JPH0372608B2 - - Google Patents

Info

Publication number
JPH0372608B2
JPH0372608B2 JP57171015A JP17101582A JPH0372608B2 JP H0372608 B2 JPH0372608 B2 JP H0372608B2 JP 57171015 A JP57171015 A JP 57171015A JP 17101582 A JP17101582 A JP 17101582A JP H0372608 B2 JPH0372608 B2 JP H0372608B2
Authority
JP
Japan
Prior art keywords
acenaphthene
reaction
condensate
brominated
bromine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57171015A
Other languages
Japanese (ja)
Other versions
JPS5962538A (en
Inventor
Masaji Kubo
Mitsuaki Yoshimitsu
Yukihiro Tsutsumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP17101582A priority Critical patent/JPS5962538A/en
Priority to CA000437828A priority patent/CA1240340A/en
Priority to DE19833335400 priority patent/DE3335400A1/en
Priority to FR8315514A priority patent/FR2533916B1/en
Priority to GB08326259A priority patent/GB2131017B/en
Priority to FR8403067A priority patent/FR2552757B1/en
Publication of JPS5962538A publication Critical patent/JPS5962538A/en
Priority to GB08526861A priority patent/GB2167411B/en
Priority to US06/819,269 priority patent/US4731493A/en
Publication of JPH0372608B2 publication Critical patent/JPH0372608B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C25/00Compounds containing at least one halogen atom bound to a six-membered aromatic ring
    • C07C25/18Polycyclic aromatic halogenated hydrocarbons
    • C07C25/22Polycyclic aromatic halogenated hydrocarbons with condensed rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C17/00Preparation of halogenated hydrocarbons
    • C07C17/093Preparation of halogenated hydrocarbons by replacement by halogens
    • C07C17/10Preparation of halogenated hydrocarbons by replacement by halogens of hydrogen atoms
    • C07C17/12Preparation of halogenated hydrocarbons by replacement by halogens of hydrogen atoms in the ring of aromatic compounds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、臭素化アセナフチレン縮合体の製造
方法に関するものである。 近年、防火対策上から、ポリエチレン、ポリプ
ロピレン、エチレン−プロピレンゴムの如き各種
可燃性樹脂を難燃化しておくことが広く行なわれ
ているが、かかる方法の一つとして種々の難燃剤
を樹脂に添加し難燃化する方法が知られている。 また、最近、原子炉、増殖炉あるいはイオン化
放射線発生器などに使用される電線、ケーブルお
よび各種機器類は安全対策上、難燃性であること
が必要欠くべからざるものとなつてきている。 従つて、これらに使用される電線ケーブル用被
複絶縁材料、各種樹脂組成物は、難燃性と同時に
耐放射線性を有することが要求される。 臭素化アセナフチレン縮合体は、難燃性および
耐放射線性に優れた化合物で、分子内に二重結合
を有しているため、遊離基発生処理を施すことに
より、樹脂にグラフト化も可能であり、また、縮
合体であるため樹脂との相溶性に優れ、長期間使
用中に樹脂表面にブリードしたり揮散したりする
ことがなく、従つて長期間に亘つて安定した難燃
および耐放射線特性を維持することができる化合
物である(特開昭56−122862号公報)。 臭素化アセナフチレン縮合体を製造する方法と
しては、塩化第二鉄を触媒に用い、臭素をアセナ
フテンに対して6倍モル使用し、反応温度20〜30
℃にて臭素化する方法(森田・萩原:第30回高分
子討論会G3A14、東京(1981))およびアリール
位とベンジル位に臭素を導入した臭素化アセナフ
テンを触媒の存在下に処理して合成する方法(特
開昭56−122862号公報)が提案されている。 前者の方法では臭素化の際に単量体の多臭素化
物が多量に副生し、収率の低い原因となつてい
る。後者の方法では、例として1,2,3,5−
テトラブロモアセナフテンの触媒による縮合が提
案されているが、臭素の付いたベンジル位炭素
は、非常に反応性が高く容易にルイス酸触媒でフ
リーデル・クラフツ型のアルキル化反応を起こす
ため縮合度を制御できない。その結果、ベンジル
位臭素がかなり消失し、次の脱臭化水素反応の際
に二重結合の生成率が低下する欠点がある。ま
た、出発物質であるアリール位とベンジル位に臭
素を導入した臭素化アセナフテンを得る方法は、
工業的に入手容易なアセナフテンを出発原料とす
る場合は繁雑かつ困難であり、収率も低い。 本発明者らは、これらの問題を解決すべくアセ
ナフテンを出発原料とする臭素化アセナフチレン
縮合体の製造法について鋭意検討したところ、ア
セナフテンをルイス酸触媒を用い5〜55℃の温度
範囲で臭素による臭素化を行なわせると、アリー
ル位のみが臭素化されたアセナフテンおよび縮合
体が得られ、ベンジル位が臭素化された化合物を
得ることは困難であることを見い出した。但し、
5ないし55℃の温度範囲でルイス酸触媒のうち鉄
触媒を用い、臭素をアセナフテンに対して3倍モ
ル以上用いて反応した場合にのみ、アリール位の
みならずベンジル位が臭素化された縮合体がわず
かながら得られるが、収率が低いことおよび単量
体の多臭素化物が多量に副生する欠点が明らかと
なつた。 そこで更に深く検討したところ、ハロゲン化炭
化水素溶媒中で鉄触媒の存在下に60℃以上の温度
で臭素をアセナフテンに対して3倍モル量以上添
加し、アセナフテンの臭素化、縮合反応を行なわ
せると、驚くべきことにベンジル位が臭素化され
たアセナフテン縮合体が収率よく得られることを
見い出し本発明を完成させるにいたつた。 本発明でいう臭素化アセナフチレン縮合体と
は、臭素を芳香環に少なくとも1個以上含有する
化合物で、臭素化アセナフテンが形式的には脱臭
化水素反応を起こして縮合し、縮合度2以上の多
量体となり、続いて脱臭化水素反応により臭素化
アセナフチレン縮合体となつたものをいう。 その結果様式は、アセナフチレンのベンジル位
炭素とアセナフチレンのアリール位炭素との分子
間での結合である。本発明でいうベンジル位とは
アセナフテン環の側鎖を、アリール位とはアセナ
フテン環のナフタリン核を意味する。 その結合点は、例えば、 1(あるいは2)、
The present invention relates to a method for producing a brominated acenaphthylene condensate. In recent years, it has become common practice to make various combustible resins such as polyethylene, polypropylene, and ethylene-propylene rubber flame retardant for fire prevention purposes. One such method is to add various flame retardants to resins. There are known methods to make it flame retardant. Furthermore, recently, it has become essential for electric wires, cables, and various equipment used in nuclear reactors, breeder reactors, ionizing radiation generators, etc. to be flame retardant for safety reasons. Therefore, the composite insulating materials for electric wires and cables and various resin compositions used in these materials are required to have both flame retardancy and radiation resistance. Brominated acenaphthylene condensate is a compound with excellent flame retardancy and radiation resistance, and since it has a double bond in the molecule, it can be grafted onto resins by subjecting it to free radical generation treatment. In addition, since it is a condensate, it has excellent compatibility with resins, and does not bleed onto the resin surface or volatilize during long-term use, so it has stable flame retardant and radiation-resistant properties over a long period of time. (Japanese Unexamined Patent Publication No. 122862/1983). As a method for producing a brominated acenaphthylene condensate, ferric chloride is used as a catalyst, 6 times the mole of bromine is used relative to acenaphthene, and the reaction temperature is 20 to 30.
℃ bromination method (Morita and Hagiwara: 30th Polymer Symposium G3A14, Tokyo (1981)) and synthesis by treating brominated acenaphthene with bromine introduced at the aryl and benzyl positions in the presence of a catalyst. A method (Japanese Unexamined Patent Publication No. 122862/1983) has been proposed. In the former method, a large amount of polybrominated monomers are produced as by-products during bromination, which causes a low yield. In the latter method, for example 1, 2, 3, 5-
Catalytic condensation of tetrabromoacenaphthene has been proposed, but the bromine-attached benzylic carbon is highly reactive and easily undergoes a Friedel-Crafts type alkylation reaction with a Lewis acid catalyst, so the degree of condensation is limited. cannot be controlled. As a result, bromine at the benzylic position is considerably lost, resulting in a disadvantage that the production rate of double bonds decreases during the subsequent dehydrobromination reaction. In addition, the method for obtaining brominated acenaphthene with bromine introduced into the aryl and benzyl positions as a starting material is as follows:
Using acenaphthene, which is industrially easily available, as a starting material is complicated and difficult, and the yield is low. In order to solve these problems, the present inventors conducted intensive studies on a method for producing a brominated acenaphthylene condensate using acenaphthene as a starting material. It has been found that when bromination is carried out, acenaphthene and condensate in which only the aryl position is brominated are obtained, and it is difficult to obtain a compound in which the benzyl position is brominated. however,
Only when the reaction is carried out in the temperature range of 5 to 55 degrees Celsius using an iron catalyst among Lewis acid catalysts and using at least 3 times the molar amount of bromine to acenaphthene, a condensate in which not only the aryl position but also the benzyl position is brominated can be produced. However, it became clear that the yield was low and that a large amount of polybrominated monomers were produced as by-products. After further investigation, we found that bromine was added in an amount of at least three times the molar amount of acenaphthene in a halogenated hydrocarbon solvent in the presence of an iron catalyst at a temperature of 60°C or higher to carry out the bromination and condensation reaction of acenaphthene. Surprisingly, they discovered that an acenaphthene condensate in which the benzyl position is brominated can be obtained in good yield, leading to the completion of the present invention. The brominated acenaphthylene condensate as used in the present invention refers to a compound containing at least one bromine in an aromatic ring, in which brominated acenaphthene formally condenses by causing a dehydrobromination reaction, resulting in a large amount of condensation with a degree of condensation of 2 or more. This refers to the product that is subsequently converted into a brominated acenaphthylene condensate through a dehydrobromation reaction. The resulting pattern is an intermolecular bond between the benzylic carbon of acenaphthylene and the aryl carbon of acenaphthylene. In the present invention, the benzyl position means the side chain of the acenaphthene ring, and the aryl position means the naphthalene nucleus of the acenaphthene ring. The connection point is, for example, 1 (or 2),

【式】 1(あるいは2)、
[Formula] 1 (or 2),

【式】 等が例示されるが、その他にも、1(あるいは
2)、3′−、1(あるいは2)、4′−、1(あるいは
2)、7′−、1(あるいは2)、8′−等の結合が考
えられる。 縮合度3以上のものは、このような結合のいず
れかにより構成単位を増大せしめたものである。 本発明でいう縮合体とは、樹脂との相溶性に優
れている縮合度10以下のものをいう。 本発明によれば、イオン化反応によるアリール
位臭素化、縮合とラジカル反応によるベンジル位
臭素化をバランスよく行なわせることができ、そ
の結果、アセナフテンのアリール位とベンジル位
が臭素化されたアセナフテン縮合体を得ることが
できる。また、アリール位のみ臭素化された不溶
物の副生も少ないため収率も優れている。 以下本発明を詳細に説明する。 本発明の方法では、ハロゲン化炭化水素が溶媒
として使用され、これは反応に不活性なものであ
れば良く、例えば、四塩化炭素、クロロホルム、
ジクロルエチレン、ジブロムエチレン、クロルベ
ンゼン、ブロムベンゼン、ジクロルベンゼンなど
をあげることができる。また溶媒の使用量につい
ては格別の制限はない。 本発明の方法で使用される鉄触媒は、通常、芳
香族炭化水素のハロゲン化に用いられるもので良
く、例えば、塩化第一鉄、臭化第二鉄等の鉄ハロ
ゲン化物、硫酸第一鉄、硫酸第二鉄、リン酸第二
鉄等の鉄塩、酸化第二鉄等の酸化鉄、鉄粉なでを
あげることができる。これらの触媒の添加量は、
反応基質であるアセナフテン1モルに対して
0.001〜0.5モルの範囲で任意であるが、反応効率
の面から0.01〜0.2モル程度の使用が好ましい。 本発明で用いる臭素の量は、アセナフテン1モ
ルに対して3モル以上、好ましくは4モル以上で
ある。3モル以下の臭素量の場合、ベンジル位の
臭化物は殆んど縮合反応に消費され残存していな
いため、目的とする臭素化アセナフチレン縮合体
を得ることができない。一方、6モル以上と使用
臭素量が多くなると、反応自体には問題ないが、
反応後の臭素の回収等で経済的に不利になるため
好ましくは6モル以下である。 臭素化の反応温度としては、60℃以上好ましく
は70〜170℃である。60℃以下の反応温度では、
ラジカル反応に比べイオン化反応が優先的に起こ
り、アセナフテン単量体の多臭素化物が反応系中
に不溶物として多く副生する。60℃以上の反応温
度では、ラジカル反応とイオン化反応がバランス
良く起こり、この副生物の生成は少なく、目的と
する臭素化アセナフテン縮合物を収率よく得るこ
とができる。 反応は通常、常圧下で、アセナフテンと鉄触媒
を含むハロゲン化炭化水素溶液に臭素を滴下して
行なうが、加圧下で反応を行なつてもかまわな
い。 得られた臭素化アセナフテン縮合体を、続いて
反応に不活性な溶媒中に溶解し、メタノール−水
酸化カリウム等の塩基を加えて脱臭化水素反応を
行なわせることにより、臭素化アセナフチレン縮
合体を製造できる。 このように本発明によれば、容易に得られる原
料を用い、簡単な操作で収率よく臭素化アセナフ
チレン縮合体の中間体が得られるため、臭素化ア
セナフチレン縮合体の経済的な製造法が可能とな
つた。また、本発明により得られる臭素化アセナ
フチレン縮合体は、ベンジル位の炭素−炭素二重
結合が定量的に生成しており、樹脂へのグラフト
化率も高く、耐放射線性および難燃性にも優れて
いる。 以下、実施例によりさらに詳細に説明するが、
本発明はこれらの実施例に限定されるものではな
い。 実施例 1 アセナフテン77gと塩化第二鉄8.1gを四塩化
炭素300ml中に加え、77℃に加熱した。この溶液
に臭素360gを四塩化炭素100mlに溶解した液を4
時間にわたり滴下し、更に臭素の色が消えるまで
反応した。反応後、反応液中の不溶物8.2gを
過して除き、反応液を1規定の塩酸水溶液300ml
で洗浄した。続いて水300mlで2回洗浄した後、
反応液を濃縮乾固し、ベンゼン550mlに溶解させ
て加熱還流し、水酸化カリウム36gをメタノール
150mlに溶解した液を1時間で滴下し、更に1時
間反応した。 反応液を冷却後、析出した臭化カリウム塩を
過して除き、メタノールを留去して3回水洗を行
ない、ベンゼン溶液を濃縮してアセトン中に滴下
し、再沈させて臭素化アセナフチレン縮合体140
gを得た。元素分析値より求めた縮合体の組成式
は(C12H4.4Br2.7nであり、アセナフテンからの
収率は76.8%に相当する。 得られた縮合体の融点、元素分析値および縮合
度の分析値は下記の通りであつた。 融 点 120〜133℃ 元素分析値(%) C39.1 H1.2 Br59.4 高速液体クロマトグラフイー(GPC)による
分析 2量体以下 27% 3量体 31% 4〜8量体 42% 高速液体クロマトグラフイー分析の測定装置お
よび測定条件は下記の通りである。 装置:高速クロマトグラフ(東洋曹達工業株式
会社製、「TSK HLC 802」商標) カラム:内径7.5mm×長さ600mm 充填剤:TSK GEL G1000H8〔商標 東洋曹達
工業(株)製〕 実施例 2 アセナフテン77gと鉄粉4.2gをエチレンジブ
ロミド500ml中に加え120℃に加熱した。この溶液
に臭素400gを5時間で滴下し、更に臭素の色が
消えるので反応した。 反応後、反応液中の不溶物5.2gを過して除
き、反応液を実施例1と同様に処理および脱臭化
水素反応を行なわせて臭素化アセナフチレン縮合
体155gを得た。元素分析値より求めた縮合体の
組成式は(C12H4.4Br3.1nであり、アセナフテン
からの収率は、78.2%に相当する。 得られた縮合体の融点、元素分析値および縮合
度の分析値は下記の通りであつた。 融 点 125〜140℃ 元素分析値(%) C36.4 H1.1 Br62.1 高速液体クロマトグラフイー(GPC)によ
る分析 2量体以下 27% 3量体 28% 4〜8量体 45% 比較例 アセナフテン77gと塩化第二鉄8.1gを四塩化
炭素700ml中に加え、20℃に保つた。この溶液に
臭素480g、四塩化炭素120mlの溶液を4時間にわ
たり滴下した。滴下後、55℃まで昇温し、臭素の
色が消えるまで反応を行なつた。反応液中に黒褐
色の不溶物80gが生成したため過して除き、塩
酸および水で洗浄した後、実施例1と同様に脱臭
化水素反応を行ない、臭素化アセナフチレン縮合
体140gを得た。元素分析値より求めた組成式は
(C12H3.4Br4.2nであり、アセナフテンからの収率
は57.9%に相当する。 分析の結果、析出した不溶物は臭素含有率75%
の臭素化アセナフテン単量体であり、得られた臭
素化アセナフチレン縮合体は、融点130〜142℃、
臭素含有率69%で縮合度は2量体37%、3量体43
%、4〜8量体20%の化合物であつた。
[Formula] etc. are exemplified, but other examples include 1 (or 2), 3'-, 1 (or 2), 4'-, 1 (or 2), 7'-, 1 (or 2), Bonds such as 8'- are possible. Those with a degree of condensation of 3 or more are those in which the number of structural units is increased by any of these bonds. The condensate used in the present invention refers to a condensation product having a degree of condensation of 10 or less and having excellent compatibility with resin. According to the present invention, bromination at the aryl position by ionization reaction and bromination at the benzyl position by condensation and radical reaction can be carried out in a well-balanced manner, resulting in an acenaphthene condensate in which the aryl and benzyl positions of acenaphthene are brominated. can be obtained. In addition, the yield is excellent because there are few by-products of insoluble matter that is brominated only at the aryl position. The present invention will be explained in detail below. In the method of the present invention, halogenated hydrocarbons are used as solvents, as long as they are inert to the reaction, such as carbon tetrachloride, chloroform,
Examples include dichloroethylene, dibromoethylene, chlorobenzene, bromobenzene, and dichlorobenzene. Furthermore, there are no particular restrictions on the amount of solvent used. The iron catalyst used in the method of the present invention may be one normally used for halogenating aromatic hydrocarbons, such as iron halides such as ferrous chloride and ferric bromide, and ferrous sulfate. , iron salts such as ferric sulfate and ferric phosphate, iron oxides such as ferric oxide, and iron powder. The amount of these catalysts added is
per mole of acenaphthene, the reaction substrate
Although the amount is arbitrary within the range of 0.001 to 0.5 mol, it is preferably used in an amount of about 0.01 to 0.2 mol from the viewpoint of reaction efficiency. The amount of bromine used in the present invention is 3 moles or more, preferably 4 moles or more, per 1 mole of acenaphthene. When the amount of bromine is 3 moles or less, most of the bromide at the benzyl position is consumed in the condensation reaction and does not remain, making it impossible to obtain the desired brominated acenaphthylene condensate. On the other hand, if the amount of bromine used is large (6 moles or more), there is no problem with the reaction itself, but
The amount is preferably 6 mol or less since it is economically disadvantageous due to the recovery of bromine after the reaction. The reaction temperature for bromination is 60°C or higher, preferably 70 to 170°C. At reaction temperatures below 60℃,
Ionization reactions occur preferentially over radical reactions, and a large amount of polybrominated acenaphthene monomers are produced as insoluble matter in the reaction system. At a reaction temperature of 60°C or higher, radical reactions and ionization reactions occur in a well-balanced manner, the production of by-products is small, and the desired brominated acenaphthene condensate can be obtained in good yield. The reaction is usually carried out under normal pressure by dropping bromine into a halogenated hydrocarbon solution containing acenaphthene and an iron catalyst, but the reaction may also be carried out under pressure. The obtained brominated acenaphthene condensate is then dissolved in a solvent inert to the reaction, and a base such as methanol-potassium hydroxide is added to carry out a dehydrobromination reaction, thereby producing a brominated acenaphthylene condensate. Can be manufactured. As described above, according to the present invention, an intermediate for a brominated acenaphthylene condensate can be obtained in high yield with a simple operation using easily obtained raw materials, and thus an economical method for producing a brominated acenaphthylene condensate is possible. It became. In addition, the brominated acenaphthylene condensate obtained by the present invention has a quantitative amount of carbon-carbon double bonds at the benzyl position, has a high grafting rate to the resin, and has good radiation resistance and flame retardancy. Are better. Hereinafter, it will be explained in more detail with examples,
The present invention is not limited to these examples. Example 1 77 g of acenaphthene and 8.1 g of ferric chloride were added to 300 ml of carbon tetrachloride and heated to 77°C. Add 360 g of bromine dissolved in 100 ml of carbon tetrachloride to this solution.
The mixture was added dropwise over a period of time, and the reaction continued until the color of bromine disappeared. After the reaction, 8.2 g of insoluble matter in the reaction solution was removed by filtration, and the reaction solution was diluted with 300 ml of 1N hydrochloric acid aqueous solution.
Washed with. After washing twice with 300ml of water,
The reaction solution was concentrated to dryness, dissolved in 550 ml of benzene, heated to reflux, and 36 g of potassium hydroxide was dissolved in methanol.
A solution dissolved in 150 ml was added dropwise over 1 hour, and the reaction was further continued for 1 hour. After cooling the reaction solution, precipitated potassium bromide salt was removed by filtration, methanol was distilled off, and washed with water three times.The benzene solution was concentrated and dropped into acetone, and reprecipitated to form a brominated acenaphthylene condensation. body 140
I got g. The compositional formula of the condensate determined from elemental analysis is (C 12 H 4.4 Br 2.7 ) n , which corresponds to a yield of 76.8% from acenaphthene. The melting point, elemental analysis values, and analysis values of the degree of condensation of the obtained condensate were as follows. Melting point 120-133℃ Elemental analysis value (%) C39.1 H1.2 Br59.4 Analysis by high performance liquid chromatography (GPC) Dimer or less 27% Trimer 31% 4-8mer 42% High speed The measurement device and measurement conditions for liquid chromatography analysis are as follows. Equipment: High-speed chromatograph (manufactured by Toyo Soda Kogyo Co., Ltd., "TSK HLC 802" trademark) Column: Inner diameter 7.5 mm x length 600 mm Packing agent: TSK GEL G1000H8 [Trademark made by Toyo Soda Kogyo Co., Ltd.] Example 2 Acenaphthene 77 g and 4.2 g of iron powder were added to 500 ml of ethylene dibromide and heated to 120°C. 400 g of bromine was added dropwise to this solution over 5 hours, and the color of bromine disappeared, causing a reaction. After the reaction, 5.2 g of insoluble matter in the reaction solution was removed by filtration, and the reaction solution was treated and dehydrobrominated in the same manner as in Example 1 to obtain 155 g of a brominated acenaphthylene condensate. The compositional formula of the condensate determined from elemental analysis values is (C 12 H 4.4 Br 3.1 ) n , and the yield from acenaphthene is equivalent to 78.2%. The melting point, elemental analysis values, and analysis values of the degree of condensation of the obtained condensate were as follows. Melting point 125-140℃ Elemental analysis value (%) C36.4 H1.1 Br62.1 Analysis by high performance liquid chromatography (GPC) Less than dimer 27% Trimer 28% 4-8mer 45% Comparison Example 77 g of acenaphthene and 8.1 g of ferric chloride were added to 700 ml of carbon tetrachloride and kept at 20°C. A solution of 480 g of bromine and 120 ml of carbon tetrachloride was added dropwise to this solution over 4 hours. After the dropwise addition, the temperature was raised to 55°C, and the reaction was carried out until the color of bromine disappeared. 80 g of dark brown insoluble material was produced in the reaction solution, which was filtered off and washed with hydrochloric acid and water, followed by dehydrobromination reaction in the same manner as in Example 1 to obtain 140 g of a brominated acenaphthylene condensate. The compositional formula determined from elemental analysis is (C 12 H 3.4 Br 4.2 ) n , which corresponds to a yield of 57.9% from acenaphthene. As a result of analysis, the bromine content of the precipitated insoluble matter was 75%.
is a brominated acenaphthene monomer, and the obtained brominated acenaphthylene condensate has a melting point of 130 to 142 °C,
Bromine content is 69% and degree of condensation is 37% dimer and 43 trimer.
%, and the compound contained 20% of tetramers to octamers.

Claims (1)

【特許請求の範囲】 1 一般式[]もしくは[] (ここでnおよびn′は1〜5の整数を表わす) で表わされる単位を構成要素とする臭素化アセナ
フチレン縮合体のアセナフテンの臭素化、縮合お
よび脱臭化水素反応からなる製造法において、ハ
ロゲン化炭化水素中で鉄ハロゲン化物、鉄塩、酸
化鉄または鉄粉の存在下、60℃以上の温度で臭素
をアセナフテンに対して3倍モル量以上添加して
アセナフテンの臭素化、縮合反応を同時に行なう
ことを特徴とする臭素化アセナフチレン縮合体の
製造法。
[Claims] 1. General formula [] or [] (Here, n and n' represent integers of 1 to 5.) In the production method consisting of bromination, condensation, and dehydrobromination reaction of acenaphthene of a brominated acenaphthylene condensate having units represented by In the presence of iron halides, iron salts, iron oxides, or iron powder in a hydrocarbon, at a temperature of 60°C or higher, bromine is added at least three times the molar amount of acenaphthene to simultaneously carry out bromination and condensation reactions of acenaphthene. A method for producing a brominated acenaphthylene condensate, characterized by:
JP17101582A 1982-09-30 1982-10-01 Preparation of brominated acenaphthylene condensate Granted JPS5962538A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP17101582A JPS5962538A (en) 1982-10-01 1982-10-01 Preparation of brominated acenaphthylene condensate
CA000437828A CA1240340A (en) 1982-09-30 1983-09-28 Process for producing condensed bromoacenaphthylene
DE19833335400 DE3335400A1 (en) 1982-09-30 1983-09-29 METHOD FOR PRODUCING CONDENSED BROMACENAPHTHYLENE
FR8315514A FR2533916B1 (en) 1982-09-30 1983-09-29 PROCESS FOR PRODUCING CONDENSED BROMOACENAPHTYLENE AND PURIFICATION THEREOF
GB08326259A GB2131017B (en) 1982-09-30 1983-09-30 Production of condensed bromoacenaphthylene
FR8403067A FR2552757B1 (en) 1982-10-01 1984-02-28 PROCESS FOR PRODUCING BROMOACENAPHTYLENE CONDENSE
GB08526861A GB2167411B (en) 1982-09-30 1985-08-31 Production of condensed bromoacenaphthylene
US06/819,269 US4731493A (en) 1982-09-30 1986-01-16 Process for producing condensed bromoacenaphthylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17101582A JPS5962538A (en) 1982-10-01 1982-10-01 Preparation of brominated acenaphthylene condensate

Publications (2)

Publication Number Publication Date
JPS5962538A JPS5962538A (en) 1984-04-10
JPH0372608B2 true JPH0372608B2 (en) 1991-11-19

Family

ID=15915513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17101582A Granted JPS5962538A (en) 1982-09-30 1982-10-01 Preparation of brominated acenaphthylene condensate

Country Status (2)

Country Link
JP (1) JPS5962538A (en)
FR (1) FR2552757B1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5962537A (en) * 1982-09-30 1984-04-10 Toyo Soda Mfg Co Ltd Preparation of brominated acenaphthylene condensate

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5962537A (en) * 1982-09-30 1984-04-10 Toyo Soda Mfg Co Ltd Preparation of brominated acenaphthylene condensate

Also Published As

Publication number Publication date
JPS5962538A (en) 1984-04-10
FR2552757A1 (en) 1985-04-05
FR2552757B1 (en) 1987-10-16

Similar Documents

Publication Publication Date Title
US5294732A (en) Polysubstituted fullerenes and their preparation
KR0175673B1 (en) Decabromodiphenyl alkane process
CA2047256C (en) Process for decabromodiphenylalkane predominant product
JP2509653B2 (en) Bromination of Polystyrene Aromatic Rings Using Bromine as Reaction Solvent
JP2833719B2 (en) Preparation of decabromodiphenylalkane
JPH0217144A (en) Production of bisphenol
JPH0460137B2 (en)
JPH0372608B2 (en)
CA1240340A (en) Process for producing condensed bromoacenaphthylene
JPS6016947A (en) Manufacture of 4-hydroxybenzophenones
JP3333604B2 (en) Method for producing brominated polystyrene
JPH0216738B2 (en)
JPH0346451B2 (en)
JPH047333B2 (en)
JPS6121204B2 (en)
US4945186A (en) Method of producing 3-bromobenzaldehyde
JP2557382B2 (en) Method for producing metabrominated bifunol
JP3004113B2 (en) Decabromodiphenylalkane method
JPS62179B2 (en)
CA1276944C (en) Method for preparation of polybromoacenaphthene and/or its condensate
JPS60178832A (en) Synthesis of brominated acenaphthylene condensate
KR810001279B1 (en) Preparation of meta-aryloxy-benzaldehydes
JPH08176067A (en) Production of 4,4'-diacetoxybiphenyl
CN115501896A (en) Novel catalyst for preparing acenaphthylene
Sharma et al. Mild and efficient synthesis of triaryl cyanurates by using effective combination of tetrabutyl ammonium bromide and dibenzo-(18)-crown-6