JPS5961583A - Joining method of heat-resistant nickel alloy - Google Patents

Joining method of heat-resistant nickel alloy

Info

Publication number
JPS5961583A
JPS5961583A JP16864482A JP16864482A JPS5961583A JP S5961583 A JPS5961583 A JP S5961583A JP 16864482 A JP16864482 A JP 16864482A JP 16864482 A JP16864482 A JP 16864482A JP S5961583 A JPS5961583 A JP S5961583A
Authority
JP
Japan
Prior art keywords
alloy
joint
heat
joined part
resistant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16864482A
Other languages
Japanese (ja)
Inventor
Masako Nakabashi
中橋 昌子
Hiromitsu Takeda
博光 竹田
Tatsuo Yamazaki
山崎 達雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP16864482A priority Critical patent/JPS5961583A/en
Publication of JPS5961583A publication Critical patent/JPS5961583A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/001Interlayers, transition pieces for metallurgical bonding of workpieces
    • B23K35/004Interlayers, transition pieces for metallurgical bonding of workpieces at least one of the workpieces being of a metal of the iron group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/16Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating with interposition of special material to facilitate connection of the parts, e.g. material for absorbing or producing gas

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PURPOSE:To form a joined part having the metallic texture and high temp. strength equivalent to those of a base material by interposing a layer of Zr or a Zr-Ni alloy in the joined part of a heat-resistant nickel alloy and pressurizing the joined part while heating the same in a specific temp. range. CONSTITUTION:A layer of Zr or a Zr-Ni layer is interposed in the joined part of a heat-resistant nickel alloy. The compsn. of Ni in the alloy may be any compsn. as far as it is <=20wt% in the case of using the Zr-Ni alloy. A pressure is applied to the base material, and the entire part of the material is heated and held in an inert atmosphere. The temp. is required to be higher than the melting point of the Zr-Ni alloy and lower than the m.p. of the heat resistant Ni alloy. The joined part is cooled to prevent oxidation upon ending of the diffusion of Zr, whereby the intended joined part is obtd.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、接合部の金属組成が母材であるNi基酬熱合
金の組繊と同等になり、したがって、該継手強度も母料
と同等になるようなNi基耐熱合金の接合方法に関し、
更に詳しくは、より改良されたフィラーメタルに関する
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention provides that the metal composition of the joint is equivalent to that of the composite fibers of the base material, which is a Ni-based thermal alloy, and therefore the strength of the joint is also equivalent to that of the base material. Regarding the joining method of Ni-based heat-resistant alloy such that
More specifically, the present invention relates to a more improved filler metal.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

通常、高温ガスタービン翼の月料としては、Ni基耐熱
合金が用いられているが、それはその動作温度を高める
ために、内部に複雑な冷却通路を設けた冷却翼構造とな
っている。
Usually, a Ni-based heat-resistant alloy is used as a material for high-temperature gas turbine blades, which has a cooling blade structure with complicated internal cooling passages in order to increase its operating temperature.

典型的な構造例としては、(イ)リターンフロ一式精密
鋳造翼との)十数枚以上のウェハーを平面で接合して構
成したウェハー翼があげられる。
A typical structural example is a wafer blade constructed by (a) return flow complete precision cast blade) made up of ten or more wafers joined together on a plane.

そして、これら複雑な冷却通路を設けたガスタービン翼
の製造に当っては、通常、拡散接合法が適用されている
。例えば(至)の場合、第1図にその断面図を示したよ
うに、翼長方向に2分割した形状の↓へ部材1.1′を
ね密v、J造した後、両者の接合曲面2にインサートフ
ィラーメタルを介在させて組合せ、拡散接合して一体化
するものである。この場合、接合曲面が広いので用いる
フィラーメタルは、取扱いが容易で密度も高い急冷リボ
ンフィラーであることが好ましい。
In manufacturing gas turbine blades provided with these complicated cooling passages, a diffusion bonding method is usually applied. For example, in the case of (to), as shown in the cross-sectional view in Figure 1, after building the member 1.1' into the ↓ of the shape divided into two in the span direction, the joint curved surface of the two is 2 and 2 with an insert filler metal interposed therebetween, and are integrated by diffusion bonding. In this case, since the joining curved surface is wide, it is preferable that the filler metal used is a quenched ribbon filler that is easy to handle and has a high density.

また、[F])の場合には、接合面が多くしかも平面の
寸法精度が厳しいので、薄いフィラーメタルが用いられ
る。
In the case of [F]), there are many joint surfaces and the dimensional accuracy of the plane is strict, so a thin filler metal is used.

なお、曲面の拡散接合法として高温等圧圧縮法が適用さ
れる場合もあるが、この方法は、特殊で大形のプレスを
必要とし、しかもカプセル技術、マスキング技術を駆使
するためその工程は複雑かつ高価となり実用化するには
問題がある。
Note that high-temperature isostatic compression is sometimes applied as a diffusion bonding method for curved surfaces, but this method requires a special, large-sized press, and the process is complicated because it makes full use of capsule technology and masking technology. Moreover, it is expensive, and there are problems in putting it into practical use.

■、03)の製造のために適用される拡散接合法として
は、通常、液相拡散接合法(以下、TLP法という。)
が採用されている。これは、TLP法が接合の信頼性を
高めるからである。Ni基耐熱合金をTLP法で接合す
る場合、従来、N1−B 、 N1−B−8i 、 N
i −Cr−B等の組成のフィラーメタルが用いられて
きた。このフィラーメタルは、Niに低融点化元素のn
、st、pなどを含有させたもので、母材(Ni基而面
熱合金)の6111点より数十度低い温度で溶融する。
The diffusion bonding method used for manufacturing (2) and 03) is usually the liquid phase diffusion bonding method (hereinafter referred to as TLP method).
has been adopted. This is because the TLP method increases the reliability of bonding. When joining Ni-based heat-resistant alloys by the TLP method, conventionally, N1-B, N1-B-8i, N
Filler metals with compositions such as i-Cr-B have been used. This filler metal is made of Ni, an element that lowers the melting point, and
, st, p, etc., and melts at a temperature several tens of degrees lower than the 6111 point of the base material (Ni metametallic alloy).

したがって、接合に当っては、母材間に上記フィラーメ
タルを介在きせぞの接合部相当位置を該フィラーメタル
の融点以上母材の融点以下の温度に加熱して該フィラー
メタルを溶融し、母料をぬらしてろう接した後、更に長
時間該温度を保持してB l siなどを母材に拡散せ
しめるという方法が適用される。このとき、同時に、フ
ィラーメタルは母材と同等に凝固する等温凝固現象を起
こし強固な接合部を形成する。
Therefore, in joining, the filler metal is interposed between the base metals, and the position corresponding to the joint of the groove is heated to a temperature above the melting point of the filler metal and below the melting point of the base metal to melt the filler metal, and After wetting the materials and brazing them, a method is applied in which the temperature is maintained for a longer period of time to diffuse B l si and the like into the base material. At this time, at the same time, the filler metal undergoes an isothermal solidification phenomenon in which it solidifies in the same manner as the base metal, forming a strong joint.

しかしながら、上記したようなフィラーメタルを用いた
’I” L P法によるNi基耐熱合金の接合には次の
よう々問題がある。
However, joining Ni-based heat-resistant alloys by the 'I' LP method using filler metals as described above has the following problems.

まず、最近、lN738LC、MAR−M247など強
力なNi基精鋳用耐熱合金が登場しているが、このNi
基耐熱合金においては、金属組織内におけるr′量を可
能な限り多くするために、その合金組成範囲が合金設計
に基づき限界ぎシぎりのとこ・ろに設定されているが、
その範囲はそもそも非常に狭いものである。
First, recently, strong Ni-based heat-resistant alloys for precision casting have appeared, such as IN738LC and MAR-M247.
In basic heat-resistant alloys, in order to maximize the amount of r' in the metal structure, the alloy composition range is set at the very edge based on alloy design.
Its range is extremely narrow.

したがって、このような母材に対し上記したようなNi
合金ろうを用いて’1’ L P法を適用した場合、接
合rり19の金属組織が母材の組織と異なったものにな
り、そのため母料と等しい継手効率をイ(Jることか一
層困輔、になる。
Therefore, for such a base material, the above-mentioned Ni
When the '1' LP method is applied using a filler alloy, the metallographic structure of the joint 19 will be different from that of the base metal, and therefore the joint efficiency equal to that of the base metal will be lower. Yusuke becomes.

捷た。フィラーメタルにはB、Si、Pなどの低融点化
元素が含有されているので、接合部における高温副食性
を含めた高温強度をそこなう虞i1.がある。とくに、
前記した翼構造部材のように過酷な高温作躍j条件で使
用される部材間の接合には必ずしも充分ではない。
I cut it. Since the filler metal contains elements that lower the melting point such as B, Si, and P, there is a risk of damaging high-temperature strength including high-temperature side corrosion at the joint.i1. There is. especially,
This is not necessarily sufficient for bonding between members used under severe high-temperature operation conditions, such as the aforementioned wing structural members.

史には、加工性が著しく悪くフィラーメタルの供A;1
1が制約されることである。このため、従来は粉末を有
機バインダで結着したシート、急速冷却法による非晶質
リボンの形で用いている。
Historically, filler metal material A;1 has extremely poor workability.
1 is restricted. For this reason, powders have conventionally been used in the form of sheets bound with organic binders or amorphous ribbons produced by rapid cooling.

前者の場合、シートの取扱いが不安定でかつバインダの
残渣による汚染、溶融時の寸法収縮による鞘ルの低下な
どの不都合な74(態を招き、後者の場合は数十μmの
リボン厚のものしか製造できないという問題があって、
(ト)、Q3)のタービン翼、iF’!作に必要な書影
から厚形捷でフィラーメタルの厚みを自由に設定するこ
とができない。まり、メッキ法、蒸着法でこれらフィラ
ーメタルを接合面に添着する方法も提案されているが(
特公昭48−29984号)、前者の場合、N1−p組
成のフィラーメタルに眠られ、しかも、湿式メッキ特有
の表面汚染問題があり、また、後者の場合、蒸着中の組
成変動、均一性に姉点が生ずる。
In the former case, the handling of the sheet becomes unstable, and inconvenient conditions such as contamination due to binder residue and reduction of sheath due to dimensional shrinkage during melting occur. There is a problem that it is only possible to manufacture
(G), Q3) turbine blade, iF'! It is not possible to freely set the thickness of the filler metal based on the calligraphy required for the work. However, methods have also been proposed in which these filler metals are attached to the bonding surface using plating or vapor deposition methods (
(Japanese Patent Publication No. 48-29984), in the former case, the filler metal of N1-p composition is present, and there is a problem of surface contamination peculiar to wet plating, and in the latter case, composition fluctuations and uniformity during vapor deposition may occur. An older sister point occurs.

したがって、現在までのところ、Ni基耐熱合金にTL
P法を適用した場合、接合部の金属組織が母材の組織と
同等になり、高温強度にも優れ、かっ、加工性に優れて
供給自由度の高いフィラーメタルは提供されていない。
Therefore, up to now, TL
When the P method is applied, the metal structure of the joint becomes the same as the structure of the base metal, and a filler metal that has excellent high-temperature strength, excellent workability, and a high degree of supply flexibility has not been provided.

〔発明の目的〕[Purpose of the invention]

本発明は、lN738LC,MAR−M247などのN
i基耐熱合金にTLP法を適用しても、上記したような
問題を生ずることのないフィラーメタルを用いた接合方
法の提供を目的とする。
The present invention applies to N such as IN738LC and MAR-M247.
The present invention aims to provide a joining method using a filler metal that does not cause the above-mentioned problems even when the TLP method is applied to an i-base heat-resistant alloy.

〔発明の概要〕[Summary of the invention]

本発明者らは、王妃問題点をl’J’r決ずべく、フィ
ラーメタルに関し鋭意研究を畢ねるなかで、■ジルコニ
ウム(Zr )はNi基剛熱合金における粒界強化用の
元素であること、■Ni −Zr合金は、その共晶組成
領域(Ni17重量%−Zr )において、Ni単体(
融点1453G)、7.r単体(融点1860 t:’
 )  と比較して、その融点が985Cと著しく低い
こと、■Ni−2r合金は、そのtlとんどの組成領域
で加工性に富み自由な形状に加工することが可能である
、との事実に着目し、該事実に基づいて各ii組成のN
i−zr金合金つきそのフィラーメタルとしての有効性
を調査した。その結果、共晶組成領域よりもZrに富ん
だ組成のN1−zr合金若しくはzr単体そのものであ
っても、ZrとNiの相互拡散速度は非常に大きいので
、それらをフィラーメタルとして用いた場合、接合部で
Fi母拐(Ni基耐熱合金)に含有されているNiとフ
ィラーメタルのzrとの拡散反応が急連に進行し、接合
部の組成がNi−Zr共晶組成となって溶融してフィラ
ーメタルとしての機能を果すとの知見を得、本発明を完
成するに到った。
The inventors of the present invention conducted intensive research on filler metals in order to resolve the Queen's problem, and discovered that zirconium (Zr) is an element for grain boundary strengthening in Ni-based rigid thermal alloys. In fact, in the Ni-Zr alloy, in its eutectic composition region (Ni17% by weight-Zr), Ni alone
Melting point 1453G), 7. r simple substance (melting point 1860 t:'
), its melting point is extremely low at 985C, and ■Ni-2r alloy has excellent workability in most of its tl composition range and can be processed into any shape. Based on this fact, N of each ii composition is
The effectiveness of i-zr gold alloy as a filler metal was investigated. As a result, even in the N1-zr alloy with a composition richer in Zr than in the eutectic composition region or in the simple substance of Zr, the interdiffusion rate of Zr and Ni is extremely high, so when they are used as filler metals, At the joint, the diffusion reaction between Ni contained in the Fi matrix (Ni-based heat-resistant alloy) and Zr of the filler metal progresses rapidly, and the composition of the joint becomes a Ni-Zr eutectic composition and melts. The present invention was completed based on the knowledge that the filler metal functions as a filler metal.

すなわち、本発明方法は、ニッケル基酬熱合金の接合部
にZr若しくはZr−Ni合金の層を介在させ、不活性
雰囲気中で、該接合部を、該Zr−Ni合金の融点よシ
も高く該Ni基耐熱合金の融点よりも低い温度に加熱保
持しながら加圧して接合することを特徴とするものであ
る。
That is, in the method of the present invention, a layer of Zr or Zr-Ni alloy is interposed in the joint of a nickel-based thermal alloy, and the joint is heated to a temperature higher than the melting point of the Zr-Ni alloy in an inert atmosphere. The feature is that the bonding is performed by applying pressure while heating and maintaining the temperature at a temperature lower than the melting point of the Ni-based heat-resistant alloy.

本発明方法において、接合すべき母材の対象はlN73
8LC,MAR−M247をは、じめとするNi基耐熱
合金である。
In the method of the present invention, the base material to be welded is lN73
8LC and MAR-M247 are Ni-based heat-resistant alloys.

まず、母材の接合部に7.r若しくは7.r−Ni合金
の層を介在せしめる。該層の厚みは格別限定されないが
、通常、100μm以下の厚みであることが好ましく、
この範囲のものであればいかなる厚みのものであっても
よい。
First, 7. r or 7. A layer of r-Ni alloy is interposed. The thickness of the layer is not particularly limited, but it is usually preferably 100 μm or less thick,
It may have any thickness within this range.

また、該層は、毎月の接合「f4を一様におおって所定
の厚みで堆積された7、r若しくはZr−Niの粉末の
層、 Zr若し、〈はZl・−Ni合金の所定厚みの苗
、又は母材接合面のいずれか若しくは両方に、常用の真
空蒸着法、スパッタリング法などを適用して形成した層
のいずれかの形態をとりうる。
In addition, the layer is a layer of powder of 7, r or Zr-Ni deposited to a predetermined thickness uniformly covering f4, a predetermined thickness of Zr or Zl--Ni alloy. It can take the form of a layer formed by applying a commonly used vacuum evaporation method, sputtering method, etc. to either or both of the seedlings and the bonding surface of the base material.

zr−Ni合金を用いる場合、該合金中のNiの組成は
20重141チ以下であればいかなる組成であってもよ
い。20 重量’ %を超えると、その合金の組成は共
晶組成領域から外れるので好ましくない。また、組成が
部分的に不均一であってもその影響は皆無に等しい。
When using a zr-Ni alloy, the composition of Ni in the alloy may be any composition as long as it is 20x141x or less. If it exceeds 20% by weight, the composition of the alloy will deviate from the eutectic composition region, which is not preferable. Further, even if the composition is partially non-uniform, the influence is almost nil.

ついで、毎月に圧力を印加して、全体を不活性雰囲気中
で加熱して保持する。
The whole is then heated and maintained in an inert atmosphere by applying pressure monthly.

圧力は0.01〜5に□PA2でよい。また、雰囲気と
しては、真空、不活性ガスなど酸化防止雰囲気であれば
よい。
The pressure may be 0.01 to 5 □PA2. Further, the atmosphere may be any oxidation-preventing atmosphere such as vacuum or inert gas.

温度はZr−Ni合金の融点より高くNi基馴熱合金の
融点より、低いことが必要である。具体的には990〜
1300C,好ましくは1100〜1250Cの範囲で
ある。なお、Zr(融点1840 C)を用いたときで
も、前記したようにZrとNiとの拡散速度は大きいと
いう理由によシ、上記温度範囲でよい。保持時間は、通
常、1〜100時間でよい。
The temperature needs to be higher than the melting point of the Zr-Ni alloy and lower than the melting point of the Ni-based tempered alloy. Specifically, 990~
1300C, preferably in the range of 1100-1250C. Note that even when Zr (melting point 1840 C) is used, the above temperature range may be used because the diffusion rate of Zr and Ni is high as described above. The holding time may generally be 1 to 100 hours.

なお、この接合時、接合部で接合が完了した時点で、圧
力を除荷して一体化した構造物を別の不活性雰囲気中に
移して再び加熱しZrの拡散を行なってもよい。
Note that during this bonding, when the bonding is completed at the bonded portion, the pressure may be removed and the integrated structure may be moved to another inert atmosphere and heated again to diffuse Zr.

以上のようにしてZrの拡散が終了したら、酸化を防止
して冷却して本発明が目的とする接合部を得ることがで
きる。
After the Zr diffusion is completed in the manner described above, oxidation is prevented and the joint is cooled to obtain the joint aimed at by the present invention.

〔発明の実施例〕[Embodiments of the invention]

実施例I MAR−M247 (Cr 8.5 ’llr 、 C
o 10%、W10%。
Example I MAR-M247 (Cr 8.5'llr, C
o 10%, W10%.

Ti 1% 、A)5.5%、Bo、05% 、MOo
、65%1Zr0.065%t ’l’a 3%、C0
,15%、 Hf 1.4 % 、残部Ni:いずれも
重量%)の母材を2本用慈した。
Ti 1%, A) 5.5%, Bo, 05%, MOo
, 65% 1Zr0.065%t'l'a 3%, C0
, 15%, Hf 1.4%, and the balance Ni (both weight %) were prepared.

直径13關長さ50mm。Diameter: 13 mm, length: 50 mm.

毎月の接合面を600番エメリー紙で研摩した後、トリ
クレン及びアセトンで洗浄して脱脂処理を施した。母材
の接合面の間に、厚み3oμn1で、Ni組成17重量
%の7.r−Ni合金箔を挿入し、2X10  ’l’
orrの真空既にしたホットプレス中にセットした。母
料間に上下方向から1kyfnm2の圧力を印加し、高
周波加熱により接合部を1200t:’にした。接合部
は直ちに溶解した。その後、  1200Gで5分間保
持しfc稜冷却し、一体となった丸棒をアルゴン雰囲気
中で1250C。
After polishing the joint surfaces with No. 600 emery paper, they were cleaned with trichloride and acetone and degreased. Between the bonding surfaces of the base material, a 7.0 mm film with a thickness of 3 μn1 and a Ni composition of 17% by weight was placed. Insert r-Ni alloy foil, 2X10 'l'
It was set in a hot press that had already been vacuumed. A pressure of 1 kyfnm2 was applied from above and below between the base materials, and the joint was heated to 1200 t:' by high frequency heating. The joint dissolved immediately. Thereafter, it was held at 1200G for 5 minutes to cool the fc ridge, and the integrated round bar was heated at 1250C in an argon atmosphere.

24時間保持した。It was held for 24 hours.

得られた接合部の断面を光学顕微fi (X 100)
で観察した。その結果を第2図に示した。接合部は母材
と同等の組織になっていて母材との境界は全く観察され
ない。
The cross section of the obtained joint was examined under an optical microscope fi (X 100)
I observed it. The results are shown in Figure 2. The joint has the same structure as the base metal, and no boundary with the base metal is observed.

つぎに、得られた接合丸棒につき、インストロン型試験
機で引張り試験を行なった。母材部分で破断した。その
ときの最大引張9強さくU。
Next, the obtained joined round bar was subjected to a tensile test using an Instron type testing machine. It broke at the base material. The maximum tensile strength at that time is 9 U.

T、S、)も母材と同等の値であった。T, S,) were also the same values as the base metal.

実施例2 IN738LC(Cr15.9%、Mo1.65%、 
co 8.2 % +W2.46%、’rla、4xチ
、A)3.60%、NbO,85%。
Example 2 IN738LC (Cr15.9%, Mo1.65%,
co 8.2% + W2.46%, 'rla, 4x chi, A) 3.60%, NbO, 85%.

Zr0.03%、Bo、01%、 Fe O,13% 
+ Ta1.71% rC’0.09%、残部Ntiい
ずれも重量%)の円板を2枚用意した。直径50闘厚み
10yrvn。
Zr0.03%, Bo, 01%, FeO, 13%
+ Two disks were prepared, each having 1.71% of Ta, 0.09% of rC', and the remainder Nti (all weight percentages). Diameter 50mm, thickness 10yrvn.

両者の接合面を180番エメリー紙で研摩した後、そこ
をトリクレンとアセトンで洗浄、脱脂した。
After polishing the bonded surfaces of both with No. 180 emery paper, they were cleaned and degreased with trichlene and acetone.

ついで、両口板の接合面にFB蒸着法でZr単体を堆積
せしめた。厚みは約20μmであった。
Next, simple Zr was deposited on the bonding surfaces of the double-ended plates by FB evaporation. The thickness was approximately 20 μm.

その後、2枚の円板の接合面を合せて、真空度2 X 
10 ’Torrのホットプレス中にセットし、1 k
g/1rnn2の圧力をかけ、高周波加熱により118
0Cにした。1分未満の時間で接合部が溶融した。
After that, the joint surfaces of the two discs are brought together and the vacuum level is 2X.
Set in hot press at 10' Torr, 1k
118 by applying a pressure of g/1 rnn2 and high frequency heating.
I set it to 0C. The joint melted in less than 1 minute.

ついで118(I’で8分間保持してから冷却した。It was then held at 118 (I') for 8 minutes and then cooled.

更にアルゴン雰囲気中で、1180C,36時間保持し
てZrを拡散せしめた。接合部は、母材の組織と同等で
あった。
Further, the sample was held at 1180C for 36 hours in an argon atmosphere to diffuse Zr. The structure of the joint was comparable to that of the base metal.

〔発明の効果〕〔Effect of the invention〕

以上の説明で明らかなように、本発明方法は、■Jυ材
と同等の金属組繊を有する接合部を形成できる、■した
がって、その高温強度も母材と同等となる、■用いるフ
ィラーメタルは母材に対応して薄形から厚形1で厚みに
おける自由度が大きく、また、その組成範囲も広い、■
したがって、複ぶ(fな形状の構造材の接合にも容易に
適用し得る、などの効果を奏しその工業的価イ1氏は大
である。
As is clear from the above explanation, the method of the present invention can: ■ form a joint having metal fibers equivalent to Jυ material; ■ therefore, its high-temperature strength is also equivalent to that of the base material; ■ the filler metal used is There is a large degree of freedom in thickness from thin to thick 1 depending on the base material, and the composition range is wide.■
Therefore, it has the advantage of being easily applicable to the joining of structural members having a complex shape, and its industrial value is high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はガスタービン冷却翼の■i色1図で罎>る。 第2図は実施例1による接合部すの光学頭倣鏡写真であ
る。 ■、1′・・・数部材、  2・・・接合曲面。
Figure 1 is a color 1 diagram of a gas turbine cooling blade. FIG. 2 is an optical head mirror photograph of the joint according to Example 1. ■, 1'...Several members, 2...Joint curved surface.

Claims (1)

【特許請求の範囲】 1、 ニッケル基耐熱合金の接合部にジルコニウム若し
くはジルコニウム−ニッケル合金の層を介在させ、不活
性雰囲気中で、該接合部を、該ジルコニウム−ニッケル
合金の融点よりも高く該ニッケル基耐熱合金の融点より
も低い温度に加熱保持しながら加圧して接合することを
特徴とするニッケル基耐熱合金の接合方法。 2、該ジルコニウム−ニッケル合金のニッケル組成が2
0重量−以下である特許請求の範囲第1項記載のニッケ
ル基耐熱合金の接合方法。
[Claims] 1. A layer of zirconium or a zirconium-nickel alloy is interposed in the joint of a nickel-based heat-resistant alloy, and the joint is heated to a temperature higher than the melting point of the zirconium-nickel alloy in an inert atmosphere. A method for joining nickel-based heat-resistant alloys, characterized by joining by applying pressure while heating and maintaining the temperature at a temperature lower than the melting point of the nickel-based heat-resistant alloys. 2. The nickel composition of the zirconium-nickel alloy is 2.
A method for joining a nickel-based heat-resistant alloy according to claim 1, which has a weight of 0 weight or less.
JP16864482A 1982-09-29 1982-09-29 Joining method of heat-resistant nickel alloy Pending JPS5961583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16864482A JPS5961583A (en) 1982-09-29 1982-09-29 Joining method of heat-resistant nickel alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16864482A JPS5961583A (en) 1982-09-29 1982-09-29 Joining method of heat-resistant nickel alloy

Publications (1)

Publication Number Publication Date
JPS5961583A true JPS5961583A (en) 1984-04-07

Family

ID=15871853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16864482A Pending JPS5961583A (en) 1982-09-29 1982-09-29 Joining method of heat-resistant nickel alloy

Country Status (1)

Country Link
JP (1) JPS5961583A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS619968A (en) * 1984-06-27 1986-01-17 Mitsubishi Metal Corp Production of internally and externally finned pipe for high-temperature heat exchange
JPH05169280A (en) * 1991-12-21 1993-07-09 Sumitomo Metal Ind Ltd Method for joining steel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS619968A (en) * 1984-06-27 1986-01-17 Mitsubishi Metal Corp Production of internally and externally finned pipe for high-temperature heat exchange
JPH0469026B2 (en) * 1984-06-27 1992-11-05 Mitsubishi Materials Corp
JPH05169280A (en) * 1991-12-21 1993-07-09 Sumitomo Metal Ind Ltd Method for joining steel

Similar Documents

Publication Publication Date Title
US4667871A (en) Tin based ductile brazing alloys
US4643875A (en) Tin based ductile brazing alloys
JP5734272B2 (en) Double brazing member comprising at least one first layer of Ni-based brazing and at least one second layer containing an active element, method of manufacturing the double brazing member and use of the double brazing member
US6616032B1 (en) Brazing composition and method for brazing parts made of alumina-based materials with said composition
US3197858A (en) Process for diffusion-bonding
JPS59209498A (en) Method of combining metallic part
JPS61158876A (en) Direct liquid phase bonding for ceramic to metal
US4777643A (en) Composite rotary anode for x-ray tube and process for preparing the composite
US3711936A (en) Method for forming composite articles from alloy in temporary condition of superplasticity
JP3040203B2 (en) High temperature stable composite and method for producing the same
JPS6026260B2 (en) Structure for rotating anode X-ray tube
US7658315B2 (en) Process of brazing superalloy components
US4150776A (en) Method of joining metal parts
CN107160059A (en) A kind of preparation of Ni base solders for soldering Nb Ti high temperature alloys and method for welding
US3188732A (en) Diffusion-bonding of metal members
JPS5961583A (en) Joining method of heat-resistant nickel alloy
US5284290A (en) Fusion welding with self-generated filler metal
JPH0613743B2 (en) Solid-state joining method for nickel-base superalloys
US6720086B1 (en) Liquid interface diffusion bonding of nickel-based superalloys
US6378755B1 (en) Joined structure utilizing a ceramic foam bonding element, and its fabrication
JPH0355232B2 (en)
JPH0147277B2 (en)
JPS5832030B2 (en) Joining method for Ni-based heat-resistant alloy
JPS5881585A (en) Solid phase joining method of superalloy
JP2676413B2 (en) Method for joining graphite and titanium or titanium alloy