JPS5962537A - Preparation of brominated acenaphthylene condensate - Google Patents

Preparation of brominated acenaphthylene condensate

Info

Publication number
JPS5962537A
JPS5962537A JP57169835A JP16983582A JPS5962537A JP S5962537 A JPS5962537 A JP S5962537A JP 57169835 A JP57169835 A JP 57169835A JP 16983582 A JP16983582 A JP 16983582A JP S5962537 A JPS5962537 A JP S5962537A
Authority
JP
Japan
Prior art keywords
condensate
brominated
acenaphthene
reaction
bromine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57169835A
Other languages
Japanese (ja)
Other versions
JPH0216738B2 (en
Inventor
Masaji Kubo
久保 雅滋
Mitsuaki Yoshimitsu
満明 吉光
Yukihiro Tsutsumi
堤 幸弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Toyo Soda Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Soda Manufacturing Co Ltd filed Critical Toyo Soda Manufacturing Co Ltd
Priority to JP57169835A priority Critical patent/JPS5962537A/en
Priority to CA000437828A priority patent/CA1240340A/en
Priority to FR8315514A priority patent/FR2533916B1/en
Priority to DE19833335400 priority patent/DE3335400A1/en
Priority to GB08326259A priority patent/GB2131017B/en
Publication of JPS5962537A publication Critical patent/JPS5962537A/en
Priority to GB08526861A priority patent/GB2167411B/en
Priority to US06/819,269 priority patent/US4731493A/en
Publication of JPH0216738B2 publication Critical patent/JPH0216738B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To prepare the titled substance having excellent radiation resistance and flame retardance, with simple operation, by brominating easily available acenaphthene in the presence of a specific catalyst and solvent, condensing the product, brominating the benzyl part with a radical initiator, and dehydrobrominating the product. CONSTITUTION:A brominated acenaphthylene condensate having the unit of formula I or formula II (n and n' are 1-5) as a constituent unit, is prepared by (1) brominating and simultaneously condensing acenaphthene with bromine in a halogenated hydrocarbon in the presence of a Lewis acid catalyst at 10-60 deg.C, (2) removing the Lewis acid catalyst from the system, and brominating the condensate in the presence of a radical initiator (e.g. benzoyl peroxide) at 30-100 deg.C, and (3) dissolving the brominated acenaphthene obtained by the second step in an inert solvent and carrying out dehydrobromination reaction with a base at 30-100 deg.C.

Description

【発明の詳細な説明】 本発明は、臭素化アセナフチレン縮合体の製造方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a brominated acenaphthylene condensate.

近年防火対策上から、ポリエチレン、ポリプロピレン、
エチレン−プロピレンゴムの如キ各種可燃性樹脂を難燃
化しておくことが広く行われているが、かかる方法の一
つとして種々の難燃剤を樹脂に添加し、難燃化する方法
が知られている。
In recent years, due to fire prevention measures, polyethylene, polypropylene,
It is widely practiced to make various combustible resins, such as ethylene-propylene rubber, flame-retardant, and one known method is to add various flame retardants to resins to make them flame-retardant. ing.

また最近原子炉、増殖炉あるいは、イオン化放射線発生
器などに使用される電線、ケーブルおよび各種機器類は
安全対策上、難燃性であることが必要欠くべからざるも
のとなってきている。従ってこれらに使用される電線、
ケーブル用被覆絶縁材料、各種樹脂組成物は、難燃性と
同時に耐放射線性を有することが要求される。
Recently, it has become essential for electric wires, cables, and various equipment used in nuclear reactors, breeder reactors, ionizing radiation generators, etc. to be flame retardant for safety reasons. Therefore, the electric wires used for these,
Cable insulation materials and various resin compositions are required to have both flame retardancy and radiation resistance.

臭素化アセナフチレン縮合体は、難燃性および耐放射線
性に優れた化合物で、分子内に二重結合を有しているた
め、遊離基発生処理を施すことにより樹脂にグラフトも
可能であシ、寸だ縮合体であるため樹脂との相溶性に優
れ、長期使用中に樹脂表面にブリードしたり揮散したシ
することがなく、従って長期に亘って安定した難燃及び
耐放射線特性を維持することが出来る化合物である(特
開昭56−122862号公報)。
Brominated acenaphthylene condensate is a compound with excellent flame retardancy and radiation resistance, and since it has a double bond in the molecule, it can be grafted onto resins by subjecting it to free radical generation treatment. Because it is a condensate, it has excellent compatibility with resins, and does not bleed onto the resin surface or volatilize during long-term use, thus maintaining stable flame retardant and radiation-resistant properties over a long period of time. (JP-A-56-122862).

臭素化アセナフチレン縮合体を製造する方法としては、
塩化第2鉄を触媒に用い、臭素をアセナフテンに対し6
倍モル量使用して反応温度20〜30°Cにて臭素化す
る方法(森田、萩原;第30回高分子討論会 ()3A
14.東京(1981))およびアリール位とベンジル
位に臭素を導入した臭素化アセナフテンを触媒の存在下
に処理して合成する方法(%開昭56−122862号
公報)が提案されている。
As a method for producing a brominated acenaphthylene condensate,
Using ferric chloride as a catalyst, 6
Bromination method using twice the molar amount at a reaction temperature of 20 to 30°C (Morita, Hagiwara; 30th Polymer Symposium () 3A
14. Tokyo (1981)) and a method of synthesizing brominated acenaphthenes in which bromine is introduced at the aryl and benzylic positions in the presence of a catalyst (Patent Publication No. 122862/1982) have been proposed.

前者の方法では、臭素化の際に単量体の多臭素化物が多
量に副生じ、収率の低い原因となっている。
In the former method, a large amount of polybrominated monomers are produced as by-products during bromination, resulting in a low yield.

寸だこれらの副生物の廃棄物処理も問題となるため工業
的製造法としては問題がある。
This poses a problem as an industrial manufacturing method because the waste treatment of these by-products also poses a problem.

後者の方法では、例として1.2.3.5−テトラブロ
モアセナフテンの触媒による縮合が提案されているが、
臭素の付いたベンジル位炭素は、非常に反応性が高く、
容易にルイス酸触媒でフリーデル・クラフッ型のアルキ
ル化反応を起すため縮合度を制御できない。
In the latter method, catalytic condensation of 1.2.3.5-tetrabromoacenaphthene has been proposed as an example;
The benzylic carbon with bromine is very reactive;
The degree of condensation cannot be controlled because a Friedel-Krach type alkylation reaction easily occurs with a Lewis acid catalyst.

その結果ベンジル位臭素がかなり消失し次の脱HBr反
応の際に二重結合の生成率が低下する欠点がある。また
出発物質であるアリール位とベンジル位に臭素を導入し
た臭素化アセナフテンをイ!)る方法は、工業的に入手
容易なアセナフテンを出発原料とする場合は困難であり
収率も低い。
As a result, bromine at the benzyl position is considerably lost, resulting in a disadvantage that the production rate of double bonds decreases during the subsequent HBr removal reaction. In addition, the starting material, brominated acenaphthene with bromine introduced at the aryl and benzylic positions, is used! ) is difficult and yields low when acenaphthene, which is industrially easily available, is used as a starting material.

本発明者らは、これらの問題を解決すべくアセナフテン
を出発原料とする臭素化アセナフチレン縮合体の製造法
について鋭意検討したところ、■ アセナフテンをルイ
ス酸触媒を用い5〜55°Cの温度範囲で臭素による臭
素化反応を行わせると、アリール位のみ臭素化されたア
セナフテン及び縮合体が得られベンジル位が臭素化され
た化合物を得ることは困難であること (シ)  アセナフチ/を、ラジカル開始剤を用い臭素
による臭素化反応を行わせると、ベンジル位の臭素化さ
れた化合物が得られ、続いてルイス酸触媒を添加し、再
び臭素を添加してアリール位の臭素化反応及び縮合を行
わせたところ、縮合度が極端に高い化合物が得られ、ベ
ンジル位が臭素化された化合物を得ることは、難しいこ
とを見出した。
In order to solve these problems, the present inventors conducted intensive studies on a method for producing a brominated acenaphthylene condensate using acenaphthene as a starting material. When a bromination reaction with bromine is carried out, acenaphthene and condensate in which only the aryl position is brominated are obtained, and it is difficult to obtain a compound in which the benzyl position is brominated. When a bromination reaction with bromine is carried out using bromine, a compound brominated at the benzylic position is obtained, followed by the addition of a Lewis acid catalyst, and then bromine is added again to carry out the bromination reaction and condensation at the aryl position. As a result, it was found that it was difficult to obtain a compound with an extremely high degree of condensation and a compound in which the benzyl position was brominated.

そこで更に深く検討したところ、 (A)  ハロゲン化炭化水素中でルイス酸触媒の存在
下、アセナフテンを臭素により臭素化縮合する工程 (B)  ルイス酸触媒を除去後、ラジカル開始剤を添
加し、臭素により臭素化する工程 (c)  脱臭化水素する工程 により臭素化アセナフチレン縮合体を製造できることを
見出して本発明を完成させるにいたった。
After further investigation, we found that (A) a step in which acenaphthene is brominated and condensed with bromine in the presence of a Lewis acid catalyst in a halogenated hydrocarbon (B) After removing the Lewis acid catalyst, a radical initiator is added, and bromine The present invention was completed based on the discovery that a brominated acenaphthylene condensate can be produced by the step of bromination (c) and the step of dehydrobromation.

本発明でいう臭素化アセナフチレン縮合体とけ、臭素を
芳香環に少なくとも1個以上含有する化合物で、臭素化
アセナフテンが形式的には脱臭化水素反応を起して縮合
し、縮合度2以上の多量体となり、続いて脱臭化水素反
応により臭素化アセナフチレン縮合体となったものをい
う。
The brominated acenaphthylene condensate referred to in the present invention is a compound containing at least one bromine in an aromatic ring, in which brominated acenaphthene formally condenses through a dehydrobromation reaction, with a degree of condensation of 2 or more. This term refers to a product that is subsequently converted into a brominated acenaphthylene condensate through a dehydrobromation reaction.

その縮合様式は、アセナフチレンのベンジル位の炭素と
アセナフチレンのアリール位の炭素との分子間での結合
である。
The condensation mode is an intermolecular bond between the benzylic carbon of acenaphthylene and the aryl carbon of acenaphthylene.

本発明でいうベンジル位とは、アセナフテン環の側鎖を
意味し、アリール位とは、アセナフテン環のナフタリン
核を意味する。
The benzyl position in the present invention means the side chain of the acenaphthene ring, and the aryl position means the naphthalene nucleus of the acenaphthene ring.

その結合点は、例えば されるが、その他にも1(あるいは2)、3仙、1(あ
るいは2)、4’−11(あるいは2)、7/−。
The joining points are, for example, 1 (or 2), 3 sen, 1 (or 2), 4'-11 (or 2), and 7/-.

1(あるいは2)、s’−等の結合が考えられる。Bonds such as 1 (or 2), s'-, etc. are possible.

縮合度が3以上のものは、このような結合のいずれかK
より構成単位を増大せしめたものである。
If the degree of condensation is 3 or more, any of these bonds K
It has a larger number of constituent units.

本発明でいう縮合体とは樹脂との相溶性に優れている縮
合度10以下のものをいう。
The condensate as used in the present invention refers to a condensation product having a degree of condensation of 10 or less and having excellent compatibility with resin.

本発明方法によれば、第一段階の臭素化反応に於いて、
アリール位の臭素化と縮合を同時に行わせ、第二段階で
ベンジル位の臭素化を行わせることにより、臭素化と縮
合をバランス良く行わせることが出来、また二重結合を
定量的に生成させることが出来る。
According to the method of the present invention, in the first step bromination reaction,
By simultaneously performing bromination and condensation at the aryl position and brominating at the benzyl position in the second step, bromination and condensation can be performed in a well-balanced manner, and double bonds can be quantitatively generated. I can do it.

本発明の方法は、次の反応式を用いて説明することが出
来る。
The method of the present invention can be explained using the following reaction formula.

(ここでに、に″は1〜6、tは1〜2、mは1〜10
の範囲内である。) 次に本発明の方法について各工程に分けて具体的に説明
する。
(Here, ni'' is 1 to 6, t is 1 to 2, m is 1 to 10
is within the range of ) Next, the method of the present invention will be specifically explained in each step.

(A)工程 アセナフテンをハロゲン化炭化水素溶媒中に溶解し、ル
イス酸触媒の下に臭素により臭素化と同時に縮合を行わ
せる。
(A) Step Acenaphthene is dissolved in a halogenated hydrocarbon solvent, and simultaneously brominated and condensed with bromine under a Lewis acid catalyst.

本工程で使用されるハロゲン化炭化水素溶媒は、反応に
不活性な溶媒であり、例えば、四塩化炭素、クロロホル
ム、塩化メチレン、エチレンジクロリド、エチレンジプ
ロミド、クロルベンゼンなどをあげることが出来る。ま
た溶媒の使用量については格別の限定はない。触媒とし
て用いるルイス酸は、ハロゲン化金属類が好ましく通常
塩化第二鉄等の鉄触媒もしくは、塩化アルミニウム等の
アルミ触媒を使用する。触媒の使用量は、アセナフテン
1モルに対して01〜50モルチであり、好ましくは、
1〜20モルチである。
The halogenated hydrocarbon solvent used in this step is a solvent inert to the reaction, and examples include carbon tetrachloride, chloroform, methylene chloride, ethylene dichloride, ethylene dipromide, and chlorobenzene. Further, there is no particular limitation on the amount of solvent used. The Lewis acid used as a catalyst is preferably a metal halide, and usually an iron catalyst such as ferric chloride or an aluminum catalyst such as aluminum chloride is used. The amount of catalyst used is 01 to 50 molti per mol of acenaphthene, preferably
It is 1 to 20 molti.

本工程で使用される臭素の量は、アセナフテン1モルに
対して通常1〜6モルが使用されるが、好井しくけ2〜
5モルである。
The amount of bromine used in this step is usually 1 to 6 moles per mole of acenaphthene, but Shikei Yoshii2 to
It is 5 moles.

臭素化は、反応温度10〜60°Cの間で行うのが好寸
しい。
The bromination is suitably carried out at a reaction temperature of between 10 and 60°C.

(B)工程 (A) 工程で得られた反応液から水洗等により触媒を
除去し、ラジカル開始剤を加え、臭素を添加して臭素化
を行う。
(B) Step (A) The catalyst is removed from the reaction solution obtained in step (A) by washing with water or the like, a radical initiator is added, and bromine is added to perform bromination.

(A)工程で得られた反応液中の臭素化アセナフテン縮
合体には、ベンジル位の臭素化物は、殆んど含1れない
が、本工程によりベンジル位の臭素化物を定量的に得る
ことが出来る。
Although the brominated acenaphthene condensate in the reaction solution obtained in step (A) contains almost no benzyl-position bromide, it is possible to quantitatively obtain the benzyl-position bromide by this step. I can do it.

本工程で用いられるラジカル開始剤は、加熱により分解
してラジカルを生成するものがよく、好ましくは使用温
度範囲が30〜100°Cの過酸化物もしくはアゾ化合
物が一般に選択される。
The radical initiator used in this step is preferably one that decomposes upon heating to generate radicals, and is generally selected from peroxides or azo compounds whose operating temperature range is preferably 30 to 100°C.

例えば、過酸化ベンゾイル、過酸化アセチル。For example, benzoyl peroxide, acetyl peroxide.

過酸化ラウロイル、アゾビスイソブチロニトリルなどを
あげることができる。
Examples include lauroyl peroxide and azobisisobutyronitrile.

本工程で用いる臭素の使用量はアセナフテン1モルに対
して1〜2モルである。
The amount of bromine used in this step is 1 to 2 moles per mole of acenaphthene.

臭素化は通常反応温度50〜100°Cで行われるが、
高温で行う方が、ベンジル位臭素化の選択性が高く、ま
た反応もすみやかに進行し好−ましい。寸たこの反応の
際、縮合は殆んど起らない。
Bromination is usually carried out at a reaction temperature of 50 to 100°C,
It is preferable to carry out the reaction at a high temperature because the selectivity for bromination at the benzyl position is higher and the reaction proceeds more quickly. During this reaction, almost no condensation occurs.

(C)工程 (B)工程により得られた臭素化アセナフテンを反応に
不活性な溶媒に溶解し、塩基を加えて脱臭化水素反応を
行わせる。
(C) Step (B) The brominated acenaphthene obtained in step (B) is dissolved in a solvent inert to the reaction, and a base is added to carry out a dehydrobromination reaction.

反応溶媒としては、ハロゲン化炭化水素、脂肪族および
芳香族炭化水素、エーテル類等があり、例えば四塩化炭
素、エチレンジクロリド、ヘキサン、ベンゼン、トルエ
ン、テトラヒドロフラン等をあげることが出来る。塩基
として■1、通常の脱ハロゲン化水素反応に用いられる
試薬で例えば水酸化カリウム−メタノール溶液、水酸化
ナトリウム−エタノール等が挙げられる。
Examples of the reaction solvent include halogenated hydrocarbons, aliphatic and aromatic hydrocarbons, and ethers, such as carbon tetrachloride, ethylene dichloride, hexane, benzene, toluene, and tetrahydrofuran. Examples of the base include (1) reagents used in ordinary dehydrohalogenation reactions, such as potassium hydroxide-methanol solution, sodium hydroxide-ethanol, and the like.

反応は通常60〜100°Cで行われるが、高温で行う
方が、反応がすみやかにかつ定量的に進行し好ましい。
The reaction is usually carried out at a temperature of 60 to 100°C, but it is preferable to carry out the reaction at a high temperature because the reaction proceeds quickly and quantitatively.

匂、−ト一本発明によれば、工業的に容易に得られる原
料を用いて、簡単な操作により臭素化アセナフチレン縮
合体を収率よく製造することが出来る。
According to the present invention, a brominated acenaphthylene condensate can be produced in good yield by simple operations using raw materials that are easily obtained industrially.

寸だ本発明によりイ↓すられる臭素化アセナフチレン縮
合体はベンジル位の炭素−炭素二重結合が定量的に生成
しており、樹脂へのグラフト化率も高く、耐放射線性お
よび難燃性にも優れたものである。
The brominated acenaphthylene condensate produced by the present invention has a quantitative amount of carbon-carbon double bonds at the benzyl position, has a high grafting rate to the resin, and has excellent radiation resistance and flame retardancy. is also excellent.

以下実施例により本発明を更に詳しく説明するが、本発
明はこれらの実施例に限定されるものではない。
The present invention will be explained in more detail below with reference to Examples, but the present invention is not limited to these Examples.

実施例1 アセナフテン77gと塩化第2鉄a1gを四塩化炭素6
90 ml中に加え、60°Cに加温した。この溶液に
、臭素2409と四塩化炭素60m1の溶液を2時間に
わたり滴下した。
Example 1 77 g of acenaphthene and 1 g of ferric chloride a were mixed with 6 carbon tetrachloride
The mixture was added to 90 ml and heated to 60°C. A solution of bromine 2409 and carbon tetrachloride (60 ml) was added dropwise to this solution over 2 hours.

9素の色が消える捷で反応を行い、反応後、反応溶液を
1規定の塩酸水溶液300ゴで洗浄した。
The reaction was carried out under the conditions where the color of the 9 elements disappeared, and after the reaction, the reaction solution was washed with 300 g of 1N aqueous hydrochloric acid solution.

統いて水500 mlで2回洗浄した後、四塩化炭素消
液を無水硫、酸マグネシウム上で乾燥した。
After washing the mixture twice with 500 ml of water, the carbon tetrachloride solution was dried over anhydrous sulfur and magnesium oxide.

トリルa2りを加え、78°C還流−下に臭素160り
と四塩化炭素4 ’Omlの溶液を1時間で滴下し臭素
の色が消えるまで反応した。
Tolyl a2 was added, and a solution of 160 ml of bromine and 40 ml of carbon tetrachloride was added dropwise over 1 hour under reflux at 78°C to react until the color of bromine disappeared.

冑、第1段、第2段の臭素化反応において四塩化炭素中
に不溶物の析出は見られなかった。
No precipitation of insoluble matter in carbon tetrachloride was observed in the first and second stage bromination reactions.

反応終了後、反応液を濃縮乾固し、ベンゼン550m1
.に溶解させて加熱還流下に水酸化カリウム36gをメ
タノール150 ml、に溶解しだ液を1時間で滴下し
、更に1時間反応した。反応液を冷却後、臭化カリウム
塩をPJL’r l、、メタノールを留去して6回水洗
を行い、ベンゼン溶液をか1′隻縮してアセトン中に滴
下し再沈殿させて臭素化アセナフチレン縮合体152g
を得た。縮合体の組成式U、(Cl2H4,7Brj、
2 )Il+であり、アセナフテンがらの収率は751
チに相当する。
After the reaction was completed, the reaction solution was concentrated to dryness, and 550ml of benzene was added.
.. 36 g of potassium hydroxide was dissolved in 150 ml of methanol under heating under reflux, and the resulting solution was added dropwise over 1 hour, and the reaction was continued for another 1 hour. After cooling the reaction solution, the potassium bromide salt was distilled off, the methanol was distilled off, the mixture was washed with water six times, and the benzene solution was condensed by 1' and dropped into acetone for reprecipitation and bromination. Acenaphthylene condensate 152g
I got it. Compositional formula U of the condensate, (Cl2H4,7Brj,
2) Il+, the yield of acenaphthene is 751
Corresponds to

得られた縮合体の融点1元素分析値および縮合度の分析
値は下記の通りであった。
The melting point single element analysis value and the analysis value of the degree of condensation of the obtained condensate were as follows.

融点 135−140”C 元素分析値(@  G35.6  H1,4Br 62
.7高速液体クロマトグラフィー(GPC)による分析 211体  38% 3 力を体     41 % 4〜8量体  21% 高速液体クロマトグラフィー分析の測定装置および測定
条件は下肥のとおシである。
Melting point 135-140"C Elemental analysis value (@ G35.6 H1,4Br 62
.. 7 Analysis by high performance liquid chromatography (GPC) 211 bodies 38% 3 Power body 41% 4-octamers 21% The measurement equipment and measurement conditions for high performance liquid chromatography analysis are the same as for manure.

装的:高速液体クロマトグラフ〔東洋曹達工業(株制、
「TSK HLC802」商標〕カラム:内径75mm
×長さ600朋 充填剤: TSK GEL G1000H8(商標、東
洋曹達工業■製〕 実施例2 アセナフテン779と塩化アルミニウム五5りを四塩化
炭素69〇−中に加え、60°Cに保った。
Equipment: High performance liquid chromatograph [Toyo Soda Kogyo (stock system,
"TSK HLC802" trademark] Column: Inner diameter 75mm
x Length 600 mm Filler: TSK GEL G1000H8 (trademark, manufactured by Toyo Soda Kogyo ■) Example 2 Acenaphthene 779 and aluminum chloride 55 were added to carbon tetrachloride 690 and maintained at 60°C.

この溶液に臭素620りと四塩化炭素80dの溶液を4
時間にわたり滴下し、臭素の色が消えるまで反応し/こ
。実施例1と同様の処理後、反応液にアゾビスイソブチ
ロニトリルa2りを加え、78°C還流下に、臭素80
gと四塩化炭素20 、fの溶液を0.5時間で滴下し
、臭素の色が消えるまで反応した。尚、これらの臭素化
反応において不溶物の析出は見られなかった。続いて実
施例1と同様の反応により臭素化アセナフチレン縮合体
162qを得た。元素分析より求めた縮合体の組成式は
(Cl2H4,7Br3.2 )mであり、アセナフテ
ンからの収率は、8(L1係である。
Add a solution of 620 d of bromine and 80 d of carbon tetrachloride to this solution.
Add dropwise over a period of time and react until the bromine color disappears. After the same treatment as in Example 1, azobisisobutyronitrile a2 was added to the reaction solution, and bromine 80
A solution of g, carbon tetrachloride 20 and f was added dropwise over 0.5 hours, and the reaction was continued until the color of bromine disappeared. Incidentally, no precipitation of insoluble matter was observed in these bromination reactions. Subsequently, the same reaction as in Example 1 was carried out to obtain brominated acenaphthylene condensate 162q. The compositional formula of the condensate determined by elemental analysis is (Cl2H4,7Br3.2)m, and the yield from acenaphthene is 8 (L1 coefficient).

得られた縮合体の分析値は下記の通りであった。The analytical values of the obtained condensate were as follows.

融点 155−160℃ 元素分析値(%9  C36,5Hl、2  Br64
.6高速液体クロマトグラフィー(GPO)による分析 2量体  30% 3(li一体  32係 4〜8量体  38% 比較例 アセナフテン779と塩化第2鉄a19を四塩化炭素7
00 ml中に加え、20°Cに保った。この溶故に臭
素480り四塩化炭素120 mlの溶液を4時間にわ
たり滴下した。滴下後55°C−1で昇温し、臭素の色
が消えるまで反応を行った。
Melting point 155-160℃ Elemental analysis value (%9 C36,5Hl, 2 Br64
.. 6 Analysis by high performance liquid chromatography (GPO) Dimer 30% 3 (Li integral 32-coupled tetra-octamer 38% Comparative example Acenaphthene 779 and ferric chloride a19 were combined with carbon tetrachloride 7
00 ml and kept at 20°C. Because of this dissolution, a solution of 480 ml of bromine and 120 ml of carbon tetrachloride was added dropwise over 4 hours. After the dropwise addition, the temperature was raised to 55° C., and the reaction was carried out until the color of bromine disappeared.

反応液中に黒褐色の不溶物80りが生成しただめ許過し
て除き、塩酸および水で洗浄した後、実施例1と同様に
脱臭化反応を行い、臭素化アセナフチレン縮合体140
りを得だ。元素分析より求めた組成式は(C’12HM
B’4.2 )11nであり、アセナフテンからの収率
は57.9%に相当する。分析の結果、析出した不溶物
は、臭素含有率75チの臭素化アセナフテン単量体であ
り、得られた臭素化アセナフチレン縮合体は臭素含有率
69%で、縮合度は2鼠体37%、3量体46%、4〜
8量体20チの化合物であった。
After 80% of black-brown insoluble matter was formed in the reaction solution, it was allowed to be removed, washed with hydrochloric acid and water, and then deodorized in the same manner as in Example 1 to obtain a brominated acenaphthylene condensate of 140%.
I got it. The compositional formula obtained from elemental analysis is (C'12HM
B'4.2) 11n, corresponding to a yield from acenaphthene of 57.9%. As a result of the analysis, the precipitated insoluble matter was a brominated acenaphthene monomer with a bromine content of 75%, and the obtained brominated acenaphthylene condensate had a bromine content of 69% and a degree of condensation of 2% and 37%. trimer 46%, 4~
It was a compound of 20 octamers.

特許出願人  東洋曹達工業株式会社 千#7L補止−) 昭和58年 7月15日 !1+i古’I’Jj−長信若杉和夫殿19011の表
示 昭和57年11旨′1願第169835  シじ2発明
の名称 臭素化アセナフチレン縮合体の製造方法ろ補正をする名 ’I f’lとの関係 時言乍出願人 電バ占a弓 (585)3 ろ 11 、+1 5袖市の対象 明im 110[発明の詳細な説明1の欄6補正の内容 明イ111書を次の様に補正する。
Patent Applicant Toyo Soda Kogyo Co., Ltd. 1000#7L Supplementary) July 15, 1982! 1 + i old 'I'Jj - Indication of Mr. Kazuo Naganobu Wakasugi 19011 1988 1983 '1 Application No. 169835 2 Name of the invention Process for producing brominated acenaphthylene condensate Name for correction 'I f'l and The relationship between the following: (585) 3 ro 11, +1 5 Sodeichi's object light im 110 [Detailed Description of the Invention 1 Column 6 Amendment Contents 111 as follows: to correct.

頁  行   補正前   補正後 15  3  2ii〜体  2量体以下14142歓
体  2景体以下
Page Line Before correction After correction 15 3 2ii ~ body Dimer or less 14142 Huan body Dike body or less

Claims (1)

【特許請求の範囲】 一般式(1)もしくは〔■〕 (ここでnおよびnlは1〜5の整数)で表わされる単
位を構成要素とする臭素化アセナフチレン縮合体をイg
′4造するに際し、 (A)ハロゲン化炭化水素中でルイス酸触媒の存在下、
アセナフf4撃★僅化、縮合する工程 (B)ルイス酸触媒を除去後、ラジカル開始剤を添加し
、臭素により臭素化する工程 (C)脱臭化水素する工程 からなることを特徴とする臭素化アセナフチレン縮合体
の製造方法。
[Scope of Claims] A brominated acenaphthylene condensate having a unit represented by the general formula (1) or [■] (where n and nl are integers of 1 to 5) is an example.
(A) In the presence of a Lewis acid catalyst in a halogenated hydrocarbon,
Bromination characterized by comprising the following steps: (B) removing the Lewis acid catalyst, adding a radical initiator and brominating with bromine (C) dehydrobrominating the acenaf f4 Method for producing acenaphthylene condensate.
JP57169835A 1982-09-30 1982-09-30 Preparation of brominated acenaphthylene condensate Granted JPS5962537A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP57169835A JPS5962537A (en) 1982-09-30 1982-09-30 Preparation of brominated acenaphthylene condensate
CA000437828A CA1240340A (en) 1982-09-30 1983-09-28 Process for producing condensed bromoacenaphthylene
FR8315514A FR2533916B1 (en) 1982-09-30 1983-09-29 PROCESS FOR PRODUCING CONDENSED BROMOACENAPHTYLENE AND PURIFICATION THEREOF
DE19833335400 DE3335400A1 (en) 1982-09-30 1983-09-29 METHOD FOR PRODUCING CONDENSED BROMACENAPHTHYLENE
GB08326259A GB2131017B (en) 1982-09-30 1983-09-30 Production of condensed bromoacenaphthylene
GB08526861A GB2167411B (en) 1982-09-30 1985-08-31 Production of condensed bromoacenaphthylene
US06/819,269 US4731493A (en) 1982-09-30 1986-01-16 Process for producing condensed bromoacenaphthylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57169835A JPS5962537A (en) 1982-09-30 1982-09-30 Preparation of brominated acenaphthylene condensate

Publications (2)

Publication Number Publication Date
JPS5962537A true JPS5962537A (en) 1984-04-10
JPH0216738B2 JPH0216738B2 (en) 1990-04-18

Family

ID=15893797

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57169835A Granted JPS5962537A (en) 1982-09-30 1982-09-30 Preparation of brominated acenaphthylene condensate

Country Status (1)

Country Link
JP (1) JPS5962537A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5962538A (en) * 1982-10-01 1984-04-10 Toyo Soda Mfg Co Ltd Preparation of brominated acenaphthylene condensate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5962538A (en) * 1982-10-01 1984-04-10 Toyo Soda Mfg Co Ltd Preparation of brominated acenaphthylene condensate
JPH0372608B2 (en) * 1982-10-01 1991-11-19 Tosoh Corp

Also Published As

Publication number Publication date
JPH0216738B2 (en) 1990-04-18

Similar Documents

Publication Publication Date Title
US3763248A (en) Process for production of poly brominated aromatics
Walling et al. Positive Halogen Compounds. V. t-Butyl Hypobromite and Two New Techniques for Hydrocarbon Bromination1
JP3773065B2 (en) Dichloro-tetrafluoro- [2,2] -paracyclophane and process for producing the same
JP3123724B2 (en) Poly (alkyl-P-thiophenoxyphenylsulfonium salt) compound
JP2002500207A (en) Method for producing TFPX dichloride
JPS5962537A (en) Preparation of brominated acenaphthylene condensate
JPH0585946A (en) Method of bromination
CN1894180A (en) Ecology-friendly bromo-benzene synthesizing method
JPH0346451B2 (en)
CA1240340A (en) Process for producing condensed bromoacenaphthylene
JPH047333B2 (en)
JPH0372608B2 (en)
US4252624A (en) Bromination of m-ethyldiphenyl ether
JPH03178941A (en) Haloethylation of aromatic hydrocarbon
JP2001199910A (en) Method for producing aromatic compound
JPH01165609A (en) Production of isobutylene polymer having functional terminal
JPS60101119A (en) Production of aromatic polyether-ketone
JP3768572B2 (en) Production of aromatic substituted chlorinated hydrocarbons by chlorination reaction
JP3089773B2 (en) Method for producing 2,2,3,3-tetramethylcyclopropane-1-carboxylic acid
KR810001279B1 (en) Preparation of meta-aryloxy-benzaldehydes
JPH0123450B2 (en)
JPH01311035A (en) Production of 4, 4'-dibromobiphenyl in strong acid medium
JPS63130542A (en) Production of polybromoacenaphthene and/or condensate thereof
JP2004091723A (en) Poly(arylene ketone), method for producing the same and biphenylene derivative monomer of the same
JPH10231263A (en) Brominated biphenylnovolak compound, its production and resin composition