JPS596324A - Charging method of hot bloom into reheating furnace - Google Patents
Charging method of hot bloom into reheating furnaceInfo
- Publication number
- JPS596324A JPS596324A JP11143482A JP11143482A JPS596324A JP S596324 A JPS596324 A JP S596324A JP 11143482 A JP11143482 A JP 11143482A JP 11143482 A JP11143482 A JP 11143482A JP S596324 A JPS596324 A JP S596324A
- Authority
- JP
- Japan
- Prior art keywords
- cycle
- amount
- hot
- casting
- heating furnace
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/0081—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for slabs; for billets
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatments In General, Especially Conveying And Cooling (AREA)
Abstract
Description
【発明の詳細な説明】
この発明は、連続鋳造設備ないしは、分塊圧延によって
製造される鋳鋼片等の鋳片を高温状態のま\圧延ライン
の加熱炉に装入する熱片の加熱炉装入ブj法に関するも
ので、鋳片の有する熱を有効に利用して圧延に於けるエ
ネルギ消費量の低減をはかることを目的とする。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a continuous casting equipment or a heating furnace equipment for hot slabs in which slabs such as cast steel slabs manufactured by blooming are charged into a heating furnace of a rolling line in a high temperature state. This relates to the rolling process and aims to reduce energy consumption during rolling by effectively utilizing the heat possessed by slabs.
圧延ラインの加熱炉熱料原単位を低減するため、連続鋳
造ないし分塊圧延された鋳片を高温状態のま\で加熱炉
に装入することが行なわれている。In order to reduce the unit consumption of heat materials in the heating furnace of a rolling line, continuously cast or bloomed slabs are charged into the heating furnace while still in a high temperature state.
圧延ラインに於ける変動コストの大部分は加熱炉に於け
る燃料コストと圧延設備に関する電力コストで占められ
るが、それぞれ、ライン能率と対応があり、一般的な傾
向として第1図及び第2図で表わすことができる。熱片
は、通常、冷片チャンスと冷片チャンスの間に熱片チャ
ンスとして挿入される。この熱片1チヤンス当シの熱片
量と圧延に於けるエネルギーコストの関係を調べると第
3図の様になる。熱片量が少ない場合には、同一炉内で
先行冷片材が加熱炉制約となり、また、先行冷片材が抽
出された後では、後続冷片材が加熱炉制約となって、熱
片材のライン能率が冷片材で制約される。Most of the variable costs on a rolling line are accounted for by the fuel cost for the heating furnace and the electricity cost for the rolling equipment, but each has a corresponding relationship with the line efficiency, and the general trends are shown in Figures 1 and 2. It can be expressed as A hot piece is usually inserted between a cold piece and a cold piece as a hot piece. The relationship between the amount of hot flakes per chance and the energy cost in rolling is as shown in Figure 3. When the amount of hot flakes is small, the preceding cold flakes become a heating furnace constraint within the same furnace, and after the preceding cold flakes are extracted, the succeeding cold flakes become a heating furnace constraint, and the hot flakes become a heating furnace constraint. Material line efficiency is limited by cold strip material.
したがって、1チャンス当りの熱片量を拡大すると、熱
片の加熱炉制約は第2図に示す様に緩和されるため、ラ
イン能率の向上が可能となシ、電力原単位低減に寄与し
、結果として、燃料コストと電力コストの和(以下エネ
ルギーコストと称す)を低減することになる。このため
、熱片装入の効率的な運用を図るべく、1チヤンス当シ
の熱片量拡大に努力が払われている。しかし、熱片材に
於いても高速化していくと、加熱炉の燃焼容量で制約を
受け、ライン能率が加熱炉で制約される様になる。Therefore, when the amount of hot flakes per chance is increased, the heating furnace constraints on hot flakes are relaxed as shown in Figure 2, which makes it possible to improve line efficiency and contributes to lower unit power consumption. As a result, the sum of fuel cost and electric power cost (hereinafter referred to as energy cost) is reduced. For this reason, efforts are being made to increase the amount of hot flakes per chance in order to efficiently operate hot flake charging. However, as the speed of heating sheet materials increases, the combustion capacity of the heating furnace becomes a constraint, and the line efficiency comes to be limited by the heating furnace.
一方、1チヤンス当シの熱片量が増大すると、第4図に
示すように、加熱炉装入迄の仮置量が増加し、それに伴
い、仮置時間も長くなって、鋳片温度が降下して、装入
温度が下がシ、したがって、燃料原単位が上昇して、エ
ネルギーコストも増加していくことになる(図中1は鋳
片(複数)を示す)。この技術的改善として、専ら仮置
中の鋳片温度降下を低減する保熱方法に工夫が施される
様になってきている。しかし、保熱強化をはかつても完
全な断熱は困難であシ、第3図の傾向は変えることは出
来ず熱片装入の効果的な運用には限界があった。On the other hand, as the amount of hot slabs per chance increases, as shown in Figure 4, the amount of temporary storage before loading into the heating furnace increases, and accordingly, the temporary storage time becomes longer, and the temperature of the slab increases. As the charging temperature decreases, the fuel consumption rate rises and the energy cost also increases (in the figure, numeral 1 indicates slabs). In order to improve this technology, improvements have been made to heat retention methods that exclusively reduce the drop in temperature of the slab during temporary storage. However, it has always been difficult to achieve complete heat insulation, and the trend shown in Figure 3 cannot be changed, so there is a limit to the effective use of thermal strip charging.
この発明は以上のような問題を考慮してなされたもので
、複数の鋳片製造設備を使用して、これらを、鋳片が相
互に一部うツブして製造されるように操業し、かくして
前記複数の鋳片製造設備の各々によって製造された鋳片
を、特定の加熱炉に熱片の”!l:ま連続して装入する
熱片の加熱炉装入方法としたことに特徴を有する。This invention was made in consideration of the above-mentioned problems, and uses a plurality of pieces of slab manufacturing equipment and operates them so that the pieces of slab are manufactured by partially overlapping each other. Thus, the heating furnace charging method for hot slabs is characterized in that the slabs manufactured by each of the plurality of slab manufacturing facilities are continuously charged into a specific heating furnace. has.
以下この発明を詳述する。This invention will be explained in detail below.
この発明の第1の特徴は、複数の鋳片製造設備を使用し
て、これらを、鋳片が相互に一部うツブして製造される
ように操業することである。A first feature of the present invention is to use a plurality of slab manufacturing facilities and to operate them so that the slabs are manufactured so as to partially overlap each other.
従来の熱片装入においては、第4図に示す様に、鋳片製
造過程と圧延過程の時系列的な関係に着目されることな
く1チヤンス当シの熱片量の拡大がはかられてきた。本
発明は最も効率的な熱片装入を行なうために、この時系
列上の関係に注目してなされた。本発明は複数の鋳片製
造設備を前捉とするが、以下、説明上、2系列の連続鋳
造設備A。In conventional hot flake charging, as shown in Figure 4, the amount of hot flakes per chance is increased without paying attention to the chronological relationship between the slab manufacturing process and the rolling process. It's here. The present invention was made by paying attention to this chronological relationship in order to carry out the most efficient hot plate charging. Although the present invention is based on a plurality of pieces of slab manufacturing equipment, in the following description, two lines of continuous casting equipment A will be used for explanation purposes.
Bを考える。本発明は、第5図に示す様に連続鋳造設備
Aと連続鋳造設備Bの鋳片製造時期をラップさせ、例え
ば鋳造単位順に加熱炉に装入し、ラップ部の仮置を同−
鋳造単位内で解消する様圧延を行なう。従来は意識され
なかったこの条件を与えることによシ、少量の仮置量に
て、1チャンス当りの熱片量を大量に組むことが可能と
寿シ、従来の様に熱片量の拡大に伴う熱片仮置量増加に
よる鋳片温度降下の低減が可能となった。Think about B. In the present invention, as shown in FIG. 5, the production times of continuous casting equipment A and continuous casting equipment B are made to overlap, and the slabs are charged into a heating furnace in the order of casting units, for example, and the temporary placement of the lap portions is performed at the same time.
Rolling is performed to eliminate the problem within the casting unit. By providing this condition, which was not considered in the past, it is possible to assemble a large amount of heat flakes per chance with a small amount of temporary storage. This made it possible to reduce the temperature drop of the slab due to the increase in the amount of temporary hot slab storage.
このラップの効果について更に詳述を行なう。The effect of this wrap will be explained in more detail.
第6図に示す様に、1鋳造単位(仮にCCサイクルと称
する)の鋳造時間をT時間とし、該当CCサイクルと(
他設備による) @CCサイクルとの並行鋳造(ラップ
)時間をL時間とし、ラップ率Rを、
R= L/T X 100
で定義する。ラップ率−0%の場合は鋳造された鋳片を
即、加熱炉に装入することを意味し、とのようにするこ
とによって仮置が生じないため、燃料原単位だけを見れ
ば最も効率の良い熱片装入方法となる。しかし、通常連
続鋳造設備能力は、圧延ライン能力に比較して極めて低
く、ラップ率O%では鋳造能率が即ライン能率となるた
め、電力原単位が非常に高い状態にある。このため、ラ
ップ率を上げていくと、ライン能率が上昇し、電力原単
位低減効果を生む。一方、燃料原単位はラップ率を高く
するにつれ、仮置量が増加するため、悪くなるが、同じ
ラップ率で見れば、CCサイクル量を小さくしていくと
その影響も小さくなる。以上の関係を第7図α)〜(d
)に示す。第7図は鋳片の温度降下特性、加熱炉特性(
第2図)、圧延の動力特性(第1図)が求まれば容易に
定量的に作図することが可能である。第7図からただち
にミニマムコストポイン14−見出すことができるが、
生産能力からの能率限界と、複数の鋳片製造設備サイク
ルのラップ可能限界を加味して考える必要がある。CC
サイクル量(即ち、多連々鋳量)は、連続鋳造設備の効
率的運用から大きい方が効果的であるが、第7図からは
小さい方がよく、両者の利益を考慮して決定することが
できる。CCサイクル量が決まれば最適ラップ率も決ま
ってくる。As shown in Fig. 6, the casting time of one casting unit (temporarily referred to as CC cycle) is T time, and the corresponding CC cycle and (
(depending on other equipment) @Parallel casting (lap) time with CC cycle is L hours, and wrap rate R is defined as R=L/T x 100. When the wrap ratio is -0%, it means that the cast billet is immediately charged into the heating furnace.By doing this, no temporary storage occurs, so if you look only at the fuel consumption rate, it is the most efficient. This is a good method for charging hot pieces. However, the continuous casting equipment capacity is usually extremely low compared to the rolling line capacity, and when the wrap ratio is 0%, the casting efficiency immediately becomes the line efficiency, so the electric power consumption is extremely high. Therefore, increasing the wrap rate increases line efficiency and produces the effect of reducing power consumption. On the other hand, as the wrap rate increases, the fuel consumption rate worsens because the temporary storage amount increases, but when viewed at the same wrap rate, the effect becomes smaller as the CC cycle amount decreases. The above relationships are shown in Figure 7 α) to (d
). Figure 7 shows the temperature drop characteristics of the slab and the heating furnace characteristics (
(Fig. 2) and rolling power characteristics (Fig. 1) can be easily drawn quantitatively. From Figure 7, we can immediately find the minimum cost point 14.
It is necessary to consider the efficiency limit due to production capacity and the limit that can be wrapped in multiple slab manufacturing equipment cycles. C.C.
A larger cycle amount (i.e., multiple casting amount) is more effective in terms of efficient operation of continuous casting equipment, but from Figure 7, a smaller one is better, and it should be determined by considering both benefits. can. Once the CC cycle amount is determined, the optimal wrap rate will also be determined.
なお、仮置時に生成するスケールロスが無視できない条
件では、これもコストの評価項目に加えて同様に最適条
件を見出すことも可能である。Note that under conditions where the scale loss generated during temporary placement cannot be ignored, it is also possible to find optimal conditions in addition to the cost evaluation item.
本発明を実施する上のライン能率については原則的に次
の様に考えられる。仮置量が蓄積されていかないために
は該当CCサイクルでラップ時の仮置量を解消するライ
ン能率を設定する。即ち第8図に示す様に、ライン能率
Nが
であれば、次のCCサイクルに影響を及ぼさない。The line efficiency for carrying out the present invention can be basically considered as follows. In order to prevent the temporary storage amount from being accumulated, line efficiency is set to eliminate the temporary storage amount at the time of lapping in the corresponding CC cycle. That is, as shown in FIG. 8, if the line efficiency N is high, it will not affect the next CC cycle.
しかし、実際の運用に於いては、予定のCCサイクル量
から一部リジエクトされたシ、圧延ラインでの休止が生
じるため、該当CCサイクルを圧延する時点で実績のC
Cサイクル量W、CCサイクル鋳造時間T、ラップ時間
し、及びラインの進捗調整時間αを求めて
で能率設定すれば、仮置量の蓄積もなく、鋳片も連続し
て装入することができる。However, in actual operation, some of the planned CC cycles are rejected and the rolling line is stopped, so the actual C
If efficiency is set by determining the C cycle amount W, CC cycle casting time T, lapping time, and line progress adjustment time α, there will be no accumulation of temporary storage amount and slabs can be charged continuously. can.
ラップ率の設定は、また、例えば圧延に於ける能率に制
限があるサイズ等については、制限能率をNとして、
N −N c
R” −(Nc:鋳造能率)
によシラツブ率を定め、鋳造と圧延ラインの能率バラン
ス調整として機能させることができる。The lap rate can also be set by, for example, for sizes where there is a limit to the efficiency in rolling, the limit rate is set to N, and the wrap rate is determined by N - N c R'' - (Nc: casting efficiency). This function can be used to adjust the efficiency balance of the rolling line.
本発明効果を従来方法と比較して第9図に示す。The effects of the present invention are shown in FIG. 9 in comparison with the conventional method.
第9図に於ける本発明法は、適切なCCサイクル量及び
ラップ率で実施したものと考える。本発明は第5図に示
す様にCCサイクルをラップして繰返すだけのため、熱
片量を拡大しても装入温度は一定に維持される。又、高
温で加熱炉に装入されるため、加熱炉制約となるライン
能率が従来に較べて高くなり、結局第8図に示す様に大
l】なエネルキーコストの低減が期待できる。本発明法
ではそれほど設備投資を必要とせず、最適ラップ条件の
事前解析及び鋳造計画・圧延計画作成時のラップ率取込
を実行するのみで容易に最適熱片装入を実現することが
できる。It is considered that the method of the present invention shown in FIG. 9 was carried out with an appropriate CC cycle amount and wrap rate. In the present invention, as shown in FIG. 5, the CC cycle is simply wrapped and repeated, so even if the amount of heat flakes is increased, the charging temperature is maintained constant. Furthermore, since the material is charged into the heating furnace at a high temperature, the line efficiency, which is a constraint on the heating furnace, becomes higher than in the past, and as a result, a large reduction in energy costs can be expected as shown in FIG. The method of the present invention does not require much capital investment, and can easily achieve optimal hot-piece charging by simply analyzing the optimal lapping conditions in advance and incorporating the lapping ratio when creating casting plans and rolling plans.
この発明の第2の特徴は、複数の鋳片製造設備の各々に
よって製造された鋳片を、特定の加熱炉に熱片のまま連
続して装入することである。A second feature of the present invention is that the slabs manufactured by each of the plurality of slab manufacturing facilities are continuously charged as hot slabs into a specific heating furnace.
熱間圧延ラインは鋳片を再加熱して圧延するのが一般的
であシ、このためラインに加熱炉を有しているが、炉設
計上の制約および圧延機と加熱炉との修理形態の相違、
あるいは、生産性に応じた炉運用を可能とするため、炉
数基で圧延能力と対応する様に設計が行なわれている。Hot rolling lines generally reheat and roll slabs, and for this reason, the line has a heating furnace, but there are restrictions in the furnace design and the type of repair between the rolling mill and heating furnace. difference,
Alternatively, in order to enable furnace operation according to productivity, several furnaces are designed to correspond to the rolling capacity.
したがって、数基の連続式加熱炉を有する熱間圧延ライ
ンに於いては、使用基数総計の加熱能力と熱間圧延機能
力とが対応することから、鋳鋼片の加熱のために、使用
している複数加熱炉に順次交互に鋳片を装入し、また、
その順序で抽出して、圧延が行なわれている。Therefore, in a hot rolling line with several continuous heating furnaces, since the total heating capacity of the number of furnaces used corresponds to the hot rolling functional capacity, The slabs are sequentially and alternately charged into multiple heating furnaces, and
They are extracted and rolled in that order.
本発明は、省エネルギ効果の大きい複数の連続鋳造設備
の鋳造時期をラップさせて熱片を装入する方法に関して
、それを実施するために特別の設備を要せず再に熱片の
熱損失を防止するためになされた。The present invention relates to a method of charging hot pieces by wrapping the casting periods of a plurality of continuous casting equipment, which has a large energy-saving effect. This was done to prevent this.
本発明は高温鋳片装入による加熱炉特性の把握から知見
を得た。加熱炉に於ける慾料原単位は、第10図に示す
様に加熱炉能率によって関係づけられる。即ち装入鋳片
が高温となる程、低燃料原単位方向に推移すると共に原
単位最小点及び加熱炉能率限界が高能率側に移行する。The present invention was obtained from understanding the characteristics of a heating furnace by charging high-temperature cast slabs. The basic unit of fertilizer in a heating furnace is related to the efficiency of the heating furnace, as shown in FIG. That is, the higher the temperature of the charged slab, the lower the fuel consumption rate becomes, and the minimum unit consumption point and the heating furnace efficiency limit move toward the higher efficiency side.
これは、装入鋳片の高温化にしたがい、加熱炉で与える
熱容量が低下することに起因する。装入温度と加熱炉能
率限界の一般例を第11図に示す。高温の熱片材を装入
する場合には、冷片材の加熱に比較して加熱炉数を減じ
得ることは明らかであるが、第5図の様な平均仮置時間
の短かい熱片装入では、通常600℃以上で装入される
ため炉数を半減することも十分可能である。This is because the heat capacity provided by the heating furnace decreases as the temperature of the charged slab increases. A general example of charging temperature and heating furnace efficiency limit is shown in FIG. When charging high-temperature hot flakes, it is clear that the number of heating furnaces can be reduced compared to when heating cold flakes. Since charging is usually carried out at a temperature of 600° C. or higher, it is possible to reduce the number of furnaces by half.
本発明においては、加熱炉を2群に分け、1つのCCサ
イクルを1炉群に連続(1炉群が2炉以上ではその炉群
内で交互、に)して装入する。以下説明上加熱炉2基操
業を前提とする。比較法では、第12図に示す様に、鋳
造順に圧延順を維持するためには、一旦ヤードに仮置し
、前CCサイクルを全量払出した後、後続CCサイクル
材を払出して搬送順を圧延順に並べる必要がある。本発
明では、−切この様な前処理は行なわず鋳造のまXの順
に搬送を行なう。したがって、ラップされて鋳造された
ところでは前CCサイクル材と後続CCサイクル材が、
入シ乱れて搬送される。この状態で搬送されてきた熱片
を、比較方法では交互に加熱炉に装入するが本発明では
例えば前CCサイクル(A−CC’)は(イ)炉、後続
サイクル(B −CC)は(ロ)炉という様に分離しな
がら1つのCCサイクルf:1炉に連続して装入を行な
う。これを詳述すれば第13図の通りである。前CCサ
イクルの各々の鋳片を(イ)炉に装入し始めれば、以降
熱片が搬送されてくるがま\に加熱炉に装入する(第1
3図(a))。鋳造能率をNc とすれば、この時の
加熱炉能率NはN = Nc となる。その前CCサ
イクルの最終鋳片Xが(イ)炉に装入された時、(ロ)
炉では、熱片が搬送されるがま\に後続CCサイクルの
装入が行なわれて第13図ら)の様な状態となる。これ
以降(ロ)炉に於いてN = Nc で鋳片を装入しな
がら炉内搬送をしていき、一方(イ)炉では炉内鋳片を
抽出圧延していき鋳片Xが抽出される時に後続ccプサ
イルの最終鋳片Yが(ロ)炉の抽出端に到着すれば結局
、鋳造順に圧延順を維持し、しかも連続して圧延するこ
とが可能である。これは、在炉可能量をWtOn、CC
サイクル量をcton、ラップ率をR(R=L(鋳造ラ
ップ時の鋳造量)/C)とすれば、第13図(b)の状
態から(イ)炉を、の能率で運行することによシ実行可
能となる。なお、この様な炉内の鋳片搬送は、連続式加
熱炉にウオーキングビームが採用されていれば十分可能
である。In the present invention, the heating furnaces are divided into two groups, and one CC cycle is charged to each furnace group consecutively (if there are two or more furnace groups, alternately within the furnace group). The following explanation assumes that two heating furnaces are operated. In the comparative method, as shown in Fig. 12, in order to maintain the rolling order in the casting order, the material is temporarily stored in the yard, and after the previous CC cycle material has been completely discharged, the subsequent CC cycle material is discharged and the conveyance order is changed. They need to be arranged in order. In the present invention, pretreatment such as cutting is not performed, and the casting is carried out in the order of X. Therefore, when wrapped and cast, the previous CC cycle material and the subsequent CC cycle material are
The items are transported in a mess. In the comparative method, the hot pieces transported in this state are charged alternately into the heating furnace, but in the present invention, for example, the preceding CC cycle (A-CC') is charged into the (A) furnace, and the subsequent cycle (B-CC) is charged into the heating furnace. (b) Continuously charging one CC cycle f:1 furnace while separating the furnaces. This is explained in detail as shown in FIG. 13. (a) Once each slab of the previous CC cycle begins to be charged into the furnace, it is then charged into the heating furnace while the hot slabs are being conveyed (first
Figure 3(a)). If the casting efficiency is Nc, the heating furnace efficiency N at this time is N=Nc. When the final slab X of the previous CC cycle is (a) charged into the furnace, (b)
In the furnace, while the hot pieces are being conveyed, charging for the subsequent CC cycle is carried out, resulting in a state as shown in Fig. 13, etc.). After this, (b) the slab is transferred into the furnace while being charged at N = Nc, while (b) the slab is extracted and rolled in the furnace, and the slab X is extracted. When the final slab Y of the subsequent CC pusile reaches the extraction end of the furnace (b), it is possible to maintain the rolling order in the casting order and to continue rolling. This means that the available amount in the reactor is WtOn, CC
If the cycle amount is cton and the lap rate is R (R = L (casting amount at casting lap) / C), then from the state shown in Figure 13 (b), (a) the furnace will be operated at an efficiency of It becomes executable. Note that such conveyance of slabs within the furnace is fully possible if a walking beam is employed in the continuous heating furnace.
上記本発明装入方法によれば、鋳片の圧延順を変えるこ
となく、しかも、第12図比較法に示す様に、一旦鋳片
を仮置して装入順序を調整することなく、複数系列から
ラップされて鋳造された鋳片を鋳造順に圧延することが
可能となる。しかも本発明法では仮置をすることによる
高温鋳片の熱損失が防上できる他、第、14図に示す様
に高温装入では1炉当シの加熱炉能率が2倍になること
によシ、燃料原単位がさらに低減する。According to the above-mentioned charging method of the present invention, the rolling order of the slabs does not need to be changed, and as shown in the comparative method in Figure 12, multiple slabs can be rolled without temporarily placing the slabs and adjusting the charging order. It becomes possible to roll slabs that have been lapped and cast from series in the order of casting. Moreover, the method of the present invention not only prevents the heat loss of high-temperature slabs due to temporary storage, but also doubles the heating furnace efficiency per furnace when high-temperature charging is performed, as shown in Figure 14. Yes, the fuel consumption rate will further decrease.
〔実施例1〕 2系列の連続鋳造設備と連結する熱延工場で実施した。[Example 1] The test was carried out at a hot rolling mill connected to two lines of continuous casting equipment.
実施に先立って鋳鋼片の温度降下特性、加熱炉特性、圧
延の動力特性を解析したところ、CCサイクル量が20
00tで第7図の(c)パターンとなり、それ以下では
第7図(a) (b)−”ターンであり、可能な限シラ
ツゾをとることがエネルギーコストを低減することにな
ることが明確となった。Prior to implementation, we analyzed the temperature drop characteristics, heating furnace characteristics, and rolling power characteristics of the cast steel slab, and found that the CC cycle amount was 20.
At 00t, pattern (c) in Figure 7 is formed, and below that, it is a turn in Figure 7 (a) (b) -'', making it clear that taking as long as possible will reduce energy costs. became.
、CCサイクル量は連続鋳造に於ける効果及び圧延割面
実行上の制約もあって1000tと定まるため、この条
件での最大ラッグ率は35%であった。Since the CC cycle amount was determined to be 1000 t due to the effects of continuous casting and constraints on rolling section execution, the maximum lag ratio under this condition was 35%.
実施結果を第1表に示す。これを見ると、従来方法では
1チヤンスの熱片量を拡大する効果が6000 を迄は
表われているが、5oootになると効果が失なわれて
いる。一方、本発明では、s oo o tの条件であ
るが、従来法に較べて大巾にエネルギーコストが低減し
ておシ、当初予期した様に最大ラップ条件で著しい効果
を上げている。The implementation results are shown in Table 1. Looking at this, it can be seen that in the conventional method, the effect of increasing the amount of heat particles per chance appears up to 6000, but the effect is lost when it reaches 5000. On the other hand, in the present invention, the energy cost is significantly reduced compared to the conventional method under the so-oo-t condition, and, as originally expected, it achieves a remarkable effect under the maximum lap condition.
〔実施例2〕
2系列の連続鋳造設備と、2炉を有するホットストリッ
プミルとの熱鋼片装入で実施した。実施に当っては、I
CCCCサイクル量 000 tonとし4CCサイク
ルを5%、15チ、25係の3水準でラップさせ、比較
法(第12図参照)と本発明法と同一条件で行なった。[Example 2] This was carried out by charging hot steel billets into a two-line continuous casting facility and a hot strip mill having two furnaces. In implementation, I
The CCCC cycle amount was set at 000 tons, and 4CC cycles were wrapped at three levels: 5%, 15%, and 25% under the same conditions as the comparative method (see FIG. 12) and the method of the present invention.
実施結果を第2表に示す。本発明法では仮置のだめの鋳
片ハンドリングが不要であったとともに、仮置に伴なう
鋳片の温度降下がなく、また、加熱炉特性上から犬[1
]に燃料原単位が低減している。比較法では、ラップ率
を高くとれば仮置時間が長くなるため燃料原単位が悪化
したが本発明法では高能率に起因してさらに低下してい
る。The implementation results are shown in Table 2. In the method of the present invention, there is no need to handle the slab in the temporary storage pool, there is no temperature drop in the slab due to temporary storage, and due to the characteristics of the heating furnace,
] The fuel consumption rate has been reduced. In the comparative method, the higher the wrap rate, the longer the temporary storage time, which worsened the fuel consumption, but in the method of the present invention, it was further reduced due to its high efficiency.
本発明は複数の連続鋳造設備による鋳造を前提としてい
るが、分塊圧延設備を含むことも当然可能である。また
、本発明は、熱片装入として記述したが加熱を不要とす
る迄鋳片が高温で製造された場合に於いても複数の連続
鋳造設備をラップして鋳造することにより高能率化効果
がありしたがって本発明法を用いて加熱炉装入を行ない
、加熱炉の燃焼を停止していても本発明効果を得ること
ができる。Although the present invention is based on the premise of casting using a plurality of continuous casting equipment, it is of course possible to include blooming equipment. In addition, although the present invention has been described as hot billet charging, even if the billet is produced at a high temperature to the point where heating is not required, efficiency can be increased by lapping and casting multiple continuous casting equipment. Therefore, even if the heating furnace is charged using the method of the present invention and combustion in the heating furnace is stopped, the effects of the present invention can be obtained.
以上説明したように、この発明においては、鋳片の有す
る熱を有効に利用することができ、圧延に於けるエネル
ギー消費量の低減をはかることができる。As explained above, in the present invention, the heat possessed by the slab can be effectively used, and the energy consumption during rolling can be reduced.
第1図は圧延の動力特性を示す図、第2図は鋳片の温度
降下特性、加熱炉特性を示す図、第3図および第9図は
、熱片量とエネルギーコスト等との関係を示す図、第4
図および第5図は2基の連続鋳造設備から得られた鋳片
と仮置量との関係を示す図、第6図はラッグ率の説明図
、第7図(a)〜(d)はCCザイクル量とラップ率と
の関係を示す図、第8図はライン能率の説明図、第10
図は加熱炉能率と燃料原単位との関係を示す図、第11
図は、加熱炉装入温度と加熱炉能率限界との関係を示す
図、第12図は比較法および本発明法の加熱炉装入態様
等を説明するための図、第13図(a) (b)は加熱
炉装入タイミングを説明する図、第14図は1炉当りの
加熱炉能率を示す図である。
出願人 日本鋼管株式会社
代理人 堤 敬太部 外1名
(b)
Y
第14図
手続補正書(方式)
%式%
1、事件の表示
特願昭5 ’7− 111434 号2・発明の名
称
熱片の加熱炉装入方法
3、補正をする者
事件との関係 特許出願人
住所 東京都千代田区丸の内−丁目1番2号iん退赤
) 日本鋼管株式会社
代表者 金 尾 實
4、代理人
7、補正の内容 別紙の通り浄書による明細書を提出
します。Figure 1 is a diagram showing the power characteristics of rolling, Figure 2 is a diagram showing the temperature drop characteristics of slabs and heating furnace characteristics, and Figures 3 and 9 are diagrams showing the relationship between the amount of hot slabs and energy costs, etc. Figure shown, 4th
Fig. 5 and Fig. 5 are diagrams showing the relationship between slabs obtained from two continuous casting facilities and the temporary placement amount, Fig. 6 is an explanatory diagram of the lag ratio, and Fig. 7 (a) to (d) are A diagram showing the relationship between CC cycle amount and wrap rate, Figure 8 is an explanatory diagram of line efficiency, Figure 10
Figure 11 shows the relationship between heating furnace efficiency and fuel consumption rate.
The figure shows the relationship between the heating furnace charging temperature and the heating furnace efficiency limit, Figure 12 is a diagram for explaining the heating furnace charging mode, etc. of the comparative method and the present invention method, and Figure 13 (a) (b) is a diagram illustrating the heating furnace charging timing, and FIG. 14 is a diagram showing the heating furnace efficiency per furnace. Applicant Nippon Steel Tube Co., Ltd. Agent Keitabe Tsutsumi and 1 other person (b) Y Figure 14 Procedural amendment (method) % formula % 1. Indication of case Patent application No. 111434 1977 2. Name of invention Method of charging pieces into a heating furnace 3, relationship with the case of the person making the amendment Patent applicant address: 1-2 Marunouchi-chome, Chiyoda-ku, Tokyo, Japan) Nippon Kokan Co., Ltd. Representative: Minoru Kaneo 4, Agent 7. Contents of amendment We will submit a detailed description as shown in the attached sheet.
Claims (1)
に一部うツブして製造されるように操業し、 かくして前記複数の鋳片製造設備の各々によって製造さ
れた鋳片を、特定の加熱炉に熱片のi!ま連続して装入
することを特徴とする熱片の加熱炉装入方法。[Scope of Claims] A plurality of slab production facilities are used and operated in such a manner that slabs are produced partially overlapping each other, and thus each of the plurality of slab production facilities The manufactured slab is heated to a specific heating furnace. A method for charging hot pieces into a heating furnace characterized by continuous charging.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11143482A JPS596324A (en) | 1982-06-30 | 1982-06-30 | Charging method of hot bloom into reheating furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11143482A JPS596324A (en) | 1982-06-30 | 1982-06-30 | Charging method of hot bloom into reheating furnace |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS596324A true JPS596324A (en) | 1984-01-13 |
Family
ID=14561089
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11143482A Pending JPS596324A (en) | 1982-06-30 | 1982-06-30 | Charging method of hot bloom into reheating furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS596324A (en) |
-
1982
- 1982-06-30 JP JP11143482A patent/JPS596324A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH06506876A (en) | Coiled plate or veneer manufacturing method and manufacturing equipment | |
WO1993023182A9 (en) | Method and apparatus for intermediate thickness slab caster and inline hot strip and plate line | |
JPH02175009A (en) | Manufacture and apparatus for band steel to be hot-rolled | |
CN112170500A (en) | Hot continuous rolling production control method for constant-gap structure | |
CN112108519A (en) | Hot-rolled strip steel production system and method based on hybrid heating | |
US4087238A (en) | Method for enhancing the heating efficiency of continuous slab reheating furnaces | |
JPS596324A (en) | Charging method of hot bloom into reheating furnace | |
US4401481A (en) | Steel rod rolling process, product and apparatus | |
JPS586703A (en) | Rolling mill equipment | |
JPS6254501A (en) | Layout of continuous casting line and hot rolling line | |
JP3264472B2 (en) | Slab group transfer order determination method | |
JP3250818B2 (en) | Operating method of heating furnace | |
JP3503581B2 (en) | A method for charging a continuously cast hot slab to a heating furnace for hot rolling. | |
US4491488A (en) | Steel rod rolling process | |
JPH0377851B2 (en) | ||
JP2622458B2 (en) | Slab charging device for heating furnace | |
WO2019057116A1 (en) | Hot-rolling online movable thermal insulation heat treatment process, and heat treatment line | |
JP4272420B2 (en) | Scheduling method considering power cost in hot rolling | |
JPH1190515A (en) | Method for storing stock slab, method for preparing rolling order of slab and method for heating slab | |
JPS5597808A (en) | Controller for charging pitch for worked material | |
JPS57139401A (en) | Production control method | |
CN111424225A (en) | Process method for heating titanium billet by adopting large walking beam type billet heating furnace | |
JPS55133803A (en) | Continuous rolling apparatus | |
JPS5758903A (en) | Hot rolling method for hot strip | |
Chashchin | Improvement of the efficiency of hot strip rolling with controlled coil cooling |