JPS5961033A - Formation of a high melting point metal silicide layer - Google Patents

Formation of a high melting point metal silicide layer

Info

Publication number
JPS5961033A
JPS5961033A JP16953582A JP16953582A JPS5961033A JP S5961033 A JPS5961033 A JP S5961033A JP 16953582 A JP16953582 A JP 16953582A JP 16953582 A JP16953582 A JP 16953582A JP S5961033 A JPS5961033 A JP S5961033A
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
melting point
high melting
silicon layer
point metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16953582A
Other languages
Japanese (ja)
Other versions
JPH0377658B2 (en
Inventor
Yoshimi Shiotani
喜美 塩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP16953582A priority Critical patent/JPS5961033A/en
Publication of JPS5961033A publication Critical patent/JPS5961033A/en
Publication of JPH0377658B2 publication Critical patent/JPH0377658B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To facilitate formation of silicide wiring and compensation of it by injecting a high melting point metal with the ion implantation into the impurity doped polycrystalline silicon layer and by annealing such polycrystalline silicon layer. CONSTITUTION:A polycrystalline silicon layer is formed by the CVD method. Impurity is doped to a polycrystalline silicon layer by diffusing an impurity source. A high melting point metal (Mo, W, etc.) M<+> is injected to the polycrystalline silicon layer by ion implantation. Concentration of high melting point metal of a formed high melting point metal silicide film is lowered at the surface and interface. A high melting point silicide film formed is annealed at a high temperature, a grain size of crystal becomes large and resistance is lowered.

Description

【発明の詳細な説明】 (1)発明の技術分野 本発明は、半導体装置における配線の形成方法に関し、
さらに詳しく述べると、高融点金属の珪化物(以下、シ
リサイドと記す)からなる配線層を形成する方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical field of the invention The present invention relates to a method for forming wiring in a semiconductor device.
More specifically, the present invention relates to a method of forming a wiring layer made of a silicide of a high melting point metal (hereinafter referred to as silicide).

(2)技術の背景 半導体装置の配線として今までアルミニウムCAt)等
の金属が多用されてきたことは周知の通シである。しか
しながら、A/−配線は、その材料の融点が低いため、
高温処理工程がすべて完了した後でなければ形成するこ
とができないという欠点を有していた。したがって、現
在、多層配線構造を形成する場合など、多結晶シリコン
の層が多く配線として用いられている。多結晶シリコン
の層は、通常、高濃度に不純物(リン、ヒ素、?ロンな
ど)をドープした形で用いられているけれども、これは
、高融点であることに加えて、加工性が良好である、安
定性がある、等の注目すべき利点を有している。
(2) Background of the Technology It is well known that metals such as aluminum (CAt) have been widely used for wiring in semiconductor devices. However, since the A/- wiring has a low melting point of its material,
It has the disadvantage that it can only be formed after all high temperature treatment steps have been completed. Therefore, many polycrystalline silicon layers are currently used as interconnects when forming multilayer interconnect structures. Layers of polycrystalline silicon are usually used in a highly doped form with impurities (phosphorous, arsenic, chloride, etc.), which, in addition to having a high melting point, has good processability. It has notable advantages such as stability and stability.

(3)従来技術と問題点 多くのすぐれた特徴を有している多結晶シリコン配線f
CもM要な欠点が1つある。すなわち、配線抵抗が大き
いことがそれである。多結晶シリコン配線の抵抗は、A
t配線のそれに比してはるかに高く、シたがって、アク
セスタイムの遅延を生じる。このような配線抵抗に係る
欠点は、半導体装置の高密度化が進むにつれて、ぜひと
も解消しなければならない問題となっている。
(3) Conventional technology and problems polycrystalline silicon wiring f which has many excellent features
C also has one drawback that makes M necessary. That is, the wiring resistance is high. The resistance of polycrystalline silicon wiring is A
It is much higher than that of the t-wire, and therefore causes a delay in access time. Such drawbacks related to wiring resistance have become a problem that must be solved as semiconductor devices become more densely packed.

配線材料として、モリブデン(Mo)やタングステン(
Vv’ )などのような高融点金属を単体で使用する試
みもなされている。が、この配線は、多結晶シリコンよ
シも抵抗が約2桁低いというものの、化学的安定性に劣
るという欠点を有している。すなわち、高融点金属配線
は、At配線と同様に汚染を受けやすく、化学薬品に侵
されやすく、高温度において酸化されやすいという欠点
を有しておシ、多結晶シリコンダート・プロセスとの互
換性が不存在である。
Molybdenum (Mo) and tungsten (
Attempts have also been made to use single high melting point metals such as Vv'). However, although this wiring has a resistance about two orders of magnitude lower than that of polycrystalline silicon, it has the disadvantage of poor chemical stability. That is, refractory metal wiring, like At wiring, has the drawbacks of being easily contaminated, easily attacked by chemicals, and easily oxidized at high temperatures, and is not compatible with the polycrystalline silicon dirt process. is non-existent.

最近は、高融な金属のシリサイド膜、例えばMo S 
l 2膜などを高融点金属単体に代えて用いる方法が注
目されている。かかるシリサイド膜は、高温処理にも十
分に耐えることができ、しかも多結晶シリコン膜に較べ
て約1桁低い配線抵抗を有している。但し、このような
シリサイド膜も汚染に弱いという欠点を有しておシ、パ
シベーション膜を形成したシ多結晶シリコン層をひいた
シの付加的なかつ煩雑な処理作業を不可避としている。
Recently, silicide films of high-melting metals, such as MoS
A method of using an L2 film or the like instead of a single high-melting point metal is attracting attention. Such a silicide film can sufficiently withstand high-temperature processing, and has a wiring resistance that is about one order of magnitude lower than that of a polycrystalline silicon film. However, such a silicide film also has the disadvantage of being susceptible to contamination, making it unavoidable that additional and complicated processing operations are required for the polycrystalline silicon layer on which the passivation film is formed.

(4)発明の目的 本発明の目的は、多結晶シリコン配線層の有する良さ圧
着目し、その良さを生かしつつ配線の抵抗だけを下ける
ことができかつ多結晶シリコン配線層の形成に準じた方
法によって処理を行なうことができる改良された配線層
形成方法を提供することにある。
(4) Purpose of the Invention The purpose of the present invention is to focus on the advantages of a polycrystalline silicon wiring layer, to reduce only the resistance of the wiring while taking advantage of the advantages, and to create a method that is similar to the formation of a polycrystalline silicon wiring layer. An object of the present invention is to provide an improved method for forming a wiring layer that can be processed by a method.

(5)発明の構成 不発切者は、このたび、多結晶シリコンヶ゛−ト・プロ
セスを殆んど変更しないで、すなわち、従来の多結晶シ
リコン膜に高融点金属を打ち込むだけで、上記した目的
を達成し得るということを見い出した。本発明方法は、
高融点金属シリサイド層を形成する方法であって、下記
の工程:多結晶シリコン層を形成すること、 該多結晶シリコン層に不純物をドープすること、該不純
物をドーグした多結晶シリコン層にイオン注入によシ高
融点金属を注入すること、及び高融点金属が注入された
多結晶シリコン層をアニールすること、 を含んでなることを’lとしている。
(5) Structure of the Invention The unsuccessful applicant has now succeeded in achieving the above-mentioned purpose by simply implanting a high-melting point metal into a conventional polycrystalline silicon film, without making any changes to the polycrystalline silicon substrate process. I discovered that it is possible to achieve. The method of the present invention includes
A method for forming a high melting point metal silicide layer, the method comprising the following steps: forming a polycrystalline silicon layer, doping the polycrystalline silicon layer with an impurity, and implanting ions into the polycrystalline silicon layer doped with the impurity. implanting a high melting point metal; and annealing the polycrystalline silicon layer into which the high melting point metal is implanted.

本発明を実施する場合、周期律表IV−A族、第V−A
族及び第Vl−A族に属する金属グループから選ばれた
高融点金属を任意に使用して既に形成しである多結晶シ
リインのMK打ち込むことかできる。具体的には、Mo
、W、Ti(チタン)。
When carrying out the present invention, Group IV-A of the Periodic Table, Group V-A of the Periodic Table
Refractory metals selected from the metal groups belonging to Groups V and Vl-A can optionally be used for MK implantation of already formed polycrystalline silicon. Specifically, Mo
, W, Ti (titanium).

Ta  (タンタル) 、 Nb (’ニオブ) 、 
Pt (白金)などを代表的な高融点金属としてあげる
ことができる。このよう々金属の打ち込みには、好寸し
くは、イオン注入を、例えば100〜200eVの注入
エネルギー及び約10   イオン/Crn  のオー
ダーの注スト〜ズを適用して、利用することができる。
Ta (tantalum), Nb ('niobium),
Pt (platinum) and the like can be cited as a typical high melting point metal. For such metal implantation, ion implantation can advantageously be utilized, for example applying an implant energy of 100-200 eV and an implantation dose of the order of about 10 ion/Crn.

高融点金属の打ち込みによシ形成されるシリサイドは、
その金属をMで表わした場合、MSl2.MSl。
Silicide formed by implanting high melting point metal is
If the metal is represented by M, MSl2. MSl.

M Sl 、 MSl3. M2813等のいろいろな
形輻をとることができる。
M Sl , MSl3. It can take various forms such as M2813.

高融点金属の打ち込みに先がけて多結晶シリコンの層に
ドープする不純物として、例えば、p形不純物としての
周期律表で3価の元素(ボロン。
An example of an impurity doped into the polycrystalline silicon layer prior to implantation of a high melting point metal is a trivalent element (boron) in the periodic table as a p-type impurity.

ガリウム、インジウムなど)、そしてn形不純物トシて
の5価の元素(リン、ヒ素、アンチモンなど)をあげる
ことができる。これらの元素を適当な不純物源から拡散
によりドープするか、もしくは、それが実施できない場
合、不純物のイオン化を行なって後にイオン注入によシ
ドープするのが好ましい。
gallium, indium, etc.), and pentavalent elements (phosphorus, arsenic, antimony, etc.) as n-type impurities. Preferably, these elements are doped by diffusion from a suitable impurity source, or, if this is not practicable, ionization of the impurities and subsequent doping by ion implantation.

最初の工程である多結晶シリコンの層の形成は、常法に
従って、例えば減圧CVD法により有利に実施すること
ができる。−例を示すと、ン2/(S11i4)ガスを
使用して625℃の温度及び0.2トルの減圧を適用し
て膜厚が3000〜40001となるまで多結晶シリコ
ンを成長させるのが好ましい。
The first step, the formation of a layer of polycrystalline silicon, can be advantageously carried out according to conventional methods, for example by low pressure CVD. - By way of example, it is preferable to grow polycrystalline silicon using N2/(S11i4) gas at a temperature of 625° C. and applying a vacuum of 0.2 Torr to a film thickness of 3000 to 40001. .

最後の7ニールエ程であるが、これは、アルゴン雰囲気
中又はアルゴン及び水素の混合雰囲気中で1050〜1
100℃の温度を適用して有利に実施することができる
。その際、この技術分野において普通に用いられている
電気炉を使用して加熱を行なってもよく、さもなければ
、必要に応じて、レーザビーム及び電子ビームアニール
装[t[用して加熱を行なってもよい。シリサイド層は
高温下に安定である。
The final 7 Neil etching step is performed in an argon atmosphere or a mixed atmosphere of argon and hydrogen.
It can be carried out advantageously by applying a temperature of 100°C. In this case, heating may be carried out using an electric furnace commonly used in this technical field, or, if necessary, heating may be carried out using a laser beam and electron beam annealing system [t]. You may do so. The silicide layer is stable at high temperatures.

(6)発明の実施例 次に、添付の図面を参照しながら本発明方法の好ましい
一例を説明する。
(6) Embodiment of the Invention Next, a preferred example of the method of the present invention will be explained with reference to the accompanying drawings.

第1図は、本発明方法を適用して得られる、2/il結
Aシリコン1トランジスタ1キヤパシタ構造を有する半
導体装置の一例を示した断面図である。この図において
、lはp形シリコン基板、2はSiO2からなるフィー
ルド絶縁膜、3は第1多結晶シリコン層、4は第2多結
晶シリコン層、5は第1多結晶シリコン層3の5I02
薄膜、6は第1及び第2の多結晶シリコン層3及び4を
分離する5102薄膜、7はPSG層間絶縁膜、8はN
+拡散層、そして9はAt層である。
FIG. 1 is a sectional view showing an example of a semiconductor device having a 2/il A silicon one transistor one capacitor structure obtained by applying the method of the present invention. In this figure, l is a p-type silicon substrate, 2 is a field insulating film made of SiO2, 3 is a first polycrystalline silicon layer, 4 is a second polycrystalline silicon layer, and 5 is 5I02 of the first polycrystalline silicon layer 3.
A thin film, 6 is a 5102 thin film separating the first and second polycrystalline silicon layers 3 and 4, 7 is a PSG interlayer insulating film, 8 is N
+diffusion layer, and 9 is an At layer.

ここで、第2多結晶シリコン層4.5102池膜6及び
基板1はMO8)ランジスタを形成し、一方、第1多結
晶シリコン層3、SiO2?%j膜5及び基板1はキャ
パシタを形成し、これらMOSトランジスタとキャパシ
タとが組み合わされてlメモリセルを形成する。これが
、いわゆる1トランジスタ型メモリセルである。なお、
第2多結晶シリコン層4はワード線として作用し、At
層9はビット線として作用するものである。
Here, the second polycrystalline silicon layer 4, the SiO2 film 6 and the substrate 1 form a transistor (MO8), while the first polycrystalline silicon layer 3, SiO2? %j film 5 and substrate 1 form a capacitor, and these MOS transistors and capacitors are combined to form l memory cell. This is a so-called one-transistor type memory cell. In addition,
The second polycrystalline silicon layer 4 acts as a word line, and the At
Layer 9 acts as a bit line.

第2多結晶シリコン層4のケ゛−ト及びワード線の形成
に際して本発明を適用する。すなわち、多結晶シリコン
層を成長させた後、その配線抵抗を低下させるために例
えばリン、ヒ素などのような不純物をドープし、その後
、例えばMo、Wなどのような高融点金属をイオン注入
により打ち込み、そして最後にアニールする。
The present invention is applied to the formation of the gate of the second polycrystalline silicon layer 4 and the word line. That is, after growing a polycrystalline silicon layer, it is doped with impurities such as phosphorus, arsenic, etc. in order to reduce its wiring resistance, and then high melting point metals such as Mo, W, etc. are ion-implanted. Drive and finally anneal.

次いで、本発明を実施する際の各工程を順を追って説明
しよう(第2a図、第2b図及び第2c図を参照された
い)。
Next, each step in carrying out the invention will be explained in order (see Figures 2a, 2b and 2c).

先ず、第2a図に図示の工程で多結晶シリコン層を形成
する。これは、先にも述べたよう例、減圧CVD法を適
用して行なうことができる。引き続いて、第2b図に図
示の不純物のドープを実施する。例/lば、リンをドー
プしようと思う場合、例えばpoct3. pCz3の
ような不純物源を用意して1050〜1100℃の温度
で拡散を行なうことによυこれを実施することができる
。もちろん、拡散に代えてイオン注入を利用することも
できる。
First, a polycrystalline silicon layer is formed in the process shown in FIG. 2a. This can be done, for example, by applying the low pressure CVD method as described above. Subsequently, doping with impurities as shown in FIG. 2b is carried out. For example, if you want to dope phosphorus, for example, poct3. This can be done by providing an impurity source such as pCz3 and performing the diffusion at a temperature of 1050-1100°C. Of course, ion implantation can be used instead of diffusion.

不純物のドープが所望のレベルまで完了した後、例えば
Mo  、 Woなどのような高融点金属の打ち込みを
行なう。これは、MoF6. wF6などのようなソー
スを使用して、100〜200 eVのエネルギー及び
1016のドーズでイオン注入により実施することがで
きる。このようにして形成されるシリサイド膜において
、それに含まれる高融点金属の濃度は表面及び境界が低
くなるように分布しておシ、よって酸化されにくいとい
う特徴がある。なお、不純物ドープ後の多結晶シリコン
層に打ち込まれるべき高融点金属は第2c図においてM
+で示されている。引き続いて、図示されていないけれ
ども、形成されたシリサイド膜を高温度でアニール又は
酸化する。すると、シリサイド膜の結晶粒径が大きくな
り、その抵抗が低下する。
After the impurity doping is completed to the desired level, implantation of a high melting point metal such as Mo, Wo, etc. is performed. This is MoF6. It can be performed by ion implantation using a source such as wF6 at an energy of 100-200 eV and a dose of 1016. The silicide film formed in this manner has a characteristic that the concentration of the high melting point metal contained therein is distributed so as to be lower on the surface and the boundary, and is therefore less likely to be oxidized. Note that the high melting point metal to be implanted into the polycrystalline silicon layer after doping with impurities is M in FIG. 2c.
Indicated by +. Subsequently, although not shown, the formed silicide film is annealed or oxidized at high temperature. As a result, the crystal grain size of the silicide film increases and its resistance decreases.

さらに、本発明方法は、多結晶シリコンの酸化後でもそ
の酸化膜(SiO2)を通してイオン注入を行なうこと
ができる。この方法では、表面KSIO2膜があるので
、酸化され+すいMOやWの膜の処理が容易になシ、引
き続(PSGの成長(400〜450℃)時にもM、や
Wが酸化されない。
Furthermore, the method of the present invention allows ion implantation to be performed through the oxide film (SiO2) even after polycrystalline silicon has been oxidized. In this method, since there is a KSIO2 film on the surface, it is easy to process MO and W films that are easily oxidized, and M and W are not oxidized even during the subsequent growth of PSG (at 400 to 450° C.).

(7)発明の効果 本発明に従うと、多結晶シリコン配線の特徴である良好
な加工性及び安定性を生がしたシリサイド配線を非常に
簡単に形成することができる。形成される配線は、もち
ろん、シリサイドの%徴である多結晶シリコンよシ約1
桁低い抵抗を有している。さらに、本発明に従うと、高
融点金属の濃度が表面で低くなるのでシリサイド膜が酸
化されにくくなシ、よって、その処理とが補正とが容易
になる。
(7) Effects of the Invention According to the present invention, a silicide interconnect that exhibits good workability and stability, which are characteristics of polycrystalline silicon interconnects, can be formed very easily. Of course, the wiring to be formed is about 1% higher than polycrystalline silicon, which is a percentage of silicide.
It has an order of magnitude lower resistance. Further, according to the present invention, since the concentration of the high melting point metal is lowered at the surface, the silicide film is less likely to be oxidized, and therefore, its processing and correction become easier.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明によシ得られる半導体装置の一例を示
した断面図、そして 第2a図、第2b図及び第2c図は、それぞれ、本発明
の工程を順を追って示した断面図である。 図中、1は基板、2はフィールド絶縁膜、3は第1多結
晶シリコン層、4は第2多結晶シリコン層、5及び6は
SiO2薄膜、7はPSG層間絶縁膜、8はN+拡散層
、そして9はAt層である。 髄許出願人 富士通株式会社 特許出願代理人 弁理士 青 木    朗 弁理士 西 舘 和 之 弁理士 内 1)幸 男 弁理士 山 口 昭 之
FIG. 1 is a cross-sectional view showing an example of a semiconductor device obtained according to the present invention, and FIGS. 2a, 2b, and 2c are cross-sectional views showing the steps of the present invention in order. It is. In the figure, 1 is a substrate, 2 is a field insulating film, 3 is a first polycrystalline silicon layer, 4 is a second polycrystalline silicon layer, 5 and 6 are SiO2 thin films, 7 is a PSG interlayer insulating film, and 8 is an N+ diffusion layer. , and 9 is an At layer. Patent Attorney Fujitsu Limited Patent Attorney Akira Aoki Kazuyuki Nishidate Patent Attorney 1) Yukio Patent Attorney Akira Yamaguchi

Claims (1)

【特許請求の範囲】 1 高融点金属シリサイド層を形成する方法において、
下記の工程゛ 多結晶シリコン層を形成すること、 該多結晶シリコン層に不純物をドープすること、該不純
物をドープした多結晶シリコン層にイオン注入により高
融点金属を注入すること、及び高融点金属が注入された
多結晶シリコン層をアニールすること、 を含んでなることを特徴とする高融点金属シリサイド層
の形成方法。
[Claims] 1. A method for forming a high melting point metal silicide layer,
The following steps include forming a polycrystalline silicon layer, doping the polycrystalline silicon layer with an impurity, implanting a refractory metal into the impurity-doped polycrystalline silicon layer by ion implantation, and adding the refractory metal to the polycrystalline silicon layer. A method of forming a refractory metal silicide layer, comprising: annealing a polycrystalline silicon layer implanted with.
JP16953582A 1982-09-30 1982-09-30 Formation of a high melting point metal silicide layer Granted JPS5961033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16953582A JPS5961033A (en) 1982-09-30 1982-09-30 Formation of a high melting point metal silicide layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16953582A JPS5961033A (en) 1982-09-30 1982-09-30 Formation of a high melting point metal silicide layer

Publications (2)

Publication Number Publication Date
JPS5961033A true JPS5961033A (en) 1984-04-07
JPH0377658B2 JPH0377658B2 (en) 1991-12-11

Family

ID=15888290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16953582A Granted JPS5961033A (en) 1982-09-30 1982-09-30 Formation of a high melting point metal silicide layer

Country Status (1)

Country Link
JP (1) JPS5961033A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6486560A (en) * 1987-09-29 1989-03-31 Nippon Telegraph & Telephone Manufacture of semiconductor device
US5420074A (en) * 1990-07-05 1995-05-30 Kabushiki Kaisha Toshiba Method for burying low resistance material in a contact hole

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6486560A (en) * 1987-09-29 1989-03-31 Nippon Telegraph & Telephone Manufacture of semiconductor device
US5420074A (en) * 1990-07-05 1995-05-30 Kabushiki Kaisha Toshiba Method for burying low resistance material in a contact hole

Also Published As

Publication number Publication date
JPH0377658B2 (en) 1991-12-11

Similar Documents

Publication Publication Date Title
US4450620A (en) Fabrication of MOS integrated circuit devices
US6091152A (en) Semiconductor device and method for fabricating the same
US4762801A (en) Method of fabricating polycrystalline silicon resistors having desired temperature coefficients
JPH10256256A (en) Formation of copper metal wiring of semiconductor device
NL8203350A (en) COBALT SILICIDE METALLIZATION FOR SEMICONDUCTOR TRANSISTORS.
KR19990072884A (en) Method for producing a polycrystalline silicon structure
JP2003163348A (en) Method for forming gate electrode and gate electrode structure
JPH0624226B2 (en) Method of manufacturing stacked CMOS device
JPS59210642A (en) Manufacture of semiconductor device
JP2006522481A (en) Gate electrode for MOS transistor
US5624867A (en) Low temperature formation of palladium silicided shallow junctions using implant through metal/silicide technology
US5286678A (en) Single step salicidation process
JPS5961033A (en) Formation of a high melting point metal silicide layer
US5240511A (en) Lightly doped polycrystalline silicon resistor having a non-negative temperature coefficient
JPH0614549B2 (en) Thin film transistor
JPH0613402A (en) Manufacture of semiconductor device
KR100369340B1 (en) Method for fabricating titanium silicide
JPS6165470A (en) Semiconductor ic device
US7314796B2 (en) Methods for reducing wordline sheet resistance
JP3216559B2 (en) Method for manufacturing semiconductor device
JPS58134427A (en) Manufacture of semiconductor device
US20030092249A1 (en) Lightly-insitu-doped amorphous silicon applied in DRAM gates
TW455999B (en) Method of raising the anti-penetration effects of boron for dual gate complementary metal oxide semiconductor transistors
JPH06232390A (en) Manufacture of polycide wiring of semiconductor device
JPH02174237A (en) Manufacture of semiconductor device