JPS5960332A - Output torque monitoring device - Google Patents

Output torque monitoring device

Info

Publication number
JPS5960332A
JPS5960332A JP17184882A JP17184882A JPS5960332A JP S5960332 A JPS5960332 A JP S5960332A JP 17184882 A JP17184882 A JP 17184882A JP 17184882 A JP17184882 A JP 17184882A JP S5960332 A JPS5960332 A JP S5960332A
Authority
JP
Japan
Prior art keywords
torque
resonance frequency
strain
acoustic wave
surface acoustic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17184882A
Other languages
Japanese (ja)
Inventor
Yuetsu Uto
宇藤 祐悦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP17184882A priority Critical patent/JPS5960332A/en
Publication of JPS5960332A publication Critical patent/JPS5960332A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency, in general
    • G01L3/02Rotary-transmission dynamometers
    • G01L3/04Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
    • G01L3/10Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)

Abstract

PURPOSE:To facilitate calibration and signal processing and to take a measurement of output torque with high precision by providing a surface acoustic wave resonator to a flexible beam on a driving shaft, and detecting a resonance frequency difference by utilizing the opposite polarity of strain. CONSTITUTION:When torque operates on the shaft 3 to be measured, rings 4a and 4b shift circumferentially from each other in proportion to the torque and the flexible beam 1 bridged between them deforms by delta, so that surface acoustic wave resonators 6a and 6b stuck where the strain is concentrated vary in resonance frequency. The operating strain is opposite in polarity between drawing and compression, so one increases in resonance frequency and the other decreases. The resonance frequencies are amplified by a transmitter 7 and received by a receiver 9 through antennas 8a and 8b. Those resonance frequencies are mixed together to obtain only the difference in resonance frequency. Electric power for operating the transmitter 7 is supplied successively as a constant voltage by adjusting and applying the voltage from an AC power source 10 to the primary side of a rotary transformer 12 to induce a voltage on the second side and then converting it into the constant voltage through a converter 13. The frequency of the receiver 9 corresponds to only the torque, so it is read to measure the torque which operates on the shaft 3 to be measured continuously with high precision.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は駆シj軸のトルクを検出するil’ll+ )
ルク監祝装置に関するものである。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for detecting torque of a driving shaft j-axis.
This is related to the Ruku supervision device.

〔発ゆ」の技術的背景〕[Technical background of Hatsuyu]

製鉄や製紙ラインに於て各スタンドの駆動軸のトルクを
検出し制御することは製品の拘置化という点で爪要であ
る。従来この柚の軸トルク検出力式とし゛(、ひずみゲ
ージを用い、回転部から信号をとり出すのに保守の難点
からスリップリング方式は敬遠され、回転部に送信器を
設け、t′eを用いるテレメータ方式が多く採用されて
いる。しかし、ひ1′みゲージプレメータ方式ではS/
N(信号/a晋比)がせい−ヒい40dI3Lかな(、
分解tii’、が低いといつ欠点があった0〔発明の目
的〕 本発明はこのような4↓愉にtjfflみてなされたも
ので、高分子f(、能をイ〕する111iJ l−ルク
監視装置を提供1′ることを目的とする。
In iron and paper manufacturing lines, detecting and controlling the torque of the drive shaft of each stand is essential in terms of confining products. Conventionally, this Yuzu axis torque detection force type (using a strain gauge, the slip ring method was avoided due to maintenance difficulties in extracting signals from the rotating part, a transmitter was installed in the rotating part, and t'e was used. The telemeter system is often used. However, the S/P meter system is
The N (signal/a ratio) is probably 40dI3L (,
[Objective of the Invention] The present invention was made in view of such 4↓ pleasure, and it is a method for monitoring The purpose is to provide a device 1'.

〔発ツ」の概要〕[Summary of Hatsutsu]

即ち、本発明は上記目的を達成するため、測定対象駆動
軸1軸にその軸線に泪って軸の捩れを検出1−るための
たわみ梁を取り伺けると共に6111定対象駆ルノ1軸
のMノミれによりこのたわみ梁における互いに逆極性の
ひ1み変形を父いj易い位1tMに一対の表面弾性波共
振子を設け、且つこれら表面弾性波共振子の共振絢波数
伯号を受けて両4r=号の差の周波数を得る+段を設け
て成り、この周波U、差より前記測定対象駆即1軸の1
袖トルクを測定するようにするもので、6%11定対象
駆動軸の軸トルクによりたわみ梁が変形するとこの変形
は互いに逆極性のたわみ変形と1.[ることをオリ用し
てこの変りしな谷々表面弾性波共振子で共振周波数の形
でとり出し、両共振周波数の差から)fvjトルクを御
]定することによって昂11Y曳の測だができるように
する。
That is, in order to achieve the above object, the present invention has a flexible beam for detecting the torsion of the shaft by leaning on the axis of the drive shaft to be measured. A pair of surface acoustic wave resonators are installed at a distance of 1 tM, and the resonant wave number of these surface acoustic wave resonators is set so that the deflection of opposite polarities in this flexible beam is caused by the M-noise. A + stage is provided to obtain the frequency of the difference between both 4r = numbers, and from this frequency U, the 1st axis of the 1st axis of the measurement target is
This is to measure sleeve torque, and when a flexible beam is deformed by the shaft torque of the 6% 11 constant target drive shaft, this deformation is a deflection deformation with opposite polarity and 1. [Using this fact, we extract the resonant frequency in this irregular valley surface acoustic wave resonator, and control the fvj torque (from the difference between the two resonant frequencies) to measure the 11Y drag. It can be so.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を第1図および第2し1に示す一実施例に
ついて説明する。lはたわみ梁であり2、その両端部を
熾脱BJ能な2分割t14造で且つボルト2により被測
定軸3上の長手方向2ケD[にそれぞれ固定され゛(い
る リング4a 、4bにボルト5で固定しである。
Hereinafter, one embodiment of the present invention shown in FIGS. 1 and 2 will be described. 1 is a flexible beam 2, which is made of two-part T14 structure with both ends capable of being removable, and is fixed to two points D in the longitudinal direction on the shaft 3 to be measured by bolts 2. It is fixed with bolt 5.

前記たわみ梁Iには両固定部近傍に被dllJ定軸3の
捩り方向に幻する補強効果を小さくし、且つこの部分に
ひずみを集中させる目的で(りぬきが設けられ、その外
面には作用するひずみに比例して共振周波数が変化する
表面弾性波共振子6a 、6bを貼り付けである。この
表面弾性波共振子6a 、6bの周波数変化の割付・す
なわち周波数変化量ΔJ゛と原周波数Jとの比(Δj’
/f)はひすみ、1−なわら変形長さΔl と元の長さ
lとの比(△I!/’7)どPI: h: 船・しく、
j”+=100h旧2に迅べは金緬箔ひずみゲージの場
合の分子」シ「能に近いl 〉< 10  のひずみに
対しΔfは1 g Q )lzにも達するものである1
、そして表面5・″11住波共J辰子6a。
The flexible beam I is provided with a cutout near both fixed parts for the purpose of reducing the reinforcing effect that appears in the torsional direction of the fixed axis 3 of the dllJ and concentrating strain in this part, and the outer surface of the cutout is Surface acoustic wave resonators 6a and 6b whose resonant frequency changes in proportion to the strain applied are attached.The assignment of frequency changes of these surface acoustic wave resonators 6a and 6b, that is, the amount of frequency change ΔJ゛ and the original frequency J The ratio (Δj'
/f) is the strain, 1-the ratio of the straw deformed length Δl to the original length l (ΔI!/'7), PI: h: Ship Shiku;
j"+=100hThe numerator in the case of the gold-burr foil strain gauge is as follows: Δf reaches 1 gQ
, and surface 5.''11 Suminami Co. J Tatsuko 6a.

6bは送1,1¥J7に1友絖されておりこれからは送
(Mアンテリ′8aが出ている。送信アンテナ8aと対
向して設置−1しれた受信アンテナ8bは受信器9に接
続されている。一方送信器7に番よ靜止都父mL箱:(
fij’、10から電圧調整器IIを経て、回転トラン
ス12で、i01転側にR+・接触で伝送される交流電
力を整η1ニジ定電圧化づるコンバータI3が接続され
ている。
6b is connected to the transmitter 1, 1\J7, and from this the transmitter (M antenna '8a) comes out.The receiving antenna 8b, which is installed opposite the transmitting antenna 8a, is connected to the receiver 9. On the other hand, the transmitter 7 is turned on to the silent capital mL box: (
A converter I3 is connected to the rotary transformer 12 via the voltage regulator II from fij', 10, and to the inverting side of i01, which converts the AC power transmitted through the R+ contact to a constant voltage of η1.

なお回k 71SI 4内に設けられる送イぎ器7、送
信アンテナHa、回転トランス12の二次側、コンバー
クI3は2偵心力で飛1Nシないように固定されている
The transmitter 7, the transmitting antenna Ha, the secondary side of the rotary transformer 12, and the converter I3 provided in the rotary transformer 71SI 4 are fixed so as not to fly by 1N with a recoil force of 2.

次に上記のよ5に構成した不発ψJの軸トルク監視装置
の作用について説明する。破6111定軸3り1 にトルりが作用すると、リング4a 、4b間にはトル
りに比例した円周方向の相対的7エずれが生じ、これに
渡橋しであるたわ0梁1がtT”z 3図のようにδだ
丙変形し、最もひずみが集中する部分に結句げられた表
面弾性波共振子6a。
Next, the operation of the shaft torque monitoring device for misfiring ψJ configured as described in 5 above will be explained. When torsion acts on the fixed axis 3 of the 6111, a relative displacement occurs between the rings 4a and 4b in the circumferential direction in proportion to the torsion. tT''z As shown in Figure 3, the surface acoustic wave resonator 6a is deformed by δ and is connected to the part where the strain is most concentrated.

6bの共振周波数が変化する。このとき第3図に示すよ
うにこのたわみ梁Iの変形によってその側面に貼付され
た表面弾性波共振子6a。
The resonance frequency of 6b changes. At this time, as shown in FIG. 3, the surface acoustic wave resonator 6a is attached to the side surface of the flexible beam I by deformation.

6bに作用するひずみの極性が611渚し」、引張りひ
−JみT、後場゛は比軸ひずみPと云う具合に逆となる
ため・−力では共振周波数が商くなるが他方では低くな
る。このトルクに対応した共振周波1は送信器7で増巾
され、アンテナ8a。
Since the polarity of the strain acting on 6b is 611, the tensile strain J is T, and the rear field is the specific axial strain P, so the resonant frequency becomes quotient in the case of - force, but becomes lower in the other case. . The resonance frequency 1 corresponding to this torque is amplified by the transmitter 7 and transmitted to the antenna 8a.

8bを介して受信器9で受信される。受信器9ではそれ
ぞれの共振周波数を混合し、両周彼数の差分だに3−を
とり出す。このため、表面弾性波共振子6 a 、 6
 bの温度変化および、被測定軸30曲げによる共振周
波数の変化分は6a。
8b and is received by receiver 9. The receiver 9 mixes the respective resonance frequencies and extracts the difference 3- between the frequencies of the two frequencies. For this reason, the surface acoustic wave resonators 6a, 6
The change in resonance frequency due to the temperature change b and the bending of the shaft 30 to be measured is 6a.

6bに於てほぼ等しいから杓消される。一方送信器7を
動作さ−はる電力は交流電源10かもの電圧を電ui 
1ilAl 2隘器IIで適歯な1直にして回転トラン
ス12の一次vt++に加え、非接触にて回転側である
二次側に11ら起させ、こ第1をコンバータ13で定1
(1,1」−な偵IJii、に変換し、て連続的に供給
される。
Since they are almost equal in 6b, they are eliminated. On the other hand, the power that operates the transmitter 7 is the voltage of the AC power supply 10.
In addition to the primary VT++ of the rotating transformer 12, the secondary side which is the rotating side is caused to have a constant 1 by the converter 13.
(1, 1''-IJii) and is continuously supplied.

従つ−〔受イ、1晶すで書「)れる周波数はトルクのみ
に対応しCいるので、これを読みとれは被測定’hil
 3に作用しているトルクが商い精度で連続的に付られ
るようになる。
Accordingly, the frequency indicated by ``C'' corresponds only to torque, so reading this corresponds to the frequency being measured.
The torque acting on 3 is applied continuously with precision.

尚本発明は上hシ:実施例に111(定されるものでは
なく、たわみ梁の形状を表面弾性波共振子を貼り伺しす
る部分にυ・1みが集中するように、くりぬき形状を円
形その他にしたり、あるいはU形淘に1−るなと、その
吸上を変更しない範囲で種桶変形して実施できるもので
ある。
In addition, the present invention is described in Example 111 (not limited to the above), but the shape of the flexible beam is hollowed out so that only υ・1 is concentrated in the part where the surface acoustic wave resonator is pasted. The seed vat can be modified to a circular shape or other shape, or to a U-shaped one, as long as the suction is not changed.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は駆動11i11にその軸線
に2日って申出の4戻れを検出するプこめのたわみ梁を
取り旬日−ると共にこのたわみ梁の菱形を受は易い相異
なる位置に一同の表面51i’−t、I: 7w共振子
を設け、前記駆!++#軸の軸トルクにより前記たわみ
梁の受けるひ1゛みの極性が逆極性になることを利用し
て両表面’j’l ’Fi= e共振子の共振周波数に
トルクに対応する同波数差が生ずるのをオリ用してこの
共振周波数差を検出し、これよりトルクを迎j定゛Jる
J、5に(7たので、センタとして表面弾性波共振子を
用いていることがらひ−jみゲージ、テレメータ方式に
比べ少なくとも分解nにが10倍?t < 、t L−
C、トルク信号が周波鹸で1むられるから、デジタル回
路による信号処理が容易であり、従一つ゛C1高精度の
軸トルク測定が容易に行える他、共振周波数は充分H’
t4B <選べるから共振周波数の映出出力を無線で送
出する場合にそのまま搬送波として使えるため送信器回
路は111〕素でよ(従来のテレメータ送(+3器より
小型にでき、また、たわみ梁は測定対象の駆動軸に対し
湘脱bJ能であるから等価試験により校正Jることが容
易であるなど、t、1.1分解能で簡便な軸トルク監視
装置が提供できる。
As explained above, the present invention includes a flexible beam on the axis of the drive unit 11i11 that detects the four return of the offer, and the rhombic shape of this flexible beam is placed at different positions that are easy to receive. The same surfaces 51i'-t, I: 7w resonators are provided, and the drive! ++Using the fact that the polarity of the force received by the flexible beam becomes opposite due to the axial torque of the # axis, the resonant frequency of both surfaces 'j'l'Fi= e is the same wave number corresponding to the torque as the resonant frequency of the resonator. This resonant frequency difference is detected by using the difference that occurs, and from this it is determined that the torque is constant. -j gauge, at least 10 times the resolution n compared to the telemeter method?t < , t L-
C. Since the torque signal is divided by one frequency, it is easy to process the signal using a digital circuit, and it is easy to measure shaft torque with high accuracy.
t4B <Since you can choose, the transmitter circuit can be used as a carrier wave when transmitting the projection output of the resonant frequency wirelessly, so the transmitter circuit is simple (111). It is possible to provide a simple shaft torque monitoring device with a resolution of t, 1.1, which is easy to calibrate through an equivalence test because it has a high degree of decoupling ability for the target drive shaft.

【図面の簡単な説明】[Brief explanation of the drawing]

柁1図、第2図は本発明α)−・実施例を示す概要格成
図、第3凶目捩れ変ルの1□−こ明図である。
Figures 1 and 2 are a schematic diagram showing an embodiment of the present invention α), and a 1□-illustration diagram of the third evil eye torsion variation.

Claims (1)

【特許請求の範囲】[Claims] 測定対象駆動軸にそのIItl線に泪って軸の捩れを検
出するためのたわみ梁を取り伺けると共に測定対象駆動
軸の叛れによりこのたわみ梁における互いに逆極性のひ
ずみ変形を受は易い位置に一対の表面弾性波共振子を設
け、且つこれら表面弾性波共振子の共振周波数信号を受
けて両信号の差の周波数を得る手段を設けて成り、この
周波数差より前記測定対象駆動軸1の+lqi+ )ル
クを611]定することを特徴とする軸トルク監視装置
A flexible beam for detecting torsion of the shaft can be obtained by bending its IItl line to the drive shaft to be measured, and a position where it is easy to receive strain deformation of opposite polarity in this flexible beam due to the deviation of the drive shaft to be measured. A pair of surface acoustic wave resonators are provided in the surface acoustic wave resonator, and a means is provided for receiving the resonance frequency signals of these surface acoustic wave resonators to obtain a frequency difference between the two signals. +lqi+) torque 611].
JP17184882A 1982-09-30 1982-09-30 Output torque monitoring device Pending JPS5960332A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17184882A JPS5960332A (en) 1982-09-30 1982-09-30 Output torque monitoring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17184882A JPS5960332A (en) 1982-09-30 1982-09-30 Output torque monitoring device

Publications (1)

Publication Number Publication Date
JPS5960332A true JPS5960332A (en) 1984-04-06

Family

ID=15930888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17184882A Pending JPS5960332A (en) 1982-09-30 1982-09-30 Output torque monitoring device

Country Status (1)

Country Link
JP (1) JPS5960332A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991013832A2 (en) * 1990-03-03 1991-09-19 Anthony Lonsdale Method and apparatus for measuring strain
GB2387911A (en) * 2002-04-24 2003-10-29 Transense Technologies Plc Mounting saddle for strain sensor measuring torque in circular shafts
EP1709419A2 (en) * 2003-12-30 2006-10-11 Nexense Ltd. Method and apparatus for measuring force particularly torque
US7343804B2 (en) 2005-11-14 2008-03-18 Honeywell International Inc. Wireless acoustic wave sensor system for use in vehicle applications
US7380464B2 (en) 2005-12-08 2008-06-03 Honeywell International Inc. Out-of-plain strain elimination acoustic wave torque sensor
GB2508186A (en) * 2012-11-22 2014-05-28 Transense Technologies Plc Surface acoustic wave sensor arrangement.
CN113237592A (en) * 2021-05-28 2021-08-10 麦格纳动力总成(江西)有限公司 Rotating shaft torque testing system

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991013832A2 (en) * 1990-03-03 1991-09-19 Anthony Lonsdale Method and apparatus for measuring strain
US5585571A (en) * 1990-03-03 1996-12-17 Lonsdale; Anthony Method and apparatus for measuring strain
GB2387911A (en) * 2002-04-24 2003-10-29 Transense Technologies Plc Mounting saddle for strain sensor measuring torque in circular shafts
EP1709419A2 (en) * 2003-12-30 2006-10-11 Nexense Ltd. Method and apparatus for measuring force particularly torque
EP1709419A4 (en) * 2003-12-30 2007-10-03 Nexense Ltd Method and apparatus for measuring force particularly torque
US7343804B2 (en) 2005-11-14 2008-03-18 Honeywell International Inc. Wireless acoustic wave sensor system for use in vehicle applications
US7380464B2 (en) 2005-12-08 2008-06-03 Honeywell International Inc. Out-of-plain strain elimination acoustic wave torque sensor
GB2508186A (en) * 2012-11-22 2014-05-28 Transense Technologies Plc Surface acoustic wave sensor arrangement.
WO2014080221A2 (en) * 2012-11-22 2014-05-30 Transense Technologies Plc Saw sensor arrangements
WO2014080221A3 (en) * 2012-11-22 2014-08-07 Transense Technologies Plc Saw sensor arrangements
US9885622B2 (en) 2012-11-22 2018-02-06 Transense Technologies, Plc Saw sensor arrangements
EP2923188B1 (en) * 2012-11-22 2021-01-06 Transense Technologies PLC Saw sensor arrangements
CN113237592A (en) * 2021-05-28 2021-08-10 麦格纳动力总成(江西)有限公司 Rotating shaft torque testing system
CN113237592B (en) * 2021-05-28 2023-04-28 麦格纳动力总成(江西)有限公司 Rotation shaft torque testing system

Similar Documents

Publication Publication Date Title
EP0518900B1 (en) Method and apparatus for dynamic torque measurement
US7886620B2 (en) Method and apparatus for measuring force particularly torque
US2683247A (en) Space reference device
US4754652A (en) Apparatus for measuring torque
JPH07280674A (en) Deformation measuring device for measuring torque of cylindrical shaft
JPS63157025A (en) Method and device for measuring torque
JPS5960332A (en) Output torque monitoring device
WO2006018607A1 (en) Torque measurement within a powertrain
US5675095A (en) Rotational torque sensor
CA1266901A (en) Shaft misalighment monitoring
SU1337664A1 (en) Low-frequency section of noncontact strain-measuring system
JPH04372830A (en) Optical torque meter
SU1434281A1 (en) Torque-measuring device
SU151076A1 (en) Dynamometer for measuring torque on rotating shafts
SU1756776A1 (en) Method and device for measuring axial force and torque of a ship screw propeller
SU1682837A1 (en) Torque measuring unit
JPH06229853A (en) High-rigidity torque converter
SU1749734A1 (en) Differential pressure gage
SU165561A1 (en) VIBRATION-FREQUENCY METER OF THE TORQUE AND AXIAL FORCE
SU690340A1 (en) Method and apparatus for calibration of centrifugal torque meters
US1205935A (en) Dynamometer.
JPS58174855A (en) Angular velocity detector
SU724934A1 (en) Torsional vibration measuring device
SU616537A1 (en) Mill roll
SU1439436A1 (en) Method of checking ball bearing units