JPS5960737A - Production of magnetic recording medium - Google Patents

Production of magnetic recording medium

Info

Publication number
JPS5960737A
JPS5960737A JP17169382A JP17169382A JPS5960737A JP S5960737 A JPS5960737 A JP S5960737A JP 17169382 A JP17169382 A JP 17169382A JP 17169382 A JP17169382 A JP 17169382A JP S5960737 A JPS5960737 A JP S5960737A
Authority
JP
Japan
Prior art keywords
magnetic field
recording medium
magnetic
magnetic recording
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17169382A
Other languages
Japanese (ja)
Other versions
JPH0370857B2 (en
Inventor
Masamichi Tagami
勝通 田上
Yoshihiro Motomura
嘉啓 本村
Shinichi Katsuta
伸一 勝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP17169382A priority Critical patent/JPS5960737A/en
Publication of JPS5960737A publication Critical patent/JPS5960737A/en
Publication of JPH0370857B2 publication Critical patent/JPH0370857B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/852Orientation in a magnetic field

Landscapes

  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

PURPOSE:To obtain a stable electromagnetic conversion characteristic by passing repeatedly a magnetic recording medium through the inside of a magnetic field wherein a magnetic field in a different direction is generated and the magnetic field intensity has a space ditribution and subjecting the same to a cooling treatment in the magnetic field from a specific temp. or above to around a room temp. CONSTITUTION:Fe3O4 contg. Co and Cu respectivly at 4wt% in the entire metallic element is used as a target, and a thin film of Fe3O3 having about 3,000Angstrom thickness and contg. Co and Cu is formed on a heat resistant high polymer film substrate by sputtering at 600W sputtering power and 8X10<-3>Torr sputtering pressure in gaseous argon. The film is oxidized for one hour at 260 deg.C whereby a thin film of iron oxide consisting essentially of the intermediate compsn. of Fe3O4-gamma-Fe2O3 is obtd. A floppy disc 6 cut from such thin film is once heated to 200 deg.C and is passed through the space between magnets 2 and 3 and is slowly cooled to 50 deg.C at 10 deg.C/min speed while the disc is rotated at 6rpm rotating speed. The high effect of an improvement in a magnetic characteristic and a reduction in a demagnetization characteristic under pressure by half is thus obtd.

Description

【発明の詳細な説明】 本発明は、磁気テープまたは磁気ディスク等に用いられ
る磁気記録媒体の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a magnetic recording medium used for magnetic tapes, magnetic disks, and the like.

磁気記録装置における記録密度の向上は斯界の変わらぬ
趨勢であり、これを実現するためには磁気記録媒体の薄
層化、薄膜化が不可欠である。
Improving the recording density in magnetic recording devices is a constant trend in this field, and in order to achieve this, it is essential to make the magnetic recording medium thinner and thinner.

従来、媒体としては酸化鉄微粒子とバインダーの混合物
を基体上に塗布したいわゆるコーティング媒体が広く用
いられている。これらの記録体には音声用の磁気テープ
、VTR用の磁気テープ、コンピー−ター用磁気テープ
、フレキシブル磁気ディスク、リジッド磁気ディスクが
あり、これらの媒体では磁性層の薄層化と和才って媒体
の高抗磁力化によって高記録密度化を図ろうとしている
Conventionally, a so-called coating medium in which a mixture of iron oxide fine particles and a binder is coated on a substrate has been widely used. These recording media include magnetic tape for audio, magnetic tape for VTRs, magnetic tape for computers, flexible magnetic disks, and rigid magnetic disks. Attempts are being made to increase the recording density by increasing the coercive force of the medium.

しかし、コーティング媒体においては厚さが数千Å以下
で、しかも均一な記録再生特性を実現することはきわめ
て困E(Iである。ぞこでコーティング媒体に代わる高
密度記録媒体として、Co蒸清テープ及びメッキテープ
が提案されている。しかしこのような金属薄膜はフェラ
イトのような固いヘッドとの1χ触によって膜表面の損
傷、摩耗が生じたり、また腐食が起こり易く、薄層化が
進む程信頼性の観点から間メθとなる。
However, it is extremely difficult to achieve uniform recording and reproducing characteristics with a thickness of several thousand Å or less in coated media. Tapes and plated tapes have been proposed. However, such metal thin films are susceptible to damage and abrasion of the film surface due to contact with a hard head such as ferrite, and are susceptible to corrosion, and as the film becomes thinner, From the viewpoint of reliability, the interval is θ.

そこでかかる点を解決しようと、耐jA耗I”b、耐腐
食性か良好な酸化物磁性薄膜であるr−Fe203また
はγ−1(’e203とFe50.の中間組成物才たは
Fe3O3を主成分とし、高保磁力を11)るためにO
In order to solve this problem, we developed an oxide magnetic thin film with good wear resistance, corrosion resistance, or r-Fe203 or γ-1 (an intermediate composition between 'e203 and Fe50), or mainly Fe3O3. component, and in order to obtain a high coercive force (11), O
.

を添加したコバルト含有酸化鉄磁性薄膜が注目されてい
る。しかしこのようなコバ用l−含有酸化鉄磁性薄膜は
酸化度、コバル1の含有量によっては大きな加圧減磁を
示すことがあり、磁気ヘッドとの接触により再生出力が
減少し、安定した電磁変換特性を得ることが出来なかっ
た。また磁気記録体の形皮条件、もしくは基体の性質に
よっては磁気特性が充分に達せられないことがあった。
Cobalt-containing iron oxide magnetic thin films are attracting attention. However, depending on the degree of oxidation and the content of Kobal 1, such l-containing iron oxide magnetic thin films for edges may show large pressure demagnetization, and the reproduction output may decrease due to contact with the magnetic head, resulting in stable electromagnetic stability. It was not possible to obtain conversion characteristics. Further, depending on the shape conditions of the magnetic recording medium or the properties of the substrate, sufficient magnetic properties may not be achieved.

そこでこれらの問題を解決する為に、コバルト含有酸化
鉄磁性薄膜を一旦加熱し、静磁場中で冷却処理を施こす
方法が提案されている。この磁場中冷却処理を施こした
場合には、加熱減磁特性、静磁気特性が著るしく向上し
、しかも同様な処理を、コバルト含有酸化鉄微粒子に施
こした場合と異なり、何ら安定化処理を行なわなくても
長期の時間経過に対して極めて安定であるという利点が
あった。
In order to solve these problems, a method has been proposed in which a cobalt-containing iron oxide magnetic thin film is heated and then cooled in a static magnetic field. When this cooling treatment in a magnetic field is applied, the heating demagnetization characteristics and magnetostatic characteristics are significantly improved, and unlike when the same treatment is applied to cobalt-containing iron oxide fine particles, there is no stabilization. It had the advantage of being extremely stable over a long period of time even without treatment.

然しなからこの方法を例えば磁気テープ媒体に適用しよ
うとした場合には一足強度の静磁場をテープ長さ方向に
亘って発生させる為に、ソレノイドコイルを用いるのが
一般である。しかし十分強い静磁場を得る為には大電流
を流すことのできるコイルと電源、又ジュール熱による
コイル温度上昇を抑える為の冷却機構が必要であり、非
常に高価且つ大規模な装置が要求される。又この方法を
磁気ディスク媒体に適用しようとした場合、円周方向の
静磁場を発生させるのは容易でない。
However, when this method is applied to, for example, a magnetic tape medium, a solenoid coil is generally used in order to generate a static magnetic field of high strength along the length of the tape. However, in order to obtain a sufficiently strong static magnetic field, a coil that can flow a large current, a power supply, and a cooling mechanism to suppress the rise in coil temperature due to Joule heat are required, which requires extremely expensive and large-scale equipment. Ru. Furthermore, when this method is applied to a magnetic disk medium, it is not easy to generate a static magnetic field in the circumferential direction.

本発明はこのような磁場中冷却処理を実施する上での種
々の問題点を解決するこさを目的とするものであり、磁
気テープ、磁気ディスクいずれの媒体にも適用できる簡
便且つ効果的な磁気記録媒体の製造方法を提供するもの
である。
The purpose of the present invention is to solve various problems in performing such cooling treatment in a magnetic field. A method for manufacturing a recording medium is provided.

即ち本発明に係わる磁気記録媒体の製造方法は異なる向
きの磁界を含み、かつ磁界強度が壁間分布をもつ磁界中
を、磁気記録媒体を繰返い1n過させ、該磁気記録媒体
の磁化状態がある一定の向きに保持さねている時間がこ
れと異なる向きに保持されている時間より長くなるよう
にし、同時に同磁慨記録媒体に80℃以上の温度から室
温近傍にまで磁界中冷却処理を施す工程を含むことを特
徴とする。
That is, the method for manufacturing a magnetic recording medium according to the present invention involves repeatedly passing a magnetic recording medium through a magnetic field containing magnetic fields in different directions and having a wall-to-wall distribution of magnetic field strength for 1n, and determining the magnetization state of the magnetic recording medium. The time the magnetic recording medium is held in a certain direction is longer than the time it is held in a different direction, and at the same time the same magnetic recording medium is cooled in a magnetic field from a temperature of 80°C or higher to near room temperature. It is characterized by including a step of applying.

本発明者はソレノイドコイルの代りに永久磁石を用いる
ことができないかと考え、強く検討を重ねた結果、向き
の異なる磁界が加わった場合にも磁気記録媒体の磁化状
態が冷却時間中においである一方的にある時間と、その
逆方向にある時間とに明らかな差がある場合には十分磁
界中冷却処理の効果があることを見出し、本発明をなす
に至ったものである。
The inventor of the present invention thought that it would be possible to use a permanent magnet instead of a solenoid coil, and as a result of intensive study, it was found that even when a magnetic field with a different direction is applied, the magnetization state of the magnetic recording medium remains unchanged during the cooling time. The inventors have discovered that cooling treatment in a magnetic field is sufficiently effective when there is a clear difference between a certain time in the direction and a time in the opposite direction, and this has led to the present invention.

以下具体的な例を上げて本発明の悲義を詳細に説明する
。尚以下において磁気特性は振動試料型磁力計により3
KOeo−pの磁界を加えて測定したものであり、又加
圧減磁量は試料を3KOeの静磁界中で一方向に磁化し
た後、試料面に垂直方向に1.000 k g/cJの
圧力を10秒間加え、その前後の残留磁化の減少分−を
加圧前の値のパーセント比で示したものである。
The significance of the present invention will be explained in detail below using specific examples. In the following, the magnetic properties were measured using a vibrating sample magnetometer.
It was measured by applying a magnetic field of KOeo-p, and the amount of pressure demagnetization was measured by magnetizing the sample in one direction in a static magnetic field of 3KOe, and then applying a magnetic field of 1.000 kg/cJ perpendicular to the sample surface. Pressure is applied for 10 seconds, and the decrease in residual magnetization before and after that is shown as a percentage ratio of the value before pressurization.

実施例1 全金属元素中Co、Ouをそれぞれ4薫柑パーセント含
むFe1O,をターゲットとし、150ミリ角の耐熱性
高分子フィルム基体上にアルゴンガス中スバ、り・パワ
ー600W、スパッタ圧8刈0 ”Torrでスパッタ
リングすることにより約300OAのCo。
Example 1 Fe1O, which contains 4% Co and 4% O out of all metal elements, was used as a target, and sputtered in argon gas on a 150 mm square heat-resistant polymer film substrate at a power of 600 W and a sputtering pressure of 8 0. "Approximately 300 OA of Co by sputtering at Torr.

Cu含有Fe3O4薄膜を形成した。これを2・60℃
A Cu-containing Fe3O4 thin film was formed. This is 2.60℃
.

1時間大気中で酸化しFe、 O,−r−Fe、 0.
 中間組成物を主成分とする酸化鉄薄膜を得た。得られ
たサンプルから内径約28.5ミlJ、外径133ミl
Jの51/4インチ大フロッピー・ディスク(1−A)
を切り出した。
Oxidized in air for 1 hour to produce Fe, O,-r-Fe, 0.
An iron oxide thin film containing the intermediate composition as a main component was obtained. The obtained sample has an inner diameter of approximately 28.5 milJ and an outer diameter of 133 mil.
J's 51/4 inch large floppy disk (1-A)
I cut it out.

一方残留磁束密度約9,700GのCo−希土類マグネ
ット(10×10×50ミリ、短辺方向に着磁→一対を
第1.2図に示した如(配置した。第1図は平面図、第
2図は第1図矢印5の方向からみた時の側面図である。
On the other hand, a pair of Co-rare earth magnets (10 x 10 x 50 mm, magnetized in the short side direction) with a residual magnetic flux density of about 9,700 G were arranged as shown in Figure 1.2. Figure 1 is a plan view, FIG. 2 is a side view when viewed from the direction of arrow 5 in FIG. 1.

図において1&iフロツピー・ディスク、2および3は
マグネット、4はフロッピー・ディスクの回転軸であり
、マグネット2,3は第2図の如く間隙5ミリで同じ磁
極が対向する向きに配置した。第3甲は第1図矢印5の
方向に沿ってマグネット間隙の丁度中央を通る平面上に
おける面内磁界成分(H+t)を測定、プロットしたも
のでJ)る。但し磁界の正方向を第2図フロッピー・デ
ィスクの回転方向6の方向とした。このような分布の磁
界を1回転に1回経験することによりフロラ・ビイ・デ
ィスク各点の磁化は負の方向の磁界が加わる間を除き正
の残留磁化を保持する。勿論負方向の磁界が加わる時に
は負方向の磁化をもつがそれは1回転に要する時間の約
1/7〜1/33である。
In the figure, 1&i floppy disk, 2 and 3 are magnets, and 4 is the rotating shaft of the floppy disk.The magnets 2 and 3 were arranged with a gap of 5 mm as shown in FIG. 2, with the same magnetic poles facing each other. Figure 3A shows the measured and plotted in-plane magnetic field component (H+t) on a plane passing exactly through the center of the magnet gap along the direction of arrow 5 in Figure 1. However, the positive direction of the magnetic field is the rotational direction 6 of the floppy disk in FIG. By experiencing such a distributed magnetic field once per rotation, the magnetization at each point on the Flora Bi disk maintains a positive residual magnetization except when a magnetic field in the negative direction is applied. Of course, when a magnetic field in the negative direction is applied, there is magnetization in the negative direction, but this is for about 1/7 to 1/33 of the time required for one rotation.

籾でフロッピィディスク1−Aを一旦200℃に加熱し
た後、この間隙を通し回転数6rpmで回転させながら
10℃/分の速度で50℃まで除冷しサンプル1−Bを
得た。ディスク1−A、1−Bの磁気特性1、加圧減磁
特性を測定したところ第1表に示したように、s 、 
s*の改善と加圧減磁特性の半減という大きな効果が認
められた。
After heating the floppy disk 1-A with rice to 200° C., the disk was slowly cooled down to 50° C. at a rate of 10° C./min while rotating through the gap at a rotation speed of 6 rpm to obtain sample 1-B. When the magnetic properties 1 and pressure demagnetization properties of disks 1-A and 1-B were measured, as shown in Table 1, s,
Significant effects such as improvement in s* and halving of pressure demagnetization characteristics were observed.

第   1   表 サンプル塩  HCS  S* 加圧減磁1−A   
9000e  O,680,55−25%1−B   
930   0.71 0.61  −13%実施例 実施例1と同じCo−希土類マグネ、トを用い、第4.
5図の如(4ケのマグネットを配置した。
Table 1 Sample salt HCS S* Pressure demagnetization 1-A
9000e O,680,55-25%1-B
930 0.71 0.61 -13% Example Using the same Co-rare earth magnet as in Example 1, the 4th.
As shown in Figure 5 (4 magnets are placed).

この時第4図BB′の方向に沿って、マグネット間隙の
中央を通る平面上における面内時間(Hll)の分布は
第6図に示した如くであった。
At this time, the distribution of in-plane time (Hll) on a plane passing through the center of the magnet gap along the direction BB' in FIG. 4 was as shown in FIG.

実施例1と同じフロッピーディスク1−Aを一旦210
℃に加熱した後、第5図の如く4ケのマグネ、トで構成
された間隙を通し、回転数12Orpmで回転させなが
ら20℃/分の速度で室温にまで冷却しサンプル2−B
を得た。その磁気特性、加圧減磁特性を測定したところ
第2表に示したように実施例1と同程度の磁気特性、加
圧減磁特性の改善が認められた。
The same floppy disk 1-A as in Example 1 was once inserted into the 210
After heating to ℃, Sample 2-B was cooled to room temperature at a rate of 20℃/min while rotating at 12 rpm through a gap made up of four magnets as shown in Figure 5.
I got it. When its magnetic properties and pressure demagnetization properties were measured, as shown in Table 2, it was found that the magnetic properties and pressure demagnetization properties were improved to the same extent as in Example 1.

第   2   表 サンプル塩  Hc    S   8*  加圧減磁
1−A    9000c  O,680,55−25
悟2−B    900   0.70 0.60  
−16%本実施例においてはフロ、ピーディスク各点の
磁化は、上記間隙を通る時に傭い正磁界(811)によ
り一旦正方向を向くが、その後負方向に反転しその状態
が保持される。即ち実施例1と同様一回転時間中の大部
分の時間は負方向の残留磁化が保持される。
Table 2 Sample salt Hc S 8* Pressure demagnetization 1-A 9000c O, 680, 55-25
Satoru 2-B 900 0.70 0.60
-16% In this example, the magnetization at each point of the disk and the disk once turns in the positive direction due to the positive magnetic field (811) when passing through the above gap, but then reverses to the negative direction and maintains that state. . That is, as in Example 1, residual magnetization in the negative direction is maintained for most of the time during one rotation.

実施例3 実施例1におけるフロッピーディスク1−Aと同じ工程
によりOo5重量パーセント、Cu4重量パーセントを
含むFe304−γFe2O3中間組成物を主成分とす
る酸化鉄薄膜を媒体とするフロッピー・ディスク3−A
を得た。
Example 3 A floppy disk 3-A using an iron oxide thin film whose main component is an intermediate composition of Fe304-γFe2O3 containing 5 weight percent Oo and 4 weight percent Cu is produced by the same process as the floppy disk 1-A in Example 1.
I got it.

一方実施例1と同じCo−希土類マグネットを用い、第
7.8図のように4ケのマグネットからなる1組のマグ
ネットM1を第7図の如く、ディスク面上に配置した。
On the other hand, using the same Co-rare earth magnet as in Example 1, a set of four magnets M1, as shown in FIG. 7.8, was arranged on the disk surface as shown in FIG.

又同じ構成のマグネットM2M3.M、を場合により第
7図の如く配置した。マグネットM、の第7図00’方
向に沿って、マグネット間隙の中央を通る平面上におけ
る面内磁界(Hlt)  の分布は第9図に示した如く
であった。
Also, magnets M2M3 with the same configuration. M, were arranged as shown in FIG. 7 depending on the case. The distribution of the in-plane magnetic field (Hlt) on a plane passing through the center of the magnet gap along the direction 00' in FIG. 7 of the magnet M was as shown in FIG.

フロッピーディスク3−Aを一旦200℃まで加熱した
後、前記マグネ、トM1〜M4のいくつかを第7図の如
く配置し、20℃/分の冷却速度で磁場中冷却を行なっ
た。こうして得たサンプル3−B1〜3−B4に対して
用いたマグネットの組と磁気特注、減磁の測定結果を、
磁場中冷却を行なわないサンプル3−Aと比較して第3
表に示した。
After the floppy disk 3-A was once heated to 200 DEG C., some of the magnets M1 to M4 were arranged as shown in FIG. 7 and cooled in a magnetic field at a cooling rate of 20 DEG C./min. The set of magnets used for samples 3-B1 to 3-B4 obtained in this way, magnetic customization, and measurement results of demagnetization are as follows.
The third sample compared to sample 3-A which was not cooled in a magnetic field.
Shown in the table.

第   3   表 サン7)し名 使井レグネット    He’  S 
   S*7肚丘睨丞3−A    −7200e O
,630,57−19%3−BI   M、     
     930  0.70 0.75−14%B2
  M、、M、      930  0.72 0.
73−10%B3  M、、M、、M3950  0.
76 0.86−8.7%B4  M、 、M2.M、
、M、  960  0.76 0.90−BE%上表
にみる如く、マグネットの組を3ケ、4ケとした場合、
磁性及び加圧減磁共に更に改善が認められた。
Table 3 San 7) Shina Usui Regnet He' S
S*7 Duqiu Mirage 3-A -7200e O
,630,57-19%3-BI M,
930 0.70 0.75-14%B2
M,,M, 930 0.72 0.
73-10%B3 M,,M,,M3950 0.
76 0.86-8.7%B4 M, , M2. M,
, M, 960 0.76 0.90-BE% As shown in the table above, when the set of magnets is 3 or 4,
Further improvements were observed in both magnetism and pressure demagnetization.

比較例 全金属元素中3恵清パーセントのCo、4屯量パーセン
トのOuを含む、Fe504  ターゲットをアルゴン
ガス中でスパッタすることによって耐熱性高分子フィル
ム基体上に厚さ4,0OOXのCo、Ou含有FeHO
4薄膜を形成し、これを260 ℃、1時間大気中で酸
化し、Fe304−γ−Fe20g中間組成物を主成分
とする酸化鉄薄膜を得た。得られたサンフ0ルから巾1
2.56ミリ(1/2インチ)のチー70状サンプル(
R−1)を切り出した。
Comparative Example Co, Ou with a thickness of 4,000× was deposited on a heat-resistant polymer film substrate by sputtering a Fe504 target containing 3% Co and 4% O out of all metal elements in argon gas. Contains FeHO
4 thin film was formed, and this was oxidized in the air at 260° C. for 1 hour to obtain an iron oxide thin film whose main component was Fe304-γ-Fe20g intermediate composition. Width 1 from the obtained sun file
2.56 mm (1/2 inch) Qi 70-shaped sample (
R-1) was cut out.

一方実施例1〜3に用いたと同じ永久磁石を用い、第1
0図に示したように同種の磁極を対向させた一対のマグ
ネットを等間隔に一方向に沿って10対並べこの範囲に
亘って200℃から50℃の温度勾配を与えた。又第1
1図に示したように交互に極性が変るように11対のマ
グネット対を並べ同じくその範囲に亘って200℃から
50℃の温度勾配を与え在。これらマグネット対の間隙
を図の如(高温側から低温側へ2w分の速度でテープサ
ンプル9を送りつメ磁場中冷却処理を行ない、それぞれ
サンプルR−2、R−3を得た。これらサンプルの磁気
特性、加圧減磁量を測定したところ磁場中冷却を行なわ
ぬサンプルr’t−iと何ら差違を認めなかった。
On the other hand, using the same permanent magnet as used in Examples 1 to 3,
As shown in Figure 0, 10 pairs of magnets with the same type of magnetic poles facing each other were arranged along one direction at regular intervals, and a temperature gradient from 200°C to 50°C was applied over this range. Also the first
As shown in Figure 1, 11 pairs of magnets are arranged so that the polarity changes alternately, giving a temperature gradient of 200°C to 50°C over the same range. The gap between these magnet pairs was adjusted as shown in the figure (the tape sample 9 was sent at a speed of 2w from the high temperature side to the low temperature side, and cooling treatment was performed in a magnetic field to obtain samples R-2 and R-3, respectively. When the magnetic properties and the amount of demagnetization under pressure were measured, no difference was observed between sample r't-i which was not cooled in a magnetic field.

この原因は、第10.11図におけるマグネット配置に
よる間隙の面内磁界H■は第12.13図に示したよう
に正負方向に対称的な周期的分布を持つており、そこを
通るテープサンプルの磁化は正負両方向の磁化状態がほ
ぼ同じ割合で起ることによると考えられる。
The reason for this is that the in-plane magnetic field H in the gap due to the magnet arrangement in Figure 10.11 has a periodic distribution that is symmetrical in the positive and negative directions as shown in Figure 12.13, and the tape sample passing through it has a periodic distribution that is symmetrical in the positive and negative directions. The magnetization is thought to be due to the fact that the magnetization states in both the positive and negative directions occur at approximately the same rate.

実施例4 全金属元素中Co 、Cuをそれぞれ2及び3重量パー
セント含むFe3O4をターゲットとし、アルゴン・ガ
ス中のスパッタリングによって、アルミ合金表面にアル
マイト皮膜を形成した。ディスク基板上に約2,000
 AのCo、Ou含有Fe3O4膜を形成した。これを
275℃、1時間大気中で酸化し、γ−Fe2O3を主
成分とする酸化鉄薄膜媒体ディスク4  A’2得た。
Example 4 An alumite film was formed on the surface of an aluminum alloy by sputtering in argon gas using Fe3O4 as a target containing 2 and 3 weight percent of Co and Cu, respectively, among all metal elements. Approximately 2,000 on the disk board
A Fe3O4 film containing Co and O was formed. This was oxidized in the air at 275°C for 1 hour to obtain an iron oxide thin film medium disk 4A'2 containing γ-Fe2O3 as a main component.

このディスク4−Aを実施例3で用いた4組のマグネッ
トMl 2M22M51M4 (第7図)を用い、25
0℃から室温まで20℃/分の冷却速度で同様な磁場中
冷却処理を施こしディスク4−Bを得た。この2種のデ
ィスクの記録再生特性を評価したところ、静磁気特性の
向上に対応する出力、記録密度特性の伸びがディスク4
−Hにおいて明らかに認められた。又多数回のコンタク
トスタート・ストップテストもしくは、媒体表面をガー
ゼ等により強く摩擦した時の減磁量にもディスク4−B
での改善が認められた。
This disk 4-A was used in Example 3 using four sets of magnets Ml 2M22M51M4 (Fig. 7).
A similar cooling treatment in a magnetic field was performed from 0° C. to room temperature at a cooling rate of 20° C./min to obtain disk 4-B. When we evaluated the recording and playback characteristics of these two types of disks, we found that the output and recording density characteristics of disks 4 and 4 increased in line with the improvements in magnetostatic characteristics.
- It was clearly recognized in H. Also, the disk 4-B is suitable for the amount of demagnetization caused by multiple contact start/stop tests or by strongly rubbing the media surface with gauze, etc.
An improvement was observed.

このことは媒体下地の如何に拘らず、本発明による磁場
中冷却工程は効果をもつことを示すものである。
This shows that the cooling process in a magnetic field according to the present invention is effective regardless of the substrate of the medium.

以上の実施例においては磁界中冷却最高温度及び冷却速
度をそれぞれ200℃以上、10〜bとしたが、本発明
の効果はこれに限るものではなく、それぞれ80℃以上
、200℃/分においても同様である。
In the above embodiments, the maximum cooling temperature in a magnetic field and the cooling rate were set to 200°C or higher and 10 to b, respectively, but the effects of the present invention are not limited to these, and even at temperatures of 80°C or higher and 200°C/min, respectively. The same is true.

以上述べてきたように本発明にか\わる磁気記録媒体の
製造方法によれば、テープ、ディスクといった媒体形状
にか\わりなく、永久磁石を用いた簡素な装置で、磁界
中冷却処理を施こすことにより、性能・信頼性に優れた
磁気記録媒体の製造が可能になる。
As described above, according to the method of manufacturing a magnetic recording medium according to the present invention, cooling treatment in a magnetic field can be performed using a simple device using permanent magnets, regardless of the shape of the medium such as tape or disk. This makes it possible to manufacture magnetic recording media with excellent performance and reliability.

【図面の簡単な説明】[Brief explanation of drawings]

第2図は第1図の部分側面図、第3図は第1.2図のマ
グネット対による面内磁界成分の分布を示す図、第4図
は4ケのマグネットの組合せにおけるフロッピー・ディ
スク面上の配置を示す平面図、第5図は第4図の部分側
面図、第6図は、第4.5図の4ケのマグネットによる
面内磁界成分の分布を示す図、鳩7図は4ケのマグネッ
トの組合せのフロッピー・ディスク面上の別の配置を示
す平面図、第8図は第7図の部分側面図、第9図は、第
7.8Mの4個のマグネットによる面内磁界成分の分布
を示す図、第10図は比較例におけるテープ状サンプル
に対するマグネット配置を示す図、第11図は同じく比
較例における別のマグネット配置を示す図、第12.1
3図はそれぞれ第10.11図のマグネット配置におけ
るテープ面内磁界分布(1周期分)を示す図である。 図において1・・・フロッピー・ディスク、2,3・・
・マグネット、4・・・フロッピーディスク回転軸、5
・・・側面図視線、6・・・フロッピー・ディスク回転
方向、7.8・・・マグネット、9・・・テープ第3 
図 (KOe) 第6図 第1O図 # 1112    aq   塔IO第1I図
Figure 2 is a partial side view of Figure 1, Figure 3 is a diagram showing the distribution of in-plane magnetic field components due to the magnet pair in Figures 1 and 2, and Figure 4 is the floppy disk surface in the combination of four magnets. Fig. 5 is a partial side view of Fig. 4, Fig. 6 is a diagram showing the distribution of in-plane magnetic field components due to the four magnets in Fig. 4.5, and Fig. 7 is a plan view showing the above arrangement. A plan view showing another arrangement of four magnets on the floppy disk surface, FIG. 8 is a partial side view of FIG. 7, and FIG. 9 is an in-plane view of the four magnets of No. FIG. 10 is a diagram showing the distribution of magnetic field components. FIG. 10 is a diagram showing a magnet arrangement for a tape-shaped sample in a comparative example. FIG. 11 is a diagram showing another magnet arrangement in the same comparative example. 12.1
FIG. 3 is a diagram showing the tape in-plane magnetic field distribution (for one period) in the magnet arrangement shown in FIG. 10.11. In the figure, 1...floppy disk, 2, 3...
・Magnet, 4...Floppy disk rotating shaft, 5
... Side view line of sight, 6... Floppy disk rotation direction, 7.8... Magnet, 9... Tape 3rd
Figure (KOe) Figure 6 Figure 1O Figure # 1112 aq Tower IO Figure 1I

Claims (4)

【特許請求の範囲】[Claims] (1)異なる向きの磁界を含み、かつ磁界強度が空間分
布をもつ磁界中を、磁気記録媒体を繰返し通過させ、該
磁気記録媒体の磁化状態がある一定の向きに保持されて
いる時間がこわと異なる向きに保持されている時間より
長くなるようにし、同時に同磁気記録媒体に80℃以上
の温度から室l部近傍にまで磁界中冷却処理を施こす工
程を含むことを特徴とする磁気記録媒体の製造方法。
(1) A magnetic recording medium is repeatedly passed through a magnetic field that includes magnetic fields in different directions and has a spatial distribution of magnetic field strength, and the time period during which the magnetization state of the magnetic recording medium is maintained in a certain direction is difficult. A magnetic recording medium comprising the step of cooling the magnetic recording medium in a magnetic field from a temperature of 80° C. or higher to the vicinity of the first part of the chamber at the same time. Method of manufacturing media.
(2)磁気記録媒体がCo及びその他の金1d(元素添
加物を含む、Fe50.膜もしくはFe50.とr−F
e2o3との中間組成物j1αもしくはγ−Fe2O3
膜である、′1寺r「請求の範囲第1項記載の磁気記録
媒体の製造方法。
(2) The magnetic recording medium is Co and other gold 1d (including elemental additives, Fe50. film or Fe50. and r-F
Intermediate composition with e2o3 j1α or γ-Fe2O3
A method for manufacturing a magnetic recording medium according to claim 1, which is a film.
(3)  少くとも2ケ一対の永久磁石によって、円板
状磁気記録媒体の1ケ所以上の半径方向に沿って、該媒
体面内成分磁界を生ぜしめ、同磁界中を同円板状媒体を
繰返し通過させる特許請求の範囲第1及び第2項記載の
磁気記録媒体の製造方法。
(3) At least two pairs of permanent magnets generate an in-plane component magnetic field along the radial direction at one or more locations on the disk-shaped magnetic recording medium, and the disk-shaped medium is moved through the same magnetic field. A method for manufacturing a magnetic recording medium according to claims 1 and 2, wherein the magnetic recording medium is repeatedly passed through the medium.
(4)磁気テープ状磁気記録媒体の長手方向面内磁界を
生ぜしめるような、同媒体を挿む上下一対の永久磁石を
複数個長手方向に沿って配置し且つ、磁石対の存在する
範囲の一端から他端に温度勾配を生ぜしめ、その範囲を
連続的に上記媒体を通過させて磁場中冷却処理を行なう
。特許請求の範囲@1及び2項記載の磁気記録媒体の製
造方法。
(4) A plurality of pairs of upper and lower permanent magnets into which the medium is inserted are arranged along the longitudinal direction so as to generate an in-plane magnetic field in the longitudinal direction of the magnetic tape-like magnetic recording medium, and the area where the magnet pairs exist is A temperature gradient is created from one end to the other, and the medium is passed through this range continuously to perform cooling treatment in a magnetic field. A method for manufacturing a magnetic recording medium according to claims 1 and 2.
JP17169382A 1982-09-30 1982-09-30 Production of magnetic recording medium Granted JPS5960737A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17169382A JPS5960737A (en) 1982-09-30 1982-09-30 Production of magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17169382A JPS5960737A (en) 1982-09-30 1982-09-30 Production of magnetic recording medium

Publications (2)

Publication Number Publication Date
JPS5960737A true JPS5960737A (en) 1984-04-06
JPH0370857B2 JPH0370857B2 (en) 1991-11-11

Family

ID=15927934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17169382A Granted JPS5960737A (en) 1982-09-30 1982-09-30 Production of magnetic recording medium

Country Status (1)

Country Link
JP (1) JPS5960737A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5366566A (en) * 1989-10-13 1994-11-22 Centre National De La Recherche Scientifique Method for preparing a very high quality magnetic material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5366566A (en) * 1989-10-13 1994-11-22 Centre National De La Recherche Scientifique Method for preparing a very high quality magnetic material

Also Published As

Publication number Publication date
JPH0370857B2 (en) 1991-11-11

Similar Documents

Publication Publication Date Title
JP3786453B2 (en) Magnetic recording medium and magnetic recording / reproducing apparatus
Hattori et al. Magnetic recording characteristics of sputtered γ-Fe 2 O 3 thin flim disks
Yoshii et al. High density recording characteristics of sputtered γ‐Fe2O3 thin‐film disks
Bate Particulate recording materials
JPS5960737A (en) Production of magnetic recording medium
US4609593A (en) Magnetic recording medium
JPH07105027B2 (en) Perpendicular magnetic recording medium
JPS60143431A (en) Recording medium for vertical magnetic recording
US4641213A (en) Magnetic head
JPH0719372B2 (en) Method of manufacturing magnetic recording medium
JPH0254645B2 (en)
JPH0349025A (en) Magnetic recording medium
Tagami et al. Preparation of ferrite thin film flexible disks and their read/write characteristics
JPS6022722A (en) Thin film magnetic head
JPS6173206A (en) Magnetic recording and reproducing system
JPS61216306A (en) Magnetic metal powder and manufacture thereof
JP2843342B2 (en) Manufacturing method of magnetic recording medium
JPS6022721A (en) Thin film magnetic head
JP2000187825A (en) Magnetic recording medium and magnetic storage device
JPS60160028A (en) Vertically magnetized recording body
JPS63234407A (en) Magnetic recording medium
JPS63809A (en) Formation of thin film magnetic head core
JPS6022715A (en) Magnetic head for vertical magnetic recording
JPS5857628A (en) Flexible magnetic recording medium
JPH1040529A (en) Magnetic recording medium