JPS5963508A - Apparatus for measuring descaling state of steel plate - Google Patents

Apparatus for measuring descaling state of steel plate

Info

Publication number
JPS5963508A
JPS5963508A JP17331482A JP17331482A JPS5963508A JP S5963508 A JPS5963508 A JP S5963508A JP 17331482 A JP17331482 A JP 17331482A JP 17331482 A JP17331482 A JP 17331482A JP S5963508 A JPS5963508 A JP S5963508A
Authority
JP
Japan
Prior art keywords
steel plate
light
descaling
optical sensor
width direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17331482A
Other languages
Japanese (ja)
Inventor
Yoshikazu Yamamasu
義和 山桝
Hisato Abe
阿部 久登
Tsumoru Fujii
藤井 積
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP17331482A priority Critical patent/JPS5963508A/en
Publication of JPS5963508A publication Critical patent/JPS5963508A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To measure a descaling state of a steel plate surface at each position for the width direction of the steel plate by the photodetected intensity by irradiating light to the steel plate surface at each position for the width direction and photodetecting the reflected light at each position for the width direction of the steel plate. CONSTITUTION:The light generated from light sources 7, 8 are reflected at the surface of the steel plate 1, the diffused and reflected light is made incident to an optical sensor 15 of each channel of an optical sensor part 9, the light is photodetected by photodiode and the current corresponding to the light intensity is outputted. The output is converted to a voltage signal by an I/V converter 22, the noise is eliminated by a low-pass filter 23, then is inputted to a sample holding circuit 25 through an amplifier 24. In case of driving light sources 12, 13 by AC voltage, the photodetected signal Vd is sampled for every peak of AC voltage waveforms. A comparator 27 compares the sample hold value Vd of the circuit 25 with the reference level Vr set by a level setting device 28, and outputs a signal S indicating the bad descaling state in case of Vd<Vr.

Description

【発明の詳細な説明】 この発明は鋼板の脱スケール処理の状態を計測する装f
it、VC関する。
[Detailed Description of the Invention] This invention provides a device for measuring the state of descaling treatment of a steel plate.
It is related to VC.

鋼板の加工においては、鋼板の表面に形成されたスケー
ルを落とすため、脱スケール処理が行なわれる。脱スケ
ール処理は例えば鋼板の表面に研摩材などを噴射して行
なうことができるが、噴射圧の調節〃3悪いと、スケー
ルを十分に落とし切れず、脱スケール不良となって、後
の加工に支障をキタしてし1つ。このため、脱スケール
処理においてはその処理後の鋼板表面の状縛を計測する
必要がある。
In processing a steel plate, descaling treatment is performed to remove scale formed on the surface of the steel plate. Descaling treatment can be carried out, for example, by injecting an abrasive onto the surface of the steel plate, but if the injection pressure is improperly adjusted, the scale will not be removed sufficiently, resulting in poor descaling and problems with subsequent processing. One thing that caused a problem. Therefore, in the descaling process, it is necessary to measure the shape of the surface of the steel plate after the process.

従来におけろ脱スケール状態の計測は目視によるもので
あり16、この手法でを1欠のような欠点があった。
In the past, the descaling state was measured visually16, and this method had some drawbacks.

1)計測を行なうには脱スケール装置を止めなければな
らr、zい。したがってライン稼動中に脱スケール状態
を計測することができず能率が悪い。
1) To perform measurements, the descaling device must be stopped. Therefore, it is not possible to measure the descaling state during line operation, resulting in poor efficiency.

+1)M板全体の脱スケール状態を目視により計測する
のは時間がかかるうえ、正確でなく、個人追によっても
ばらつきが生じる。したがって、この計測は果にもとづ
いて脱スケール装置の各噴射ノズルの性能を正確にチェ
ンゾすることができない。
+1) Visually measuring the descaling state of the entire M plate is time consuming and inaccurate, and variations occur depending on individual measurements. Therefore, this measurement cannot accurately determine the performance of each injection nozzle of the descaling device based on the results.

この発明は上述の点VC鑑みてなされたもので、脱スケ
ール処理後の鋼板表向の状態を正確にかつ実時間で計測
することができる鋼板の脱スケール計測装置を提供しよ
うとするものである。
This invention was made in view of the above-mentioned point VC, and aims to provide a steel plate descaling measuring device that can accurately measure the surface condition of a steel plate after descaling treatment in real time. .

この発明によれば、光綴を鋼板表面に向けてそのII届
方向各位置に照射し、鋼板の幅方向各位置におけるその
反射光をそれぞれ受光し、その受光強度によって111
4板衣而の11’;i!、スケール状態を鋼板の1商方
向各位置について計測するよりにしている。すなわち、
脱スケールが十分にr、zされていれは傘板表面の反射
率は尚くなって受光Ii!lli度は強くなり、脱スケ
ール不良であれば鋼板表■の反射率は低くなって受光強
度は弱(rxるので、これを利用して計測を行なうよう
にしている。
According to this invention, a light beam is directed toward the surface of a steel plate and irradiates each position in the II direction, and the reflected light is received at each position in the width direction of the steel plate, and the intensity of the received light is determined by the 111
11';i! , the scale condition is measured at each position in the 1 quotient direction of the steel plate. That is,
If the descaling is sufficiently r and z, the reflectance of the umbrella plate surface will be even lower and the light reception Ii! If the descaling is defective, the reflectance of the steel plate surface (2) will be low and the received light intensity will be weak (rx), so this is used for measurement.

以下、この発明の実施例を奈何図面を参照して一兄明す
る。
Hereinafter, embodiments of the present invention will be explained with reference to the drawings.

車1図はこの名曲で利用される光源と光学センサの配置
例を示したものである。絹1図において、加熱後の鋼板
1は脱スケール装置2に送り込1れる。脱スケール装置
2はここでは湿式プラスト形を示しており、ノズル3か
ら研皐材等を鋼板1の表面[1+ハ荊して脱スケールを
行なう。
Figure 1 shows an example of the arrangement of the light sources and optical sensors used in this masterpiece. In Figure 1, a heated steel plate 1 is fed into a descaling device 2 . The descaling device 2 is of a wet type blast type here, and descaling is performed by applying abrasive material or the like from a nozzle 3 to the surface of the steel plate 1 [1+㎜].

は、直線状の光源7.8が、鋼板10表面に向けて、・
鋼板1の1隔方向に配置されている。光源7゜8はここ
では螢光灯10 、11 vc内曲を黒色処理した散乱
防止用ガイド12 、13を被せてそれぞれ構成してい
る。筐た、光源7.8の1川には直線状に光学センサ部
9が配置されている。光学センサ部9は、内面を黒色処
理した円筒形の散乱防止用ガイド14(直径30φ〜5
0φ程度のもの)の中に、レンズ、−列に並べて構成し
たものである。散乱防止用ガイド14は光学センサ15
1Cその直下の拡散反射光以外の光の侵入を抑制する働
きをする。なお各光学化ンサ15ヲ脱スケール装置2の
各ノズル3と1対lで設ければ脱スケール不良があった
場合に、ノズル3のいずれが不調か容易M判断すること
ができる。ところで、第1図の実適例で光源を2つ設け
たのは、鋼板1への照射量を増やすことにより、光学セ
ンサ部9への拡散反射光の入射量を増すためである。ま
た、単灯では鋼板1の凹凸によって光学センサ部9への
入射酸の変動が大きくなるが、2方向から照射すること
により、この変動を防ぐこともできる。
In this case, a linear light source 7.8 is directed toward the surface of the steel plate 10,
They are arranged one space apart from the steel plate 1. The light sources 7.8 are constructed by covering the inner curves of fluorescent lamps 10 and 11 with black-treated anti-scattering guides 12 and 13, respectively. An optical sensor section 9 is arranged in a straight line on one side of the light source 7.8 of the housing. The optical sensor section 9 includes a cylindrical scattering prevention guide 14 (diameter 30φ to 5mm) whose inner surface is blackened.
(about 0φ) in which lenses are arranged in negative rows. The anti-scattering guide 14 is an optical sensor 15
1C functions to suppress the intrusion of light other than the diffusely reflected light immediately below it. If each optical converter 15 is provided in a one-to-one ratio with each nozzle 3 of the descaling device 2, it is possible to easily determine which of the nozzles 3 is malfunctioning in the event of descaling failure. Incidentally, the reason why two light sources are provided in the practical example shown in FIG. 1 is to increase the amount of diffusely reflected light incident on the optical sensor section 9 by increasing the amount of irradiation onto the steel plate 1. In addition, in the case of a single lamp, variations in the amount of acid incident on the optical sensor section 9 increase due to the unevenness of the steel plate 1, but this variation can be prevented by irradiating from two directions.

第1図の光源7,8および光学センサ部9を、鋼板1の
曲に垂直でその搬送方向に平行な而で切1すした状態を
絹2図にボす。第2図において、光源7.8は光学セン
サ部9を中心に対称を位置に配置されており、螢光灯1
0 、’ 11からの光を光学センサ部9の直下の鋼板
1の面上に照射するようになっている。光学センサ部9
は散乱光防止用ガイド14で囲まれた内部にレンズかと
、レンズ加で集光された光を入射するフォトダイオード
21と、フォトダイオード21の出力′電流を電圧信号
に変換するX/V変]実器22とを収容し、鋼板1の面
に向けて垂直に配置iiされており、鋼板1からの拡散
反射光をレンズ九を介してフォトダイオード2】で受光
するようvcすっている。なおフォトダイオード2jは
広範囲の元の波長傾城に感度を有するもの(例えば累外
巌から近赤外#まで反応するもの)を用いる。これは感
度領域か広いほど、光によって生じる電流が壇えS/N
比が向上するためである。フォトダイオード2】で受光
される拡散反射光は鋼板1における光線の照吋位rJL
(すfわち光学センサ部9の直下の位置〕の脱スケール
状態が良好な場合には強く、脱スケールが十分でない場
合には弱くなる。したがって、光孝セ/す部9の工/v
変俟器ρの出力電圧は、脱スケール率(脱スケール処理
状態の程度を表わすもので、脱スケールが完壁vC11
された状態を1ooi、全くなされていない状態を0憾
とする)に対して例えは第3図に示すようになる。なお
、第3図の特性は、照射光量、入射角(入射角は光源7
.8の傾斜を変えることによって例えば四〇〜60°の
範囲で変更でさるよつになっている]等によって曲線の
f頃きが変化する。
Figure 2 shows the state in which the light sources 7, 8 and optical sensor section 9 in Figure 1 are cut perpendicular to the curve of the steel plate 1 and parallel to its conveying direction. In FIG. 2, the light sources 7.8 are arranged symmetrically with respect to the optical sensor section 9, and the fluorescent lamp 1.
0 and '11 are irradiated onto the surface of the steel plate 1 directly below the optical sensor section 9. Optical sensor section 9
The interior surrounded by the scattering light prevention guide 14 includes a lens, a photodiode 21 into which the light focused by the lens enters, and an X/V converter that converts the output current of the photodiode 21 into a voltage signal. It is arranged perpendicularly to the surface of the steel plate 1, and is arranged so that the diffusely reflected light from the steel plate 1 is received by the photodiode 2 through the lens 9. Note that the photodiode 2j is one that is sensitive to a wide range of original wavelengths (for example, one that responds from the outer wavelength range to the near-infrared range). This means that the wider the sensitivity range, the higher the current generated by light will be.
This is because the ratio improves. The diffusely reflected light received by the photodiode 2 is at the height rJL of the light beam on the steel plate 1.
It is strong when the descaling state (that is, the position directly below the optical sensor part 9) is good, and it becomes weak when the descaling is not sufficient.
The output voltage of the transformer ρ is the descaling rate (represents the degree of descaling processing state, and the descaling is complete vC11
An example is shown in FIG. 3, where 1ooi is the state in which the event has been performed, and 0 is the state in which the event has not been performed at all. The characteristics shown in Figure 3 are the amount of irradiated light and the angle of incidence (the angle of incidence is the light source 7
.. By changing the slope of 8, the f angle of the curve changes, for example, in the range of 40 to 60 degrees.

第4図は以上の構成を利用して脱スケール状態の計測を
hrxう装置の一実施例を小すものである。
FIG. 4 shows a small example of an apparatus for measuring the descaling state using the above configuration.

ここでは脱スケール不良とされる基準のレベルVrを予
め設足しておき、受光イぎ号のレベルVdがこの−jk
、準レベルしrより低くなったとき、脱スケール不良検
出1g号Sを発するように構成している。
Here, a reference level Vr for descaling failure is set in advance, and the level Vd of the light reception signal is set to this -jk.
, when the quasi-level becomes lower than r, the descaling failure detection signal No. 1g S is generated.

なお、第4図においては光学センサ部9のうち1つのチ
ャンネルの光学センサ15についての処理系統を示して
いるが、実際にはこれと同じものが各チャンネルごとに
設eすられている。
Although FIG. 4 shows a processing system for the optical sensor 15 of one channel in the optical sensor unit 9, in reality, the same system is provided for each channel.

第4図において、光源7.8は一ゲ定化電源加からの屯
田によって点灯される。光源7.8からの光は鋼板10
面で反射されて、拡散反射光が光センサ部9vcおける
各チャンネルの光センサ15に入射されろ。光センサ1
5に入射した光はフォトダイオード2](第2図)で受
光され、フォトダイオード21からは光の強度に応じた
直流が出力される。
In FIG. 4, the light source 7.8 is illuminated by a power source from a fixed power source. The light from the light source 7.8 is the steel plate 10
The diffusely reflected light is reflected by the surface and enters the optical sensor 15 of each channel in the optical sensor section 9vc. Optical sensor 1
The light incident on the photodiode 21 is received by the photodiode 2 (FIG. 2), and the photodiode 21 outputs a direct current according to the intensity of the light.

フォトダイオード2Jの出力′直流はI /V f侯器
22で直圧信号に変賭され、ローパスフィルタムでノイ
ズが除去された後、アンプツを介してサンプルホールド
回路5に入力される。
The output 'DC' of the photodiode 2J is converted into a direct voltage signal by an I/V controller 22, and after noise is removed by a low-pass filter, it is input to the sample-and-hold circuit 5 via an amplifier.

ところで、光源12 、13を父流竜圧で駆動する場合
は、光源12 、13の照度は一躍でなく、父流電圧波
形に同期して常時ちらついている。したがって、受光1
6号vdを連続的に基準レベルVrと比較したのでは正
確な検出は行なえない。そこで、この実施v11VCお
いては、一定の前照のもとでの受光強度を調べるため、
父流電圧波形のピークごとに受光信号Vdをサンプリン
グするようにしている。
By the way, when the light sources 12 and 13 are driven by the father current dragon pressure, the illuminance of the light sources 12 and 13 does not change all at once, but constantly flickers in synchronization with the father current voltage waveform. Therefore, light reception 1
Accurate detection cannot be performed by continuously comparing No. 6 vd with the reference level Vr. Therefore, in this implementation v11VC, in order to check the received light intensity under constant headlight,
The light receiving signal Vd is sampled at each peak of the current voltage waveform.

ピーク検出回路26は光源13 、12の電源間におけ
る交流電圧波形の各ピークを検出し、そのタイミングで
、受光1f19Vdをサンプル・ホールドする。
The peak detection circuit 26 detects each peak of the AC voltage waveform between the power sources of the light sources 13 and 12, and samples and holds the received light 1f19Vd at that timing.

交流′電圧波形σλピークはその半サイクルごとに生じ
るから、電源間が曲用゛祇源(50Hz’!たは60 
Hz )を利用している場合は、サンプリング周期は5
0Hzの場合 となり、6(lHzの場合 となる。111@板1の移動速度との関係から、この程
度のサンプリング周期でも十分な計測を行なうことがで
きる。
Since the σλ peak of the AC voltage waveform occurs every half cycle, if the voltage between the power supplies is
Hz), the sampling period is 5
The case is 0 Hz, and the case is 6 (lHz).111@ From the relationship with the moving speed of the plate 1, sufficient measurement can be performed even with a sampling period of this order.

比戟器27はサンプル・ホールド回路乙のサンプル・ホ
ールドli[V dをレベル設定器路で設定された4準
レベルVr と比較し、Vd(Vrのとき脱スケール処
理が不良であることを示す信号Sを出力する。この1百
号Sは例えば脱スケール不良の警報を発生させたり、そ
れと同時に脱スケール装置2における対応する位置の噴
射ノズル3の噴射圧力A整相〕々ルプを目動調整あるい
は目切交埃するのに利用することができる。
The ratio device 27 compares the sample and hold circuit B's sample and hold li [Vd with the 4 quasi-level Vr set by the level setting circuit, and when Vd (Vr), it indicates that the descaling process is defective. Outputs a signal S. This No. 100 S can, for example, generate an alarm for defective descaling, and at the same time adjust the injection pressure A phasing of the injection nozzle 3 at the corresponding position in the descaling device 2. Or it can be used for cutting and dusting.

第5図は以上説明した第4図の装置の@作の一例を示し
たものである。光源7,8を交流゛屯源潰tで駆動して
いるため、受元旧号Vdは父流電源:幻の半サイクルの
周期で変動している。この受光1ぎ号Vdを父流屯源電
圧の正、負の各ピークでサンプリングすることにより、
サンプル・ホールド回路25には受光電#に対応したレ
ベルがホールドされる。脱スケール不良の箇所があると
、その位置なお、上記実施例では先細センサ部9を挾ん
で2つの光源7.8を設けたが、光源は1つであっても
よい。
FIG. 5 shows an example of the apparatus shown in FIG. 4 described above. Since the light sources 7 and 8 are driven by alternating current (AC), the old source number Vd fluctuates at the period of half a cycle of the father current power source: illusion. By sampling this received light signal Vd at each positive and negative peak of the father current source voltage,
The sample-and-hold circuit 25 holds a level corresponding to the received photovoltaic signal #. If there is a defective descaling point, the location thereof should be noted.In the above embodiment, two light sources 7.8 are provided to sandwich the tapered sensor section 9, but the number of light sources may be one.

以上説明したようにこの発明によれば、・頂板表面の反
射率が脱スケール処理法帖により変化することを利用し
て、脱スケール処理状帖を正確にかつ実時間で計測する
ことができる。したがって、作業能率が向上9.するう
え、従来の目視による方法のように計測値のばらつきが
なくなり、計測匝の侶頓性が向上する。
As explained above, according to the present invention, the descaling process can be accurately measured in real time by utilizing the fact that the reflectance of the top plate surface changes due to the descaling process. Therefore, work efficiency is improved9. Moreover, unlike the conventional visual inspection method, there is no variation in measurement values, and the stability of the measurement bag is improved.

筐た、鋼板の11編万同の各部分についてそれぞれ独立
Vci’+測を行な9よりにしたので、中板の幅方向の
どの部分が脱スケール不良か容易[f−IJ断でき、ノ
ズルの噴射圧の調整、交侠等が容易VCなり、目切でこ
れを行なうこともOT能とはる。
Since we performed independent Vci'+ measurements on each of the 11 parts of the steel plate in the housing and obtained a value of 9, it was easy to determine which part in the width direction of the middle plate was defective in descaling [f-IJ cutting, nozzle It is easy to adjust the injection pressure, exchange, etc. with VC, and it is also an OT function to do this with a cut.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明で利用さ、れる光源7.8と光面に垂
直でその搬送方向に平行な而で切断した状態を示す図、
243図は脱スケール率に対する第2図のI/¥f換器
22の出力電圧の関係を示すグラフ、第4図は第1図の
光源7.8および光学センサ部9を利用して脱スケール
状態の計測ン行なう装置の一例を不すブロック図、第5
図は第4図の装置の動作の一例を示す波形図である。 1・・・鋼板、24・・・脱スケール装置道、3・・・
研摩材噴射ノズル、7.8・・・光源、9・・・光学セ
ンサ部、10゜1]・・・螢光対、12 、13 、1
4・・・散乱防止用ガイド、15第2図 第5図 吋開 第3図
FIG. 1 is a diagram showing the light source 7.8 used in the present invention, cut along a plane perpendicular to the light plane and parallel to its conveying direction;
FIG. 243 is a graph showing the relationship between the descaling rate and the output voltage of the I/¥f converter 22 in FIG. FIG. 5 is a block diagram showing an example of a device that performs state measurement.
The figure is a waveform diagram showing an example of the operation of the apparatus of FIG. 4. 1... Steel plate, 24... Descaling device road, 3...
Abrasive injection nozzle, 7.8... Light source, 9... Optical sensor unit, 10°1]... Fluorescent pair, 12, 13, 1
4...Scatter prevention guide, 15 Figure 2 Figure 5 Opening Figure 3

Claims (1)

【特許請求の範囲】[Claims] 鋼板表面の11届方向各位置に光線を照射する光源と、
前記光源による鋼板表面の幅万同各位置からの反射光を
それぞれ受光する各光学センサと、前記各光学センサの
出力にもとついて、鋼板表面の幅方向各位1直における
脱スケール状態を計測する手段とを具えた鋼板の脱スケ
ール処理吠梠計測装置道。
a light source that irradiates light beams at each position in 11 directions on the surface of the steel plate;
Each optical sensor receives the reflected light from the same position across the width of the steel plate surface by the light source, and the descaling state at each position in the width direction of the steel plate surface is measured based on the output of each of the optical sensors. A measuring device for descaling steel plates with means.
JP17331482A 1982-10-04 1982-10-04 Apparatus for measuring descaling state of steel plate Pending JPS5963508A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17331482A JPS5963508A (en) 1982-10-04 1982-10-04 Apparatus for measuring descaling state of steel plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17331482A JPS5963508A (en) 1982-10-04 1982-10-04 Apparatus for measuring descaling state of steel plate

Publications (1)

Publication Number Publication Date
JPS5963508A true JPS5963508A (en) 1984-04-11

Family

ID=15958142

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17331482A Pending JPS5963508A (en) 1982-10-04 1982-10-04 Apparatus for measuring descaling state of steel plate

Country Status (1)

Country Link
JP (1) JPS5963508A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61178608A (en) * 1985-02-05 1986-08-11 Mitsubishi Electric Corp Flatness detector

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61178608A (en) * 1985-02-05 1986-08-11 Mitsubishi Electric Corp Flatness detector
JPH0414728B2 (en) * 1985-02-05 1992-03-13 Mitsubishi Electric Corp

Similar Documents

Publication Publication Date Title
US4585343A (en) Apparatus and method for inspecting glass
US4402607A (en) Automatic detector for microscopic dust on large-area, optically unpolished surfaces
US5064280A (en) Method of measuring the velocity and/or length of endless webs of textile material and apparatus for carrying out the method
JPS6435246A (en) Apparatus and method for measuring nature of surface
ATE209345T1 (en) APPARATUS AND METHOD FOR MOLECULAR CHARACTERIZATION
GB1453283A (en) Apparatus for identifying coins
WO1998052025A1 (en) Surface inspection instrument and surface inspection method
JP2007057338A (en) Optical measuring instrument
EP0361770A3 (en) Particle measuring method and apparatus
CN109975222B (en) Full-spectrum water quality detection automatic calibration and window cleaning reminding system
UST102104I4 (en) Scanning optical system adapted for linewidth measurement in semiconductor devices
JPS5963508A (en) Apparatus for measuring descaling state of steel plate
FI86479B (en) ANORDNING FOER KONTINUERLIGT MAETNING AV ETT PAPPERSARK FORMNINGSTILLSTAOND.
JP3249925B2 (en) Striated surface defect inspection device
JPS58153128A (en) Actinometer
JPS6461622A (en) Temperature measuring instrument
JPS59182341A (en) Apparatus for measuring anisotropy of sample luminescence
JPS56128443A (en) Grain size measuring method of granulous substance
JP2709946B2 (en) Foreign matter inspection method and foreign matter inspection device
SU1735710A1 (en) Method of measuring article dimensions
JPS5752807A (en) Device for measuring film thickness
JPS6211127A (en) Apparatus for detecting fine particle
JPS56125605A (en) Method and apparatus for detection of shape of striplike body
JPS63167254A (en) Electron counting device
JPS5733306A (en) Surface roughness measuring device