)の平均厚さは、
5Å〜5mmの範囲が好ましい。平均膜厚がこのJ館囲
に達しないと109Ω/口以下の表面抵抗が得にくく、
逆に5mmを越えると面状導電体として実用しにくい面
がおり好ましくない。また形状としては、平面状ないし
、円筒状であることが実用面、製造面から好ましい。な
お上記平均膜厚において、特に100Å以下の場合は必
ずしも連続膜にならず島状構造を呈していることが多い
が、これらについての上記厚さは全体が均一な厚みの膜
であると仮定してあらわしたものである。このような島
状構造を呈する極薄膜を含めて、上記面状導電性物質(
A)の膜厚が10μ以下であるような場合は上記絶縁性
基板(C)やさらに厚い導電性物質上に積層されたもの
であることが強度面から望ましい。特に絶縁性基板上に
金属および/または半導体を5Å〜1μ薄膜形成したも
のは実用上好ましく用いられる。
The average thickness of the planar conductive material (A) in the present invention is:
A range of 5 Å to 5 mm is preferred. If the average film thickness does not reach this J building wall, it will be difficult to obtain a surface resistance of 109Ω/hole or less.
On the other hand, if it exceeds 5 mm, it may be difficult to put it to practical use as a planar conductor, which is not preferable. Further, the shape is preferably planar or cylindrical from the viewpoint of practical use and manufacturing. Note that when the above average film thickness is 100 Å or less, it is not necessarily a continuous film and often exhibits an island-like structure, but the above thicknesses are based on the assumption that the film has a uniform thickness throughout. It is expressed as follows. The above-mentioned planar conductive materials (including ultrathin films exhibiting such island-like structures)
When the film thickness of A) is 10 μm or less, it is desirable from the viewpoint of strength that it be laminated on the insulating substrate (C) or a thicker conductive material. In particular, a thin film of 5 Å to 1 μm of metal and/or semiconductor formed on an insulating substrate is preferably used for practical purposes.

本発明において、面状導電性物質(A)表面に付設する
層(B)を構成する必須成分である導電粉末は、体積固
有抵抗が10−6〜108Ω・cmである必要があり、
將に好ましくは10−4〜105Ω・cmであることが
よい。体積固有抵抗が上記範囲を越えると本発明の目的
である10〜109Ω・cmの表面電気抵抗を有するも
のが得にくかったり、また導電粉末を多量に添加する必
要が生じたりして好ましくなく、逆に体積固有抵抗が上
記範囲に達しないものでは、得られるものの表面電気抵
抗の均質性が悪く好ましくない。本発明に有用な導電粉
末としてはAl、Cu、Ag、Ni−Crなどの合金を
含む金属粉末、SnO2、In2O3、ZnO、TiO
x(x=1〜2)などの金属化合物粉末やSiやCなど
で代表される半導体粉末など多くのものがあり、これら
は単独で用いられてもまた2種類以上が化合、混合など
された状態で併用されていてもよい。これらの粉末は平
均粒子径が10μ以下である必要があり、長径でも10
μ以下、特に好ましくは5μ以下であることがよい。粒
子径が上記を越えると得られるものの表面電気抵抗の均
質性が悪くなり好ましくない。
In the present invention, the conductive powder, which is an essential component constituting the layer (B) attached to the surface of the planar conductive material (A), must have a volume resistivity of 10-6 to 108 Ω·cm,
It is preferable that the resistance is 10-4 to 105 Ω·cm. If the volume resistivity exceeds the above range, it may be difficult to obtain a surface electrical resistivity of 10 to 109 Ωcm, which is the objective of the present invention, and it may be necessary to add a large amount of conductive powder, which is not preferable. If the volume resistivity does not reach the above range, the resulting surface electrical resistance will be poorly homogeneous, which is not preferable. Conductive powders useful in the present invention include metal powders including alloys such as Al, Cu, Ag, and Ni-Cr, SnO2, In2O3, ZnO, and TiO.
There are many types of powder such as metal compound powders such as x (x = 1 to 2) and semiconductor powders represented by Si and C, and these can be used alone or in combinations or mixtures of two or more types. May be used in combination. These powders must have an average particle diameter of 10μ or less, and the major diameter must also be 10μ or less.
It is preferably less than μ, particularly preferably less than 5 μ. If the particle size exceeds the above range, the homogeneity of the surface electrical resistance of the obtained product deteriorates, which is not preferable.

本発明において、層(B)を構成する他方の必須成分で
ある絶縁性有機高分子としては、各種の周知の熱可塑性
樹脂、たとえばポリ酢酸ビニル、ポリ塩化ビニル、ポリ
アクリル酸エステル、ポリメタクリル酸エステル、ポリ
塩化ビニリデン、ポリビニルアセタールやこれらの共重
合体、ポリエステル、ポリアミド、ポリウレタン、セル
ロース誘導体、シリコン樹脂、ポリエーテル、ポリエス
テルアミド、ポリエステルエーテル、ポリアミドイミド
、ケトン樹脂、アルキッド樹脂、などの熱可塑性樹脂、
エポキシ樹脂、ポリウレタン、不飽和ポリエステル、ポ
リイミド、ポリアミド、さらに水酸基やカルボキシル基
やアミノ基を含有するポリアクリル酸エステル共重合体
やポリメタクリル酸エステル共重合体などの熱可塑性樹
脂と硬化剤からなるもの、などの熱硬化性樹脂があり、
これらは単独でも2種以上の共重合体やブレンド物の形
でも用いられる。勿論上記に限定されない。また必要に
応じて接着促進剤、可塑剤、安定剤、酸化防止剤、紫外
線吸収剤、増粘剤こ消泡剤などの添加剤を配合して使用
してもよい。
In the present invention, the insulating organic polymer, which is the other essential component constituting the layer (B), may include various well-known thermoplastic resins, such as polyvinyl acetate, polyvinyl chloride, polyacrylic acid ester, and polymethacrylic acid. Thermoplastic resins such as esters, polyvinylidene chloride, polyvinyl acetals and their copolymers, polyesters, polyamides, polyurethanes, cellulose derivatives, silicone resins, polyethers, polyesteramides, polyesterethers, polyamideimides, ketone resins, alkyd resins, etc. ,
Composed of thermoplastic resins such as epoxy resins, polyurethanes, unsaturated polyesters, polyimides, polyamides, and polyacrylic ester copolymers and polymethacrylic ester copolymers containing hydroxyl, carboxyl, and amino groups, and curing agents. There are thermosetting resins such as
These may be used alone or in the form of a copolymer or blend of two or more types. Of course, it is not limited to the above. Further, additives such as adhesion promoters, plasticizers, stabilizers, antioxidants, ultraviolet absorbers, thickeners, and antifoaming agents may be added as necessary.

上記層(B)の厚さは、目的により適宜選択されるが、
1μ〜100μ、さらに好ましくは2μ〜20μの範囲
である。
The thickness of the layer (B) is appropriately selected depending on the purpose, but
It is in the range of 1μ to 100μ, more preferably 2μ to 20μ.

上記(B)は組成あるいは成分比率の異なる2種類以上
の層になっていてもよい。
The above (B) may be composed of two or more types of layers having different compositions or component ratios.

上記層(B)を構成する導電粉末の割合は0.05〜1
5wt%であることが必要であるが、特に好ましくは、
0.1〜10wt%であることがよい。導電粉末の割合
が上記範囲に達しないと本発明の目的に必要な導電性が
発現せず好ましくなく、逆に上記範囲な越えると上記(
3)で述べたような可撓性の不足、表面平滑性の不足な
どの問題があり好ましくない。
The ratio of the conductive powder constituting the layer (B) is 0.05 to 1
It is necessary that the content is 5 wt%, and particularly preferably,
It is preferably 0.1 to 10 wt%. If the proportion of the conductive powder does not reach the above range, the conductivity necessary for the purpose of the present invention will not be achieved, which is not preferable.On the other hand, if the proportion exceeds the above range, the above (
It is not preferable because it has problems such as insufficient flexibility and insufficient surface smoothness as described in 3).

本発明において、上記(A)表面への(B)の積層方式
としては、上記導電粉末と上記有機高分子との混合物を
必要に応じて溶媒や分散媒などを用いて(A)の表面に
刷毛塗り、浸漬塗し、ナイフ塗や、ロール塗り、スプレ
ー塗り、流し塗り、回転塗り(スピンナー、ホエラーな
ど)、押出し塗り(押出しラミネートを含む)、ファン
テン塗りなど通常に行なわれている方式が適宜用いられ
うる。また予め上記(B)のシートもしくはフィルムを
つくっておき、これを上記(A)表面に積層してもよい
In the present invention, as a method of laminating (B) on the surface of (A), a mixture of the conductive powder and the organic polymer is applied to the surface of (A) using a solvent or a dispersion medium as necessary. Commonly used methods include brush coating, dip coating, knife coating, roll coating, spray coating, flow coating, rotation coating (spinner, whaler, etc.), extrusion coating (including extrusion lamination), and fountain coating. It can be used as appropriate. Alternatively, the sheet or film of (B) above may be prepared in advance and laminated on the surface of (A) above.

かくして、特に高抵抗領域で抵抗値の安定性がよく、バ
ラツキの少ない面状導電体が得られるのであるが、本発
明の積層型導電体は、それを構成する各層単独の作用効
果からは予測し得ない作用効果を示す。即ち本発明の積
層型導電体の表面抵抗値は、層(A)単独の表面抵抗値
よりも高く、層(B)単独の表面抵抗値よりも低く、し
かも抵抗値にバラツキが少ない。そのため、(B)中へ
の導電性粉末の添加量は、(B)単独で用いる場合(上
記(2)の場合)にくらべて、著しく低くて済み、その
結果、強靭性、可撓性がすぐれており、また導電粉末の
分散に高度な調節手段を採る必要もない。また一般に積
層状態の構成体の表面抵抗は、表面層の表面電気抵抗が
支配因子となる(たとえば導電体の表面層に絶縁体を積
層した場合はその絶縁体の(表面)電気抵抗が支配因子
となり、導電性は発現しない)にもかかわらず、導電粉
末を絶縁性有機高分子中にO.5wt%添加してたとえ
ば厚さ10μ程度のシートとした表面電気抵抗が101
6Ω/口以上であるような平面方向にも厚さ方向にも実
質的には絶縁体であっても、これを本発明の(B)成分
として用いると得られる積層体は103Ω/口以下の表
面抵抗を示す。極論をすれば、導電体の表面に絶縁体を
積層して導電性が発現したことを意味しており、これが
本発明の骨子である。何故にこのような効果が発現する
のか、本発明者らにも明らかでなく、積層構成における
表面電気抵抗およびその抵抗の均質性に関し、現時点で
理論的説明を行ない得ない新規知見といわざるを得ない
In this way, it is possible to obtain a planar conductor with good resistance value stability and little variation, especially in the high resistance region, but the laminated conductor of the present invention cannot be predicted from the effects of each layer constituting it alone. It shows an action and effect that cannot be achieved. That is, the surface resistance value of the laminated conductor of the present invention is higher than the surface resistance value of the layer (A) alone, and lower than the surface resistance value of the layer (B) alone, and there is little variation in the resistance value. Therefore, the amount of conductive powder added to (B) can be significantly lower than when (B) is used alone (case (2) above), resulting in improved toughness and flexibility. This is advantageous and does not require sophisticated control measures for the dispersion of the conductive powder. In general, the surface resistance of a laminated structure is determined by the surface electrical resistance of the surface layer (for example, when an insulator is laminated on the surface layer of a conductor, the (surface) electrical resistance of the insulator is the governing factor). However, when a conductive powder is mixed into an insulating organic polymer, O. For example, when a sheet with a thickness of about 10μ is made by adding 5wt%, the surface electrical resistance is 101
Even if it is substantially an insulator in both the plane direction and the thickness direction with a resistance of 6 Ω/hole or more, when this is used as the component (B) of the present invention, the resulting laminate will have a resistance of 10 3 Ω/hole or less. Indicates surface resistance. In extreme terms, this means that conductivity is developed by laminating an insulator on the surface of a conductor, and this is the gist of the present invention. It is not clear to the inventors why such an effect occurs, and it must be said that this is a new finding that cannot be theoretically explained at present regarding the surface electrical resistance and the homogeneity of that resistance in a laminated structure. I don't get it.

本発明の効果は、面状導電性物質(A)が絶縁性基板(
C)上に積層された厚さ500Å以下の薄膜である場合
に特に有効である。すなわち、厚さが1μ以下、特に5
00Å以下の薄膜は上記(2)で述べたような多くの問
題点があり、しかも特に実用上可撓性を要し、絶縁性基
板(C)がプラスチックシートであるような場合や、常
に他の物体と接触しながら用いられる場合は上記問題点
が大きな障害となっていたが、本発明により、導電性を
保持、導電性の安定化、耐摩耗性や耐薬品性の向上が一
挙に達成できたことになる。
The effect of the present invention is that the planar conductive material (A) is formed on an insulating substrate (
C) This is particularly effective when a thin film with a thickness of 500 Å or less is laminated thereon. That is, the thickness is less than 1 μm, especially 5 μm.
Thin films with a thickness of 00 Å or less have many problems as mentioned in (2) above, and in particular, they must be flexible for practical purposes, and in cases where the insulating substrate (C) is a plastic sheet, or when other materials are always used. The above-mentioned problems were a major obstacle when used in contact with other objects, but with the present invention, it has been achieved all at once to maintain conductivity, stabilize conductivity, and improve abrasion resistance and chemical resistance. That means it's done.

要するに本発明は、上記(2)と(3)で述べたものを
積層構成とした場合にそれぞれの欠点を克服できるとと
もに両者から期待できない表面電気抵抗の発現、表面電
気抵抗の均質性などが発現することが大きな特長であり
、面状導電性物質の実用範囲の拡大、これを用いた部材
、機器の信頼性、寿命の向上に大きく寄与するものであ
る。
In short, the present invention can overcome the drawbacks of each of the above-mentioned (2) and (3) when it is made into a laminated structure, and also exhibits surface electrical resistance and homogeneity of surface electrical resistance that cannot be expected from both. This is a major feature that greatly contributes to expanding the practical range of planar conductive materials and improving the reliability and lifespan of components and devices using them.

以下実施例に基づいて本発明を説明する。ただし、本発
明はこの実施例に限定されるものではない。
The present invention will be explained below based on Examples. However, the present invention is not limited to this example.

尚実施例において、表面抵抗値は、荷重が500gの3
5mm角型電極で測定を表面抵抗値を表面抵抗値として
表示した。
In addition, in the example, the surface resistance value is 3 when the load is 500 g.
The surface resistance value measured using a 5 mm square electrode is expressed as the surface resistance value.

実施例1〜6 厚さ100μmの二軸延伸ポリエチレンテレフタレート
フィルム(東し製“ルミラー”)の片側にAlを真空蒸
着して表面抵抗値が5Ω/口の面状導電性物質を得た。
Examples 1 to 6 Al was vacuum deposited on one side of a 100 μm thick biaxially stretched polyethylene terephthalate film (“Lumirror” manufactured by Toshi) to obtain a planar conductive material with a surface resistance value of 5 Ω/hole.

次いで、アクリル樹脂固型分100重量部に対して、平
均粒径が0.1μm以下で体積固有抵抗が1Ω・cmの
SnO2系導電粉末を0.05、0.1、0.5、1.
0.10.20重蟻部を加え、トルエンと酢酸ブチル(
重量比1:1)を溶媒として、全固型分含量を20重量
%とし各々を16時間ボールミルで混合(それぞれ混合
液1〜6)して、上記面状導電性物質の表面に乾燥後の
厚さが5μmになるようにリバースロールコーターで塗
工して、積層型導電体実施例1〜6を得た。これらの表
面抵抗値は第1表の通りであった。第1表から、Sn0
2系導電粉末の添加量は、アクリル樹脂固型分100重
量部に対して、0.05〜15重量%のものが、表面抵
抗値の中心値及びバラツキの特性からみて、特にすぐれ
た積層型導電体であることは明らかである。
Next, 0.05, 0.1, 0.5, 1.0% of SnO2-based conductive powder having an average particle size of 0.1 μm or less and a volume resistivity of 1Ω·cm was added to 100 parts by weight of the solid acrylic resin.
Add 0.10.20 parts of heavy ant, toluene and butyl acetate (
(weight ratio 1:1) as a solvent, the total solid content was 20% by weight, each was mixed in a ball mill for 16 hours (mixtures 1 to 6, respectively), and after drying was applied to the surface of the planar conductive material. Laminated conductor Examples 1 to 6 were obtained by coating with a reverse roll coater to a thickness of 5 μm. These surface resistance values were as shown in Table 1. From Table 1, Sn0
The amount of the 2-type conductive powder added is 0.05 to 15% by weight based on 100 parts by weight of the acrylic resin solid content, which is particularly effective for multilayer molding in terms of the center value and variation characteristics of the surface resistance value. It is clear that it is a conductor.

比較例1〜6 厚さ100μmの“ルミラー”の上に、上記混合液1〜
6を乾燥後の厚さが、10μmになるようにリバースロ
ールコ−ターで塗工した。これらは、第1表にそれぞれ
比較例1〜6としてまとめた。これらの表面低抗値はい
ずれも2X109Ω/口より大きかった。
Comparative Examples 1 to 6 The above mixed solutions 1 to 6 were placed on a 100 μm thick “Lumirror”
6 was coated using a reverse roll coater so that the thickness after drying was 10 μm. These are summarized in Table 1 as Comparative Examples 1 to 6, respectively. All of these surface resistance values were greater than 2×10 9 Ω/mouth.

実施例7 厚さ100μの“ルミラー”の上に、In203−Sn
O2を真空蒸着して、表面抵抗値が、5X103Ω/口
の面状導電性物質を得た。次いで、実施例1の混液2を
上記面状導電性物質の表面に乾燥後の厚さが10μmに
なるようにリバースロールコーターで塗工して、積層型
導電体実施例を得た。この実施例7の表面抵抗値は第1
表の通りであった。
Example 7 In203-Sn was placed on a 100μ thick “lumirror”
O2 was vacuum-deposited to obtain a planar conductive material with a surface resistance value of 5×10 3 Ω/hole. Next, the mixture 2 of Example 1 was coated on the surface of the planar conductive material using a reverse roll coater so that the thickness after drying was 10 μm to obtain a laminated conductor example. The surface resistance value of this Example 7 is the first
It was as shown in the table.

第1表から、本発明の積層型導電体は表面抵抗値及びバ
ラツキの特性からみて、すぐれていることは明らかであ
る。
From Table 1, it is clear that the laminated conductor of the present invention is excellent in terms of surface resistance value and variation characteristics.

比較例7 実施例1で得た表面抵抗値が5Ω/口の面状導電性物賀
の上に上記アクリル樹脂のみを乾燥後の厚さが5μmに
なるようにリバースロールコーターで塗工して比較例7
を得た。この表面抵抗値は、2×109Ω/口より大き
かった。
Comparative Example 7 Only the above acrylic resin was coated with a reverse roll coater so that the thickness after drying was 5 μm on the planar conductive material with a surface resistance value of 5 Ω/mouth obtained in Example 1. Comparative example 7
I got it. This surface resistance value was greater than 2×10 9 Ω/mouth.

以上の結果から、本実施例においては、表面抵抗値が5
Ω/口の面状導電性物質の上に、表面抵抗値が2X10
9Ω/口より大きい、いわば絶縁性の樹脂層を積層する
ことにより、表面抵抗値が、6X106〜7X104Ω
/口の積層型導電体が得られたわけである。
From the above results, in this example, the surface resistance value was 5
The surface resistance value is 2X10 on the planar conductive material of Ω/mouth.
By laminating so-called insulating resin layers that are larger than 9Ω/mouth, the surface resistance value can be increased from 6X106 to 7X104Ω.
This means that a laminated conductor with a diameter of 1/2 mm was obtained.

Claims (1)

【特許請求の範囲】[Claims] 実質的に金属および/または半導体のみからなる面状導
電性物質表面に、平均粒子径が10μ以下で体積固有抵
抗が10−6〜10−8Ω・cmの導電粉末を絶縁性有
機高分子中に0.05〜15重量%添加してなる層を付
設してなる導電体。
A conductive powder with an average particle size of 10μ or less and a volume resistivity of 10-6 to 10-8 Ωcm is placed in an insulating organic polymer on the surface of a planar conductive material consisting essentially of metals and/or semiconductors. A conductor with a layer containing 0.05 to 15% by weight.
JP17084882A 1982-10-01 1982-10-01 Laminated conductor Expired - Lifetime JPH06101246B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17084882A JPH06101246B2 (en) 1982-10-01 1982-10-01 Laminated conductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17084882A JPH06101246B2 (en) 1982-10-01 1982-10-01 Laminated conductor

Publications (2)

Publication Number Publication Date
JPS5963613A true JPS5963613A (en) 1984-04-11
JPH06101246B2 JPH06101246B2 (en) 1994-12-12

Family

ID=15912442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17084882A Expired - Lifetime JPH06101246B2 (en) 1982-10-01 1982-10-01 Laminated conductor

Country Status (1)

Country Link
JP (1) JPH06101246B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008278582A (en) * 2007-04-26 2008-11-13 Yazaki Corp Bracket of attaching resin mold and structure of attaching resin mold

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008278582A (en) * 2007-04-26 2008-11-13 Yazaki Corp Bracket of attaching resin mold and structure of attaching resin mold

Also Published As

Publication number Publication date
JPH06101246B2 (en) 1994-12-12

Similar Documents

Publication Publication Date Title
US2808352A (en) Electrically conductive adhesive tape
US3767519A (en) Electrical conductive film
US5248517A (en) Paintable/coatable overvoltage protection material and devices made therefrom
JPH0421721B2 (en)
US3978378A (en) Articles having electroconductive components of highly electroconductive resinous compositions
US4702980A (en) Conductive sheet and electrostatic recording medium formed therefrom
CN102737749A (en) Conductive particles, conductive paste, and circuit board
CA1144012A (en) Electrically conductive white coatings
KR100464532B1 (en) Functional film
JPS5963613A (en) Laminated conductor
JPS57133454A (en) Electrostatic recording material
JP5169501B2 (en) Electrode paste for electrodes and transparent touch panel
JPH07254308A (en) Conductive paste
JPS61501177A (en) Electric circuits and parts
JPH09180544A (en) Conductive sheet and conductive carrier tape using the conductive sheet
CN1227319C (en) Anisotropic conductive adhesive film
JPH0473809A (en) Transparent conductiv film
JPS61233748A (en) Transparent electrostatic recording film
JPH08311217A (en) Antistatic film for production of antistatic synthetic resin plate
JPH0432527B2 (en)
JPH051852Y2 (en)
JPS6086549A (en) Electrostatic recording body
JP3794167B2 (en) Transparent conductive transfer material
JPS6258513A (en) Conducting compound resin film
JPS5961836A (en) Electrostatic recording medium