JPH047333B2 - - Google Patents

Info

Publication number
JPH047333B2
JPH047333B2 JP24479683A JP24479683A JPH047333B2 JP H047333 B2 JPH047333 B2 JP H047333B2 JP 24479683 A JP24479683 A JP 24479683A JP 24479683 A JP24479683 A JP 24479683A JP H047333 B2 JPH047333 B2 JP H047333B2
Authority
JP
Japan
Prior art keywords
reaction
condensate
brominated
con
bacn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP24479683A
Other languages
Japanese (ja)
Other versions
JPS60139630A (en
Inventor
Masaji Kubo
Hideo Satsuka
Yukihiro Tsutsumi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tosoh Corp
Original Assignee
Tosoh Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tosoh Corp filed Critical Tosoh Corp
Priority to JP24479683A priority Critical patent/JPS60139630A/en
Priority to US06/615,541 priority patent/US4898998A/en
Priority to CA000455684A priority patent/CA1240707A/en
Publication of JPS60139630A publication Critical patent/JPS60139630A/en
Publication of JPH047333B2 publication Critical patent/JPH047333B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Description

【発明の詳现な説明】[Detailed description of the invention]

本発明は䞀般匏〔〕 匏〔〕䞭、は〜、は〜、は
以䞊の範囲の数を衚わす。 で瀺される臭玠化アセナフチレン瞮合䜓の合成方
法に関し、さらに詳しくは䞀般匏〔〕 匏〔〕䞭、およびは前蚘匏〔〕
ず同じ意を衚わす。で瀺される臭玠化アセナフ
テン瞮合䜓を脱臭化氎玠反応しお、臭玠化アセナ
フチレン瞮合䜓を補造する方法に関するものであ
る。 本発明方法により埗られる臭玠化アセナフチレ
ン瞮合䜓以䞋Con−BACNず略するは、難燃
性および耐攟射線性に優れた化合物で、各皮暹脂
に配合されお該暹脂を難燃性および耐攟射線性に
する性質がある。たた分子内に二重結合を有しお
いるため、遊離基発生凊理を斜すこずにより暹脂
にグラフト化も可胜であり、たた瞮合䜓であるた
め暹脂ずの盞溶性に優れ、埓぀お長期に亘぀お安
定した難燃および耐攟射線性を維持するこずがで
きる化合物ずしお泚目されおいる。特開昭56−
122862号公報 特にCon−BACNは、難燃性ず同時に耐攟射線
性を有するこずが芁求される原子炉、増殖炉ある
いはむオン化攟射線発生噚などに䜿甚される電線
ケヌブル甚被芆絶瞁材料、各皮暹脂組成物ぞの利
甚が期埅されおいる。 本発明の目的は、耐攟射線性および難燃性に優
れたCon−BACNを工業的に補造する方法を提䟛
するこずである。 本発明でいうCon−BACNずは、臭玠をナフタ
レン栞に少なくずも個以䞊含有する化合物であ
り、臭玠化アセナフテンが圢匏的にはフリヌデ
ル・クラフツ反応により瞮合し、瞮合床以䞊の
倚量䜓ずなり、続いお脱臭化氎玠反応により臭玠
化アセナフチレンの瞮合䜓ずな぀たものをいう。 すなわち、䞀般匏〔〕で瀺される化合物であ
り、より具䜓的には䞀般匏〔〕もしくは〔〕 匏䞭は〜の数を衚わすで衚わされる
単䜍を構成芁玠ずする瞮合䜓であり、その結合様
匏はアセナフチレンのベンゞル䜍炭玠ずアセナフ
チレンのアリヌル䜍炭玠ずの分子間の結合であ
る。その結合点は、 䟋えばあるいは、5′− たたはあるいは、6′− 等が䟋瀺されるが、その他にもあるいは、
3′−あるいは、4′−あるいは、
7′−あるいは、8′−等の結合が考えられ
る。瞮合床以䞊のものは、このような結合の䜕
れかにより構成単䜍を増倧せしめたものである。 本発明では、暹脂ずの盞溶性に優れおいる瞮合
床10以䞋のものが実甚䞊の芳点より奜たしい。 Con−BACNは、䞀般にアセナフテンの臭玠
化、瞮合および脱臭化氎玠反応により補造され
る。 䟋えば、アセナフテンをハロゲン化炭化氎玠溶
媒䞭で臭玠を添加しお、ベンゞル䜍偎鎖の臭玠
化、瞮合、ナフタレン栞ぞの臭玠化を行ない、䞀
般匏〔〕で瀺される臭玠化アセナフテン瞮合䜓
を補造する。続いお本化合物を塩基により脱臭化
氎玠反応しおCon−BACNを補造する。 該臭玠化アセナフテン瞮合䜓を脱臭化氎玠反応
する方法ずしおは、ベンれン等の芳銙族炭化氎玠
溶媒䞭で苛性カリヌ゚タノヌルの溶液を滎䞋しお
行なう方法特開昭56−122862号公報や本発明
者らが先に出願した四塩化炭玠等のハロゲン化炭
化氎玠䞭で苛性カリ−メタノヌルの溶液を滎䞋し
お行なう方法特願昭57−169835号が知られお
いる。 これらの方法では、苛性カリを䜎玚アルコヌル
に溶解しお脱臭化氎玠反応を行なうが、脱離反応
ず競争的にアルコキシ基の求栞眮換反応が起り、
䞀郚゚ヌテル化合物の副生が芋られる。 これらが補品Con−BACN䞭に混入するずCon
−BACNの熱安定性を䜎䞋させる原因ずなるた
め、本発明者らが既に出願した方法特願昭57−
193145号による粟補が必芁であ぀た。 たた苛性カリに比べ安䟡な苛性゜ヌダを甚いよ
うずする堎合、アルコヌルに察する溶解床が䜎い
ため倚量のアルコヌルを芁したり、塩基濃床を高
く出来ないため反応が遅い等の欠点を有しおい
た。 曎に、脱臭化氎玠反応を芳銙族炭化氎玠䞭で行
なう方法では、前工皋の臭玠化、瞮合反応をハロ
ゲン化炭化氎玠溶媒䞭で行なう方法が必修の技術
であるため、これらの反応終了埌、反応溶媒をハ
ロゲン化炭化氎玠から芳銙族炭化氎玠に眮換する
工皋が必芁である。それゆえ、本方法は補造プロ
セス䞊、繁雑にならざるを埗ない。 埓぀お臭玠化、瞮合および脱臭化氎玠反応を同
䞀の溶媒䞭で行なう方法が、補造プロセス䞊有利
な方法である。 しかし、脱臭化氎玠反応をハロゲン化炭化氎玠
䞭で行なうず、䞀郚溶媒の分解が起぀おいるこず
が明らかずな぀た。 䟋えば、四塩化垳炭玠の堎合、䞋蚘に瀺す分解
が芋られる。 CCl46KOH→K2CO33H2OO4KCl 加えお、苛性カリのアルコヌル溶液を臭玠化ア
セナフテン瞮合䜓の溶液に滎䞋するため、固䜓状
苛性カリをアルコヌルに溶解させる操䜜が必芁で
あり、特に本反応のような回分反応においおは䜜
業が繁雑ずなり、たた固䜓苛性を扱うため劎働安
党䞊も問題である。 曎に本反応は臭玠化アセナフテン瞮合䜓の溶液
ず氎酞化カリりムのアルコヌル溶液が二盞を圢成
しお進行するが、反応の進行ずずもに臭化カリり
ムの塩が倚量に析出し、反応噚壁や撹拌矜根に付
着しお、反応終了埌の凊理操䜜が繁雑になる。 このように公知の脱臭化氎玠方法は、補品品質
面からも、たた経枈性及び操䜜性に斌いお工業芏
暡の補造技術ずしおも、末だ満足出来るものでは
なか぀た。かかる事情に鑑み、本発明者らが、該
脱臭化氎玠反応方法に぀いお鋭意怜蚎した結果、
ハロゲン化炭化氎玠溶媒に溶解した臭玠化アセナ
フテン瞮合䜓をアルカリ金属氎酞化物で脱臭化氎
玠する際、氎アルコヌル重量比が0.1〜0.5の含
氎アルコヌルを該アルカリ金属氎酞化物の溶媒ず
しお䜿甚すれば、䞊蚘公知技術の欠点が著しく解
消される事実を芋出し本発明を完成するに到぀
た。 即ち本発明の方法によれば、アルカリ金属氎酞
化物濃床を向䞊しうるため、氎添加による反応速
床の䜎䞋を来たすこずはなく、脱臭化氎玠反応を
実斜するこずが可胜である。次に、この含氎アル
コヌル溶媒を甚いるず前蚘の副反応が著しく抑え
られる。぀たり、アルコキシ基による求栞眮換反
応は党く芋られないため、埗られるCon−BACN
の品質は優れおいる。曎にはハロゲン化炭化氎玠
溶媒の分解も非垞に抑えられるため、経枈的に有
利である。 たた本発明の方法では、アルカリ金属氎酞化物
を氎溶液の状態でアルコヌル䞭に添加し混合する
だけでアルカリ液の調敎が可胜ずなるため、固䜓
苛性の堎合に必芁であ぀た溶解操䜜が䞍芁ずな
り、䜜業性が非垞に向䞊する。 曎に、含氎アルコヌルを䜿甚するず、反応の進
行ずずもに副生するアルカリ金属塩が溶解し、そ
の析出が抑えられるため、反応終了埌の埌凊理操
䜜が容易ずなる。 このように本発明は、簡単な操䜜で臭玠化アセ
ナフテン瞮合䜓から経枈的にCon−BACNを補造
する方法をプロセスの䞀環ずしお提䟛するもので
ある。 以䞋本発明を詳现に説明する。 本発明で䜿甚されるハロゲン化炭化氎玠は、ア
セナフテンの臭玠化・瞮合および脱臭化氎玠反応
に䞍掻性な溶媒であり、䟋えば四塩化炭玠、クロ
ロホルム、塩化メチレン、゚チレンゞクロリド、
゚チレンゞブロミド、トリクロロ゚タン、などを
あげるこずができるが、奜たしくは四塩化炭玠が
遞ばれる。 たた溶媒の䜿甚量に぀いおは栌別の限定はない
が、該溶媒䞭、臭玠化アセナフテン瞮合䜓が完党
に溶解しおいる方が望たしいため、生成するCon
−BACNの濃床ずしお通垞10〜70重量皋床が
甚いられる。 次に本発明の方法で䜿甚されるアルカリ金属氎
酞化物ずしおは、リチりム、ナトリりム、カリり
ム、セシりム等の氎酞化物が甚いられるが、経枈
性を考慮しお䞀般に氎酞化ナトリりム、氎酞化カ
リりムが遞ばれる。これらアルカリ金属氎酞化物
の䜿甚量は、原料の臭玠化アセナフテン瞮合䜓の
構造単䜍モル盞圓に察しお0.8モル以䞊が遞ば
れ、曎に奜たしくは〜モル皋床である。 本発明の方法では、アルカリ金属氎酞化物の溶
媒ずしお含氎アルコヌルが䜿甚されるため、アル
コヌルずしおは氎の溶解床が高い炭玠数以䞋の
アルコヌルが甚いられる。䟋えばメタノヌル、゚
タノヌル、−プロパノヌル、−プロパノヌ
ル、−ブタノヌル、sec−ブタノヌル、tert−
ブタノヌル、゚チレングリコヌル、プロピレング
リコヌル等をあげるこずが出来る。特にメタノヌ
ル、゚タノヌルの堎合、反応が速く、反応終了埌
の埌凊理も容易なため奜たしい。 これら䜎玚アルコヌルの䜿甚量は、氎を添加し
た状態でアルカリ金属氎酞化物を溶解する量以䞊
が遞ばれるが、反応を速め該アルコヌルの回収負
担を抑えるため、アルコヌル䞭のアルカリ金属氎
酞化物濃床が高濃床になるような量が奜たしい。 アルコヌルに添加する氎の量は、氎アルコヌ
ルの重量比が0.1〜0.5になるような量が遞ばれ
る。曎に奜たしくは0.2〜0.4の範囲の量である。
氎アルコヌルの重量比が0.1以䞋の堎合は、脱
臭化氎玠反応の際に、前蚘の副反応即ちアルコキ
シ基による求栞眮換反応やハロゲン化炭化氎玠溶
媒の分解が倚く芋られる。䞀方0.5以䞊の堎合は、
反応が極端に遅くなり、反応が完結しないように
なる。 本発明の氎の添加量では、反応は充分速く進行
し完結しお、収率は定量的ずなる。曎に前述の副
反応も非垞に抑えられる。 反応枩床は、䞀般に反応を垞圧䞋で行なうため
溶媒の沞点以䞋であり、通垞30〜100℃皋床が遞
ばれる。䞀般に、より高枩で行なう方が反応がす
みやかにか぀定量的に進行するため奜たしい。 反応時間は反応枩床等により倉りうるが、通垞
10分ないし玄時間皋床である。 反応終了埌、生成したCon−BACNは公知の手
段で粉䜓ずしお単離するこずが出来る。䟋えば、
反応混合液を氎掗しお、有機局をアセトン等の貧
溶媒䞭に添加しCon−BACNを再沈殿させお分離
すれば、Con−BACNを粉䜓ずしお埗るこずが出
来る。 このように本発明によれば、簡単な操䜜により
臭玠化アセナフテン瞮合䜓から品質の優れたCon
−BACNを経枈的に補造するこずが出来る。埓
぀お埓来プロセスを簡略化した工業的に有利な
Con−BACNの補造法が可胜ずな぀た。 次に実斜䟋を以぀お本発明の方法をさらに具䜓
的に説明するが、これに限定するものではない。 実斜䟋  アセナフテン308ず2.2′−アゟビスむ゜ブチ
ロニトリル6.6を四塩化炭玠950ml䞭に加え77℃
で加熱還流した。この溶液に臭玠320を四塩化
炭箠470mlに溶解した液を撹拌しながら1.5時間に
わたり滎䞋し、さらに0.5時間反応した。反応埌、
反応液を冷华し四塩化チタン38を25℃で反応液
に添加し、そのたた時間、反応した。続いお臭
玠1120を25℃で時間にわたり滎䞋し、その埌
75℃たで昇枩し加熱還流しお時間反応した。反
応埌、反応液に亜硫酞氎玠ナトリりム氎溶液を添
加しお未反応の臭玠を陀き反応液を氎掗しお、臭
玠化アセナフテン瞮合䜓840原料アセナフテ
ン・モノマヌ単䜍圓り、2.0モルに盞圓する。を
含む、四塩化炭玠溶液1500mlを埗た。この臭玠化
アセナフテン瞮合䜓は臭玠含有率64.3の化合物
であ぀た。 この四塩化炭玠溶液から臭玠化アセナフテン瞮
合䜓168を含む300mlの溶液を次の脱臭化氎玠反
応に甚いた。 窒玠気流䞋、䞊蚘の反応液に苛性カリ31.4、
メタノヌル80および氎32を含む溶液を滎䞋
し、58℃還流䞋で反応を行な぀た。 H1−NMRスペクトル枬定により反応の経時倉
化を远跡し、䞀般匏〔〕から䞀般匏〔〕ぞの
転化率を求めた。反応前埌のH1−NMRチダヌト
を第図に瀺す。 いずれのスペクトルにもΎH7.0〜7.9PPmにナ
フタレン環に結合した 1Hのピヌクが芳枬され
る。䞭間䜓スペクトル(a)ではΎH5.65〜
5.9PPmのベンゞル䜍眮の 1Hによるピヌクが芳
枬され、最終生成物スペクトル(b)では、脱臭化
氎玠反応による二重結合生成で、このピヌクはΎH
6.7〜7.0PPmに移動し、匷床も小さくなる。 反応終了埌メチル゚ヌテルの副生を瀺すピヌク
は芋られなか぀た。 次に反応終了埌、窒玠雰囲気䞋で反応液に氎を
添加しお有機盞を回氎掗した。氎盞䞭の炭酞む
オンの量をオルザツト分析法により定量し、四塩
化炭玠の分解率を求めた。 第衚にこれらの反応条件および分析結果を瀺
す。 埗られた有機盞を撹拌䞋−オクタン1.2äž­
に添加しおCon−BACNの再沈殿を行ない、析出
した粉䜓を別し也燥しお、臭玠含有率56.1融
点125〜147℃の赀耐色粉末状Con−BACN110
を埗た。高速液䜓クロマトグラフむヌGPC
による瞮合床の分析は、単量䜓22、量䜓25
、〜量䜓53であ぀た。尚、液䞭には26
のCon−BACNが含たれおおり、反応終了埌の
Con−BACNの収量は、ほが定量的である。 実斜䟋  実斜䟋で補造した臭玠化アセナフテン瞮合䜓
を168含有する四塩化炭玠溶液300mlに、苛性カ
リ31.4、メタノヌル105および氎21を含む
溶液を滎䞋し、58℃還流䞋で反応を行な぀た。 埗られた結果を第衚に瀺す。 実斜䟋  実斜䟋で補造した臭玠化アセナフテン瞮合䜓
を168含有する四塩化炭玠溶液300mlに、40苛
性゜ヌダ氎溶液56苛性゜ヌダ22.4含有ず
メタノヌル80を混合した溶液を滎䞋し、58℃還
流䞋で反応を行な぀た。埗られた結果を第衚に
瀺す。 比范䟋  実斜䟋で補造した臭玠化アセナフテン瞮合䜓
を168含有する四塩化炭玠溶液300mlに、固䜓苛
性カリ31.4をメタノヌル120に溶解しお滎䞋
し、58℃還流䞋で反応を行な぀た。反応終了埌の
H1−NMR分析によるず、ΎH4.0〜4.3PPmにメ
チル゚ヌテル結合に由来するピヌクが芳枬され
た。埗られた結果を第衚に瀺す。 比范䟋  実斜䟋で補造した臭玠化アセナフテン瞮合䜓
を168含有する四塩化炭玠溶液300mlに苛性カリ
31.4、メタノヌル75および氎45を含む溶液
を滎䞋し、58℃還流䞋で反応を行な぀た。 埗られた結果を第衚に瀺す。
The present invention is based on the general formula [] (In the formula [], x represents a number in the range of 1 to 2, y represents a number in the range of 1 to 6, and n represents a number in the range of 1 or more.) Regarding the method for synthesizing the brominated acenaphthylene condensate represented by the general formula [] (In the formula [], x, y and n are the above formula []
expresses the same meaning as The present invention relates to a method for producing a brominated acenaphthylene condensate by subjecting the brominated acenaphthene condensate shown in ) to a dehydrobromination reaction. The brominated acenaphthylene condensate (hereinafter abbreviated as Con-BACN) obtained by the method of the present invention is a compound with excellent flame retardancy and radiation resistance. It has the property of being sexual. In addition, since it has a double bond in its molecule, it can be grafted onto resins by subjecting it to free radical generation treatment, and since it is a condensate, it has excellent compatibility with resins, so it can last for a long time. It is attracting attention as a compound that can maintain stable flame retardancy and radiation resistance. (Unexamined Japanese Patent Publication 1983-
(No. 122862) In particular, Con-BACN is used as a coating insulation material for electric wires and cables used in nuclear reactors, breeder reactors, ionizing radiation generators, etc. that are required to have both flame retardancy and radiation resistance, and various resin compositions. It is expected to be used for things. An object of the present invention is to provide a method for industrially producing Con-BACN having excellent radiation resistance and flame retardancy. Con-BACN in the present invention is a compound containing at least one bromine in the naphthalene nucleus, and brominated acenaphthene is formally condensed by Friedel-Crafts reaction to form a multimer with a degree of condensation of 2 or more. , followed by a dehydrobromation reaction to form a condensate of brominated acenaphthylene. That is, it is a compound represented by the general formula [], more specifically, the general formula [] or [] (In the formula, y represents a number from 1 to 6) It is a condensate whose constituent elements are units, and its bonding mode is an intermolecular bond between the benzylic carbon of acenaphthylene and the aryl carbon of acenaphthylene. . The connection points are, for example, 1 (or 2), 5'- or 1 (or 2), 6'- etc., but there are also 1 (or 2),
3'-, 1 (or 2), 4'-, 1 (or 2),
Possible combinations include 7'-, 1 (or 2), and 8'-. Those with a degree of condensation of 3 or more have the number of constituent units increased by any of these bonds. In the present invention, those having a degree of condensation of 10 or less, which have excellent compatibility with the resin, are preferred from a practical standpoint. Con-BACN is generally produced by bromination, condensation and dehydrobromination reactions of acenaphthenes. For example, by adding bromine to acenaphthene in a halogenated hydrocarbon solvent, the benzyl side chain is brominated, condensed, and the naphthalene nucleus is brominated to produce a brominated acenaphthene condensate represented by the general formula [ ]. do. Subsequently, this compound is subjected to a dehydrobromination reaction with a base to produce Con-BACN. The method for dehydrobrominating the brominated acenaphthene condensate includes a method in which a solution of caustic curry ethanol is added dropwise in an aromatic hydrocarbon solvent such as benzene (Japanese Unexamined Patent Publication No. 56-122862), and a method according to the present invention. There is a known method (Japanese Patent Application No. 169,835/1983), which was previously filed by the authors of the present invention, in which a solution of caustic potash-methanol is dropped into a halogenated hydrocarbon such as carbon tetrachloride. In these methods, caustic potash is dissolved in a lower alcohol to perform a dehydrobromation reaction, but a nucleophilic substitution reaction of alkoxy groups occurs competitively with the elimination reaction.
Some by-products of ether compounds are observed. If these are mixed into the product Con-BACN, Con
-The method that the present inventors have already applied for (Japanese Patent Application No. 1983-1999)
193145) was required. Furthermore, when caustic soda, which is cheaper than caustic potash, is used, it has disadvantages such as requiring a large amount of alcohol because of its low solubility in alcohol, and slow reaction because the base concentration cannot be increased. Furthermore, in the method in which the dehydrobromination reaction is carried out in an aromatic hydrocarbon, the method of carrying out the bromination and condensation reactions in the previous step in a halogenated hydrocarbon solvent is a required technique. A step of substituting the solvent from halogenated hydrocarbon to aromatic hydrocarbon is required. Therefore, this method inevitably requires a complicated manufacturing process. Therefore, a method in which bromination, condensation, and dehydrobromination reactions are carried out in the same solvent is an advantageous method in terms of the production process. However, when the dehydrobromation reaction was carried out in halogenated hydrocarbons, it became clear that some solvent decomposition occurred. For example, in the case of carbon tetrachloride, the decomposition shown below is observed. CCl 4 +6KOH→K 2 CO 3 +3H 2 OO + 4KCl In addition, since the alcoholic solution of caustic potash is dropped into the solution of the brominated acenaphthene condensate, it is necessary to dissolve the solid caustic potash in the alcohol, especially in this reaction. In a batch reaction, the work is complicated and solid caustic is handled, which poses problems in terms of labor safety. Furthermore, this reaction progresses with the solution of the brominated acenaphthene condensate and the alcoholic solution of potassium hydroxide forming two phases, but as the reaction progresses, a large amount of potassium bromide salt precipitates, causing damage to the reactor walls and stirring blades. This makes treatment operations after the reaction is complicated. As described above, the known dehydrogenation methods are not completely satisfactory in terms of product quality, economy, and operability as an industrial-scale manufacturing technology. In view of these circumstances, the present inventors conducted extensive studies on the dehydrobromation reaction method, and as a result,
When dehydrobromating a brominated acenaphthene condensate dissolved in a halogenated hydrocarbon solvent with an alkali metal hydroxide, a hydrous alcohol with a water/alcohol weight ratio of 0.1 to 0.5 may be used as a solvent for the alkali metal hydroxide. Specifically, the inventors have discovered that the drawbacks of the above-mentioned known techniques can be significantly overcome, and have completed the present invention. That is, according to the method of the present invention, since the alkali metal hydroxide concentration can be increased, the dehydrobromation reaction can be carried out without reducing the reaction rate due to water addition. Next, when this hydroalcoholic solvent is used, the above-mentioned side reactions are significantly suppressed. In other words, since no nucleophilic substitution reaction by alkoxy groups is observed, the resulting Con−BACN
The quality is excellent. Furthermore, decomposition of the halogenated hydrocarbon solvent is extremely suppressed, which is economically advantageous. In addition, in the method of the present invention, it is possible to prepare an alkaline solution by simply adding an aqueous solution of the alkali metal hydroxide to the alcohol and mixing it, thus eliminating the need for the dissolution operation that is required in the case of solid caustic. , workability is greatly improved. Furthermore, when a hydrous alcohol is used, the alkali metal salt produced as a by-product is dissolved as the reaction progresses, and its precipitation is suppressed, thereby facilitating post-treatment operations after the reaction is completed. As described above, the present invention provides, as part of the process, a method for economically producing Con-BACN from a brominated acenaphthene condensate using simple operations. The present invention will be explained in detail below. The halogenated hydrocarbon used in the present invention is a solvent inert to the bromination/condensation and dehydrobromation reactions of acenaphthene, such as carbon tetrachloride, chloroform, methylene chloride, ethylene dichloride,
Ethylene dibromide, trichloroethane, etc. can be mentioned, but carbon tetrachloride is preferably selected. Although there is no particular limitation on the amount of solvent used, it is desirable that the brominated acenaphthene condensate be completely dissolved in the solvent, so
-BACN concentration is usually about 10 to 70% by weight. Next, as the alkali metal hydroxide used in the method of the present invention, hydroxides such as lithium, sodium, potassium, and cesium are used, but in consideration of economic efficiency, sodium hydroxide and potassium hydroxide are generally used. To be elected. The amount of these alkali metal hydroxides to be used is selected to be 0.8 mol or more, more preferably about 1 to 3 mol, per 1 mol of the structural unit of the brominated acenaphthene condensate as the raw material. In the method of the present invention, a hydrous alcohol is used as a solvent for the alkali metal hydroxide, and therefore, an alcohol having a carbon number of 4 or less and having a high solubility in water is used as the alcohol. For example, methanol, ethanol, n-propanol, i-propanol, n-butanol, sec-butanol, tert-
Examples include butanol, ethylene glycol, propylene glycol, etc. In particular, methanol and ethanol are preferable because the reaction is fast and post-treatment after the reaction is easy. The amount of these lower alcohols to be used is selected to be at least the amount that dissolves the alkali metal hydroxide when water is added. The amount is preferably such that the concentration is high. The amount of water added to the alcohol is selected such that the water/alcohol weight ratio is 0.1 to 0.5. More preferably, the amount is in the range of 0.2 to 0.4.
When the water/alcohol weight ratio is 0.1 or less, the aforementioned side reactions, ie, nucleophilic substitution reactions with alkoxy groups and decomposition of the halogenated hydrocarbon solvent, are often observed during the dehydrobromation reaction. On the other hand, if it is 0.5 or more,
The reaction becomes extremely slow and does not go to completion. At the amount of water added according to the present invention, the reaction proceeds sufficiently quickly to completion, and the yield is quantitative. Furthermore, the aforementioned side reactions are also greatly suppressed. Since the reaction is generally carried out under normal pressure, the reaction temperature is below the boiling point of the solvent, and is usually about 30 to 100°C. Generally, it is preferable to carry out the reaction at a higher temperature because the reaction proceeds quickly and quantitatively. Reaction time may vary depending on reaction temperature, etc., but usually
It takes about 10 minutes to about 8 hours. After the reaction is completed, the generated Con-BACN can be isolated as a powder by known means. for example,
Con-BACN can be obtained as a powder by washing the reaction mixture with water and adding the organic layer to a poor solvent such as acetone to reprecipitate and separate Con-BACN. As described above, according to the present invention, high-quality Con
-BACN can be produced economically. Therefore, it is an industrially advantageous method that simplifies the conventional process.
A method for producing Con-BACN has become possible. Next, the method of the present invention will be explained in more detail with reference to Examples, but the method is not limited thereto. Example 1 308 g of acenaphthene and 6.6 g of 2.2'-azobisisobutyronitrile were added to 950 ml of carbon tetrachloride at 77°C.
The mixture was heated to reflux. A solution prepared by dissolving 320 g of bromine in 470 ml of carbon tetrachloride was added dropwise to this solution over 1.5 hours with stirring, and the mixture was reacted for an additional 0.5 hour. After the reaction,
The reaction solution was cooled, 38 g of titanium tetrachloride was added to the reaction solution at 25° C., and the reaction was continued for 1 hour. Subsequently, 1120 g of bromine was added dropwise at 25°C for 4 hours, and then
The temperature was raised to 75°C, and the mixture was heated to reflux and reacted for 3 hours. After the reaction, an aqueous sodium hydrogen sulfite solution was added to the reaction solution to remove unreacted bromine, and the reaction solution was washed with water to obtain a mixture containing 840 g of brominated acenaphthene condensate (equivalent to 2.0 mol per raw acenaphthene monomer unit). , 1500 ml of carbon tetrachloride solution was obtained. This brominated acenaphthene condensate was a compound with a bromine content of 64.3%. From this carbon tetrachloride solution, 300 ml of a solution containing 168 g of brominated acenaphthene condensate was used in the next dehydrobromation reaction. Under a nitrogen stream, add 31.4 g of caustic potassium to the above reaction solution,
A solution containing 80 g of methanol and 32 g of water was added dropwise, and the reaction was carried out under reflux at 58°C. The time course of the reaction was tracked by H 1 -NMR spectrum measurement, and the conversion rate from general formula [] to general formula [] was determined. Figure 1 shows H 1 -NMR charts before and after the reaction. In both spectra, a peak of 1 H bonded to the naphthalene ring is observed at Ύ H =7.0 to 7.9PPm. For the intermediate (spectrum (a)), Ύ H =5.65~
A peak due to 1 H at the benzyl position of 5.9PPm was observed, and the final product (spectrum (b) shows double bond formation due to dehydrobromation reaction, and this peak is due to ÎŽ H
= 6.7 to 7.0PPm, and the strength also decreases. After the reaction was completed, no peak indicating methyl ether by-product was observed. After the reaction was completed, water was added to the reaction solution under a nitrogen atmosphere to wash the organic phase three times with water. The amount of carbonate ions in the aqueous phase was determined by the Orsatto analysis method, and the decomposition rate of carbon tetrachloride was determined. Table 1 shows these reaction conditions and analysis results. The obtained organic phase was added to i-octane 1.2 with stirring to reprecipitate Con-BACN, and the precipitated powder was separated and dried to obtain a reddish brown powder with a bromine content of 56.1% and a melting point of 125-147°C. Con-BACN110g
I got it. High performance liquid chromatography (GPC)
Analysis of the degree of condensation shows that monomer is 22% and dimer is 25%.
%, and 53% was 3-8mer. In addition, the liquid contains 26
g of Con-BACN is included, and after the completion of the reaction,
The yield of Con-BACN is almost quantitative. Example 2 A solution containing 31.4 g of caustic potassium, 105 g of methanol, and 21 g of water was added dropwise to 300 ml of a carbon tetrachloride solution containing 168 g of the brominated acenaphthene condensate produced in Example 1, and the reaction was carried out under reflux at 58°C. Ta. The results obtained are shown in Table 1. Example 3 A mixed solution of 56 g of 40% caustic soda aqueous solution (containing 22.4 g of caustic soda) and 80 g of methanol was added dropwise to 300 ml of carbon tetrachloride solution containing 168 g of the brominated acenaphthene condensate produced in Example 1, and the mixture was refluxed at 58°C. The reaction was carried out below. The results obtained are shown in Table 1. Comparative Example 1 31.4 g of solid caustic potassium dissolved in 120 g of methanol was added dropwise to 300 ml of carbon tetrachloride solution containing 168 g of the brominated acenaphthene condensate produced in Example 1, and the reaction was carried out under reflux at 58°C. After the reaction
According to H 1 -NMR analysis, a peak derived from the methyl ether bond was observed at ÎŽ H =4.0 to 4.3PPm. The results obtained are shown in Table 1. Comparative Example 2 Caustic potassium was added to 300 ml of carbon tetrachloride solution containing 168 g of the brominated acenaphthene condensate produced in Example 1.
A solution containing 31.4 g of methanol, 75 g of methanol, and 45 g of water was added dropwise, and the reaction was carried out under reflux at 58°C. The results obtained are shown in Table 1.

【衚】 ○、認められないものを×で衚わし
た。
[Table] ○, those that are not approved are indicated by ×.

【図面の簡単な説明】[Brief explanation of drawings]

第図は、䞭間䜓である臭玠化アセナフテン瞮
合䜓(a)および最終生成物であるCon−BACN(b)の
1H−NMRスペクトルを瀺す図である。
Figure 1 shows the intermediate brominated acenaphthene condensate (a) and the final product Con-BACN (b).
FIG. 1 is a diagram showing a 1 H-NMR spectrum.

Claims (1)

【特蚱請求の範囲】  ハロゲン化炭化氎玠溶媒に溶解した䞀般匏
〔〕 匏〔〕䞭、は〜、は〜、は
以䞊の範囲の数を衚わす。で瀺される臭玠化
アセナフテン瞮合䜓を、䜎玚アルコヌルに溶解し
たアルカリ金属氎酞化物により脱臭化氎玠反応し
お 䞀般匏〔〕 匏〔〕䞭、およびは前蚘匏〔〕
ず同じ意を衚わす。で瀺される臭玠化アセナフ
チレン瞮合䜓を補造するに際しお、該アルコヌル
䞭に氎アルコヌルの重量比が0.1〜0.5になるよ
うに氎を添加し脱臭化氎玠反応を行うこずを特城
ずする、臭玠化アセナフチレン瞮合䜓の合成方
法。
[Claims] 1 General formula dissolved in a halogenated hydrocarbon solvent [] (In formula [], x represents a number in the range of 1 to 2, y represents 1 to 6, and n represents a number in the range of 1 or more.) An alkali metal hydroxide prepared by dissolving a brominated acenaphthene condensate represented by The dehydrogenation reaction is carried out by the general formula [] (In the formula [], x, y and n are the above formula []
expresses the same meaning as ) When producing a brominated acenaphthylene condensate represented by Method for synthesizing acenaphthylene condensate.
JP24479683A 1983-06-01 1983-12-27 Synthesis of brominated acenaphthylene condensate Granted JPS60139630A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP24479683A JPS60139630A (en) 1983-12-27 1983-12-27 Synthesis of brominated acenaphthylene condensate
US06/615,541 US4898998A (en) 1983-06-01 1984-05-31 Process for producing brominated acenaphthylene condensates
CA000455684A CA1240707A (en) 1983-06-01 1984-06-01 Process for producing brominated acenaphthylene condensates

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24479683A JPS60139630A (en) 1983-12-27 1983-12-27 Synthesis of brominated acenaphthylene condensate

Publications (2)

Publication Number Publication Date
JPS60139630A JPS60139630A (en) 1985-07-24
JPH047333B2 true JPH047333B2 (en) 1992-02-10

Family

ID=17124058

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24479683A Granted JPS60139630A (en) 1983-06-01 1983-12-27 Synthesis of brominated acenaphthylene condensate

Country Status (1)

Country Link
JP (1) JPS60139630A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1240340A (en) * 1982-09-30 1988-08-09 Masashige Kubo Process for producing condensed bromoacenaphthylene
US5173489A (en) * 1986-04-10 1992-12-22 The Dupont Merck Pharmaceutical Co. α,α-disubstituted aromatics and heteroaromatics as cognition enhancers
US5434264A (en) * 1988-08-23 1995-07-18 The Du Pont Merck Pharmaceutical Company α,α-disubstituted aromatics and heteroaromatics as cognition enhancers

Also Published As

Publication number Publication date
JPS60139630A (en) 1985-07-24

Similar Documents

Publication Publication Date Title
JPH0717533B2 (en) Method for producing (2,2) -paracyclophane and derivatives thereof
JPH047333B2 (en)
JPS61278525A (en) Production of epoxy resin
JPH02501748A (en) Method for producing 4,4'-dibromodiphenyl ether
JPS6210034A (en) Preparation of brominated derivative of diphenyl ether
CN112457175B (en) Method for preparing 1, 3-dibenzyloxy-2-acetone
CN113527045A (en) Preparation method of chlorofluoropropane
JP2000109462A (en) Production of 8-benzylaminoquioline
JPS60178832A (en) Synthesis of brominated acenaphthylene condensate
JPS59181225A (en) Conversion of aromatic hydrocarbons
WO1998011039A1 (en) Process for the chloromethylation or aromatic hydrocarbons
JPH0364488B2 (en)
JPH0346451B2 (en)
JP2000503008A (en) Method for synthesizing aromatic derivatives ortho-disubstituted by halogen atoms other than fluorine and cyano groups
JPWO2003062187A1 (en) Method for producing 2,5-bis (trifluoromethyl) nitrobenzene
JPS61180738A (en) Production of alkyl(dihydroxyphenyl)ketone
JPH0372608B2 (en)
JP3089773B2 (en) Method for producing 2,2,3,3-tetramethylcyclopropane-1-carboxylic acid
JPS60252440A (en) Production of trimethylolpropane diallyl ether
JP4221782B2 (en) Method for purifying dihalotrifluoroacetone
JPH0338537A (en) Synthesis of biphenyl-4,4'-diol
JP2002145809A (en) Method for producing 1, 3-dibromoadamantane
JPH05178833A (en) Production of n-cyanoacetamidine derivative
JPH0216738B2 (en)
KR0183512B1 (en) Process for producing 1-hydroxyisopropylphenylketone