JPS5963233A - Direct current feeding system for electric car - Google Patents

Direct current feeding system for electric car

Info

Publication number
JPS5963233A
JPS5963233A JP17356382A JP17356382A JPS5963233A JP S5963233 A JPS5963233 A JP S5963233A JP 17356382 A JP17356382 A JP 17356382A JP 17356382 A JP17356382 A JP 17356382A JP S5963233 A JPS5963233 A JP S5963233A
Authority
JP
Japan
Prior art keywords
rail
thyristor
current
rails
electric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17356382A
Other languages
Japanese (ja)
Other versions
JPS641337B2 (en
Inventor
Ryojiro Murata
村田 良二郎
Shoji Hattori
昭治 服部
Tsugio Mizutani
水谷 次雄
Kikuji Kotaki
小滝 喜久二
Toshio Suzuki
敏夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOTSU DENKI SEKKEI KK
Mitsubishi Electric Corp
Original Assignee
KOTSU DENKI SEKKEI KK
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOTSU DENKI SEKKEI KK, Mitsubishi Electric Corp filed Critical KOTSU DENKI SEKKEI KK
Priority to JP17356382A priority Critical patent/JPS5963233A/en
Publication of JPS5963233A publication Critical patent/JPS5963233A/en
Publication of JPS641337B2 publication Critical patent/JPS641337B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60MPOWER SUPPLY LINES, AND DEVICES ALONG RAILS, FOR ELECTRICALLY- PROPELLED VEHICLES
    • B60M3/00Feeding power to supply lines in contact with collector on vehicles; Arrangements for consuming regenerative power
    • B60M3/04Arrangements for cutting in and out of individual track sections

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PURPOSE:To reduce a leakage current without providing many feeders, by connecting each end of one or more thyristor apparatuses to each of rails that have been divided by insulating sections and each of the other ends to a common feeder. CONSTITUTION:Rails 3a1-3d2 have been divided by the insulating sections 5a-5c, the intermediate points of the rails are connected respectively to the thyristor apparatuses 6a-6d, and the other ends of the thyristor apparatuses are connected via the common feeder 7 to substations 1a, 1b. If an electric car 4 is on the side of the section 5b away from the intermediate between the sections 5a 5b, the electric currents from the substations 1a, 1b are fed respectively via electric-car lines 2b, 2c, the electric current from the electric car 4 returns via the rail 3b2 and the thyristor apparatuses 6b to the substations 1a, 1b, and the electric current is prevented from flowing into rails other than the rails 3b1, 3b2 by the other thyristor apparatuses. Thus without providing many feeders, a leakage current can be reduced.

Description

【発明の詳細な説明】 この発明は電車へ直流電力を供給する直流き電システム
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a DC feeding system for supplying DC power to electric trains.

従来の電気鉄道では走行レールを運転用主電流の帰路と
して使っており、枕木や道床の絶縁性がはなはだ不完全
なため、レール□の導体抵抗が低いにもかかわらずレー
ルと大地間の絶縁抵抗は天候により大きく左右され、雨
天、特に嵐等の状態では絶縁抵抗が著しく低下し、レー
ルから大地への漏洩電流が著しく増加する。レールから
の漏洩電流は電車負荷電流、帰線抵抗、変電所間隔の2
乗。
In conventional electric railways, the running rail is used as the return path for the main current for operation, and because the insulation of the sleepers and trackbed is extremely imperfect, the insulation resistance between the rail and the ground is low even though the conductor resistance of the rail □ is low. is greatly influenced by the weather; in rainy weather, especially during storms, the insulation resistance drops significantly and the leakage current from the rail to the ground increases significantly. Leakage current from the rails is determined by two factors: train load current, return resistance, and substation spacing.
Squared.

に比例し、漏れ抵抗に反比例する。したがって漏れ電流
を小さくするには原理的には前者を小さくシ、後者を大
きくすればよい。漏洩電流の大きさは数10OAから1
00OAに達することもある。
and inversely proportional to leakage resistance. Therefore, in principle, the leakage current can be reduced by reducing the former and increasing the latter. The size of the leakage current is from several tens of OA to 1
It may even reach 00OA.

第1図及び第2図は従来のき電構成を示す。図において
(1)は変電所、(2)は電車線、(3)はレール。
FIGS. 1 and 2 show conventional feeding configurations. In the diagram, (1) is a substation, (2) is an overhead contact line, and (3) is a rail.

(4)は電車を示している。第1図(a)において変電
所(1)よりl離れた位置において電車(4)が運転電
流Ipをとっているとする。この場合、電車(4)の存
在する付近のレール(3)の対地電位は正電位となる変
電所(1)の付近のレール(3)の対地電位は負電位と
なる。電車(4)の存在する付近ではレール(3)から
大地に電流が漏れ、変電所(1)付近では大地に漏れた
電流がレール(3)に帰ってくる。第1図(b)〜(d
)はその時の各電流IL 、 IN 、 Inと位置と
の関係を示す。
(4) shows a train. In FIG. 1(a), it is assumed that the electric train (4) has an operating current Ip at a position l away from the substation (1). In this case, the ground potential of the rail (3) near the train (4) is positive, and the ground potential of the rail (3) near the substation (1) is negative. In the vicinity of the train (4), current leaks from the rail (3) to the ground, and in the vicinity of the substation (1), the current that leaks to the ground returns to the rail (3). Figure 1(b)-(d)
) shows the relationship between each current IL, IN, In and the position at that time.

この漏洩電流の作用として通常知られているのは、レー
ルやその付属品及びケーブル、水道管。
This leakage current is commonly known to occur in rails, their accessories, cables, and water pipes.

ガス管等の地中埋設金属体の電食であるが、さらに9通
信線に対する誘導障害あるいは地磁気観測所に対するし
よう乱の問題等みある。
In addition to electrolytic corrosion of underground metal objects such as gas pipes, there are also problems with induction disturbances to nine communication lines and disturbances to geomagnetic observatories.

大地電流に関して電気設備技術基準@257条に規定さ
れているように地磁気観測所または地球眠気観測所に対
して観測上の障害及ぼさないようにする必要がある。
As stipulated in Article 257 of the Electrical Equipment Technical Standards regarding ground currents, it is necessary to ensure that they do not interfere with the observation of geomagnetic observatories or earth drowsiness observatories.

従来の直流電気鉄道の直流きm回路は第2図に示すよう
に並列き電を行っており、電気的に正。
As shown in Figure 2, the DC m circuit of conventional DC electric railways carries out parallel feeding, and is electrically positive.

負極とも並列につながっている。従ってレールより大地
に洩れた漏洩電流は広範囲に及び、漏洩電流によって生
ずる磁力が自然界の地磁気に影響をおよぼす。電気鉄道
から波及する磁界はビオ・サバールの法則によって計算
されるが、電車線とレールの電流方向は反対であるから
遠方において大部分の磁界は互いに打消し、その差電流
及び漏洩電流が地磁気に影響する。差電流は地表面に磁
界の垂直分力を生じ5關洩電流の地中に向かう成分が磁
界の水平分力を生じる。
It is also connected in parallel with the negative electrode. Therefore, the leakage current leaking from the rail to the ground spreads over a wide range, and the magnetic force generated by the leakage current affects the earth's magnetism in the natural world. The magnetic field that spreads from electric railways is calculated by the Biot-Savart law, but since the current directions of the overhead contact line and the rail are opposite, most of the magnetic fields cancel each other out in the distance, and the difference current and leakage current affect the earth's magnetism. Affect. The differential current produces a vertical component of the magnetic field on the earth's surface, and the component of the leakage current that goes underground produces a horizontal component of the magnetic field.

電鉄変電所からの漏洩電流を抑制するには帰線抵抗の減
少、変電所間隔の短縮、レールと大地間の絶縁抵抗の増
加、あるいは第4軌条方式、交流電化方式の採用が考え
られる。
Possible ways to suppress leakage current from railway substations include reducing return resistance, shortening the distance between substations, increasing the insulation resistance between the rails and the ground, or adopting a fourth rail system or AC electrification system.

新線計画あるいは電信区間であれば、第4軌条方式の採
用、新線計画であればレールと大地間の絶縁抵抗の増加
が可能であり、新線計画でかつ。
For new line plans or telegraph sections, it is possible to adopt the fourth rail system, and for new line plans, it is possible to increase the insulation resistance between the rail and the ground.

運転間隔、駅間隔1表定速度等の大きい輸送網であれば
交流電化方式の採用が考えられる。都市近郊、郊外等の
輸送交通網における電化、直流区間の延長あるいは直流
電車の乗入れ等の区間に対しては従来の直流電化となる
For transportation networks with large train intervals and fixed speeds between stations, it is conceivable to adopt an AC electrification system. Conventional DC electrification will be used for electrification of transportation networks in urban areas, suburbs, etc., extensions of DC sections, or sections where DC trains are installed.

漏洩電流を抑制するため、帰線抵抗を減らせるにはレー
ルにき電線を併設すれば原理的には可能であるが併設き
電線のサイズが非常に大きくなり経済的でなく、また変
電所間隔を短縮すれば、漏れ電流はある程度抑制できる
が、電車負荷電流の大きい場合あるいは運転間隔が短か
い場合等においてはレールが全線にわたりつながってい
るため大地電流を広範囲にばらまいてしまい、あまり効
果が得られない問題があった。
In order to suppress leakage current and reduce return resistance, it is theoretically possible to install a feeder line alongside the rail, but the size of the attached feeder line would be very large, making it uneconomical, and the spacing between substations would be too large. Leakage current can be suppressed to some extent by shortening the current, but in cases where the train load current is large or the train operation intervals are short, the ground current will be scattered over a wide area because the rails are connected over the entire line, and this will not be very effective. There was a problem that could not be solved.

この発明はt記のような従来のものの欠点を除去するた
めになされたものでレールに絶縁セクションを設けると
ともに絶縁セクションで分割されたレール毎に1組又は
複数組のサイリスタ装置の一端を接続し、各サイリスタ
装置の他端を共通のき電線に接続することにより漏洩電
流を抑制できる直流き電システムを提供することを目的
としている。
This invention was made in order to eliminate the drawbacks of the conventional ones as described in t.In addition to providing an insulating section on the rail, one end of one or more sets of thyristor devices is connected to each rail divided by the insulating section. The object of the present invention is to provide a DC feeding system that can suppress leakage current by connecting the other end of each thyristor device to a common feeding line.

以下この発明の一実施例を第8図に示す。図において(
1)は変電所、(2)は電車線、(3)はレール、(4
)は電車、(5)はレール絶縁セクション、(6月より
イリスタ装置、(7)はき電線である。
An embodiment of the present invention is shown in FIG. 8 below. In the figure (
1) is a substation, (2) is a contact line, (3) is a rail, (4
) is the train, (5) is the rail insulation section, (Iristor device since June, and (7) is the feeder line.

かかる構成におけるこの発明の作用効果を以下に説明す
る。図はレール絶縁セクションで分割されたレールの中
央部にサイリスク装置の陽極を接続した例を示す。各レ
ール(3)の中央にサイリスク装置(6)の陽極を各々
接続し、レール(laX8bX8e)(8d)の各サイ
リスタ装置(6a )(6b X6(+ )(6d )
ノ陰極を共通のき電線(7a )(7b )(#c X
7d )(7e )(7f >Crg )に接続する。
The effects of the present invention in such a configuration will be explained below. The figure shows an example in which the anode of the Cyrisk device is connected to the center of a rail divided by rail insulation sections. Connect the anode of the thyristor device (6) to the center of each rail (3), and connect each thyristor device (6a) (6b
Connect the cathodes to common feeder wires (7a) (7b) (#c
Connect to 7d ) (7e ) (7f > Crg ).

き電線(7bX7(1)の接続点を変電所(18)の負
極に、き電線(7f07g)の接続点を変電所(2a)
の負極に接続している。図において電車(4)の電流は
変電所(1a)からは電車線(2b)を通じて、変電所
(2a)からは電車線(2C)を通じて供給される。こ
の時電車の存在しないレールに接続されているサイリス
タ装置(6a X6c X6d )は阻止状態とし、電
車の存在するレール(8btX8b2)に接続されてい
るサイリスク装置(6b)のみ導通状態としておく。従
って電車を経由した電流はレール(ab tXsb z
)を流れ、サイリスタ装置(6b)を通りき電線(7C
)から変電所(1a)へ、き電線(7dX7eX7f)
から変電所(2a)ヘト帰ッて行く。他方、l!!車の
存在しないレール(8a)(8b)(8C)とき電線(
7)を接続しているサイリスク装置(6g)(6c)(
ad)は阻止状態のため一担き電線(7)に流入した電
流は電車の存在しないセクションには流入出来ない。又
、レール(8b1)(8bρから漏れた電流もレール(
ga)(8cX8d)に流入出来ない。従って電車(4
)tとよって生じたレールからの漏洩電流はレール(8
bt)(8bz)でしか生じない。その結果漏洩電流を
従来方式に比べて小さくでき、又大地電流も広範囲に広
がることなくレール(8b)の範囲しか流れなく、地磁
気に対する磁界の影響を非常に小さくできるメリットが
ある。
Connect the connection point of the feeder line (7b
is connected to the negative terminal of. In the figure, electric current for the electric train (4) is supplied from the substation (1a) through the overhead contact line (2b), and from the substation (2a) through the overhead contact line (2C). At this time, the thyristor device (6a X6c Therefore, the current passing through the train is the rail (ab tXsb z
) and passes through the thyristor device (6b) to the electric wire (7C
) to substation (1a), feeder line (7dX7eX7f)
From there, I headed back to the substation (2a). On the other hand, l! ! When there are no cars on the rails (8a) (8b) (8C), the electric wire (
7) connected to the Cyrisk device (6g) (6c) (
ad) is in a blocking state, so the current that has flowed into the single-carrier wire (7) cannot flow into the section where no train is present. In addition, the current leaking from the rail (8b1) (8bρ also flows through the rail (8b1) (8bρ).
ga) (8cX8d) cannot flow. Therefore, the train (4
)t, the leakage current from the rail is caused by the rail (8
bt) (8bz) only. As a result, the leakage current can be made smaller than in the conventional system, and the earth current does not spread over a wide area, but only flows within the rail (8b), which has the advantage of greatly reducing the influence of the magnetic field on the earth's magnetism.

以tより明らかなように、この発明によると。As is clear from the following, according to the present invention.

漏洩電流、大地電流は従来方式のものより抑制効果が優
れている。これはレールに絶縁セクションを設けるとと
もに絶縁セクションで分割されたレール毎にサイリスク
装置の一端を接続し各サイリスタ装置の他端を共通のき
電線に接続することにより得られるものである。
Leakage current and ground current are more effectively suppressed than conventional methods. This is achieved by providing an insulating section on the rail, connecting one end of the thyristor device to each rail divided by the insulating section, and connecting the other end of each thyristor device to a common feeder line.

その他、この発明はt記し、かつ図面に示す実施例に限
定されるものでなく1例えば図では電車線を正にレール
を負にした場合を示すが、電車線を負にレールを正にし
ても同じ効果が得られ、要旨を変更しない範囲内で適宜
変形して実施し得ることはもち論である。
In addition, the present invention is not limited to the embodiment shown in the drawings.1 For example, the figure shows a case where the overhead contact line is positive and the rail is negative, but when the overhead contact line is negative and the rail is positive. It goes without saying that the same effect can be obtained and that the invention can be modified and implemented as appropriate without changing the gist.

さらに効果を増すには、第4図に示すように分割された
レールの中央でなくその両端にサイリスク装置を設けれ
ばより漏洩電流を抑制でき、さらにサイリスタ装置の設
置数を増やすことは、この発明の要旨を変更しないで実
施できる範囲であることはもち論である。
To further increase the effect, the leakage current can be further suppressed by installing thyristor devices at both ends of the divided rail instead of in the center, as shown in Figure 4. Furthermore, increasing the number of thyristor devices installed It is a matter of course that the invention is within a scope that can be practiced without changing the gist of the invention.

以上のようにこの発明によれば、レール絶縁セクション
で分割されたレール毎にサイリスク装置を設け、他端を
共通のき電線に接続した直流き電システムを構成したの
で漏洩電流を経済的に抑制することができる効果がある
As described above, according to the present invention, a DC feeding system is constructed in which a silisk device is provided for each rail divided by a rail insulation section, and the other end is connected to a common feeding line, thereby economically suppressing leakage current. There is an effect that can be done.

従来の方式によれば変電所間隔を縮めるか、き電線を多
数付加しなければならなかったが9本発明によると変電
所間隔は従来方式と同一でかつき電線を多数付加するこ
となく漏洩電流を低減できる。
According to the conventional system, it was necessary to shorten the distance between substations or add a large number of feeder lines.9 However, according to the present invention, the distance between substations is the same as that of the conventional system, and leakage current can be reduced without adding a large number of wires. can be reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は漏洩電流の発生原理図、第2図は従来の直流き
電システムを示す図、@8図はこの発明の一実施例によ
る直流き電システムを示す図、第4図はこの発明の他の
実施例を示す図である。図において(1)・・・変電所
、(2)・・・電車線、(3)・・・レール。 (4)・・・[車、(5)・・・レール絶縁セクション
、(6)・・・サイリスタ装置、(7)・・・き電線。 なお1図中同一行号は同一、又は相当部分を示す。 第4図 第1頁の続き ■出 願 人 三菱電機株式会社 東京都千代田区丸の内2丁目2 番3号 21
Figure 1 is a diagram showing the principle of leakage current generation, Figure 2 is a diagram showing a conventional DC feeding system, Figure @8 is a diagram showing a DC feeding system according to an embodiment of the present invention, and Figure 4 is a diagram showing the present invention. It is a figure showing other examples of. In the diagram, (1)...substation, (2)...telephone line, (3)...rail. (4)...[car, (5)...rail insulation section, (6)...thyristor device, (7)...feeder line. Note that the same line numbers in Figure 1 indicate the same or corresponding parts. Figure 4 Continued from page 1 ■Applicant Mitsubishi Electric Corporation 2-2-3-21 Marunouchi, Chiyoda-ku, Tokyo

Claims (1)

【特許請求の範囲】[Claims] 電車へ直流電力を供給する直流き電システムにおいてレ
ールに絶縁セクションを設は絶縁セクションで分割され
たレール毎に1組又は複数組のサイリスク装置の一端を
接続し、各サイリスク装置の他端を共通のき電線に接続
したことを特徴とすルミ車への直流き電システム。
In a DC feeding system that supplies DC power to trains, an insulated section is installed on the rail, and one end of one or more sets of thyrisk devices is connected to each rail divided by the insulated section, and the other end of each thyrisk device is connected to a common one. A DC feeding system for a Lumi car, which is characterized by being connected to a feeding power line.
JP17356382A 1982-09-30 1982-09-30 Direct current feeding system for electric car Granted JPS5963233A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17356382A JPS5963233A (en) 1982-09-30 1982-09-30 Direct current feeding system for electric car

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17356382A JPS5963233A (en) 1982-09-30 1982-09-30 Direct current feeding system for electric car

Publications (2)

Publication Number Publication Date
JPS5963233A true JPS5963233A (en) 1984-04-10
JPS641337B2 JPS641337B2 (en) 1989-01-11

Family

ID=15962868

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17356382A Granted JPS5963233A (en) 1982-09-30 1982-09-30 Direct current feeding system for electric car

Country Status (1)

Country Link
JP (1) JPS5963233A (en)

Also Published As

Publication number Publication date
JPS641337B2 (en) 1989-01-11

Similar Documents

Publication Publication Date Title
US7511250B2 (en) Transport system
Mariscotti et al. Distribution of the traction return current in AT electric railway systems
CN107962982B (en) Three-phase traction power supply system and vehicle-mounted power supply system
Oancea et al. On the electromagnetic field in the surrounding area of railway equipment and installations
JPS5963233A (en) Direct current feeding system for electric car
Courtois Why the 2* 25 kv alternative?(autotransformer traction supply)
RU2492074C1 (en) Electric power supply system of electrified ac railways
US458859A (en) Elegteic eailwats
JP2000118270A (en) Superconducting feeding system for railway
JPS5963234A (en) Direct current feeding system for electric car
JPS61278435A (en) Direct current feeding system for tramcar
JPH0142852B2 (en)
JPS60191835A (en) Direct current feeding system for electric car
JPH0351610B2 (en)
JPH0840116A (en) Direct current feeding system of railway
JPS61278436A (en) Direct current feeding system for tramcar
JPS58194631A (en) Direct current feeding system for tramcar
RU2623030C2 (en) Traction network of ac power
EP1124705B1 (en) Traction power supply systems
JPS5963231A (en) Direct current feeding system for electric car
Novitskiy et al. EMC Problems caused by combinations of EHV Transmission lines and electrified railway lines
Hayashiya et al. Case studies of recent lightning troubles in traction power supply system
SU1643226A1 (en) Alternating current railway power transmission line
White Electrification traction and signalling compatibility
Tierney et al. Improvement to the booster transformer/return conductor method of suppressing 50 Hz interference from ac-electrified railway systems