JPS5960088A - Variable delivery volume vane pump - Google Patents

Variable delivery volume vane pump

Info

Publication number
JPS5960088A
JPS5960088A JP17281682A JP17281682A JPS5960088A JP S5960088 A JPS5960088 A JP S5960088A JP 17281682 A JP17281682 A JP 17281682A JP 17281682 A JP17281682 A JP 17281682A JP S5960088 A JPS5960088 A JP S5960088A
Authority
JP
Japan
Prior art keywords
pressure
pump
valve
oil
surge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17281682A
Other languages
Japanese (ja)
Other versions
JPS622156B2 (en
Inventor
Tomio Daigo
富男 大后
Tomoaki Matsumoto
松本 奉昭
Noboru Hirokawa
広川 昇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nachi Fujikoshi Corp
Original Assignee
Nachi Fujikoshi Corp
Fujikoshi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nachi Fujikoshi Corp, Fujikoshi KK filed Critical Nachi Fujikoshi Corp
Priority to JP17281682A priority Critical patent/JPS5960088A/en
Publication of JPS5960088A publication Critical patent/JPS5960088A/en
Publication of JPS622156B2 publication Critical patent/JPS622156B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/18Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber
    • F04C14/22Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber by changing the eccentricity between cooperating members

Abstract

PURPOSE:To prevent generation of surging by a method wherein the excess pressure oil in the subpressure chamber of a sub piston, whose amount is corresponding to the delay of the response of a variable mechanism which generates a surge pressure, is escaped into a tank through a surge absorbing valve arranged in relation with the pump. CONSTITUTION:For instance, in case a cylinder is stopped suddenly at the end of the stroke thereof, the surge pressure is generated in the pump and the control pressure of the pressure chamber 23 of a main piston 4 shows a similar peak pressure. When the surge pressure of the control pressure has become larger than a set pressure for a spring 108, the poppet 107 of the surge absorbing valve A moves to the right as shown in the diagram and the control pressure of the sub pressure chamber 22 escapes to a tank port T. According to this operation, the surge pressure, exceeding a pump pressure corresponding to the set pressure, is removed. Accordingly, the best surge absorbing capacity may be maintained at all times in spite of the set pressure of the pump.

Description

【発明の詳細な説明】 本発明は圧力補償形可変吐出量ベーンポンプの改良に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to improvements in pressure compensated variable displacement vane pumps.

かかる可変吐出量ベーンポンプは低圧時に大容量そして
高圧時即ちテッドヘッド圧力時に小容量のポンプ吐出量
を有するように、自己吐出圧が予め設定した圧力寸で上
昇した時にポンプ吐出量可変装置を作動させてポンプ吐
出量を小さくする。r、うにさnている。
Such a variable discharge volume vane pump operates a pump discharge variable device when the self-discharge pressure rises to a preset pressure level so that the pump discharge volume is large at low pressure and small at high pressure, that is, at ted head pressure. to reduce the pump discharge amount. r, there are sea urchins.

この構造の可変吐出量ベーンポンプを使用した油圧回路
7は・定吐出量ボ′プとIJ IJへ7 、z“ブとを
組合わせた油圧回路に比較して、リリーフバルブサージ
圧力が吸収さnないために、可変吐出量ベーンポンプ内
部で、例えばアクチュら エータが急停止した時寸たは弁が急に閉じ=fP′n−
た時などにサージ圧力が発生し易い。かがるサージ圧力
は普通可変吐行量ベーンポンプの設定圧力ff1Jちテ
ッドベッド圧力の15倍〜3倍位といわnており、例え
はデッドヘッド圧力が最高70’PI’/cl+に設定
される時はサージ圧力が200すJ’/、Aにも達する
ことがあり、このためポンプの摺動面や各部分は過大な
負荷を受けて、ポンプの寿命を急速に低下させ、その上
にポンプと関連配置さnた油圧回路中のサージ圧力が作
用する弁およびアクチュエータ等の機器の寿命の低下を
させる。またこのサージ圧力は上記ポンプおよび機器の
構成部材に過大な歪を発生させてそnらポンプおよび機
器の性能低下をもたらした。
The hydraulic circuit 7 using a variable discharge vane pump with this structure has the ability to absorb relief valve surge pressure, compared to a hydraulic circuit that combines a constant discharge volume valve and IJ to IJ 7 and z" valves. For example, when the actuator suddenly stops or the valve suddenly closes inside the variable discharge vane pump,
Surge pressure is likely to occur when The surge pressure that occurs is usually about 15 to 3 times the set pressure of the variable displacement vane pump, ff1J, and the ted bed pressure.For example, the dead head pressure is set to a maximum of 70'PI'/cl+. At times, the surge pressure can reach as much as 200 J'/A, and as a result, the sliding surfaces and other parts of the pump are subjected to excessive loads, rapidly reducing the life of the pump. Surge pressures in associated hydraulic circuits can shorten the lifespan of equipment such as valves and actuators. Moreover, this surge pressure caused excessive strain in the constituent members of the pump and equipment, resulting in a decrease in the performance of the pump and equipment.

か刀)る可変吐出量ベーンポンプのサージ圧力を吸収す
るために、例えば可変吐出量ベーンポンプにIJ I7
−フ弁を設置して、ポンプ吐出圧力の一部をリリーフす
ることが提案さnている。また、例えば不出願人が出願
中で未公開の特願昭56−103624号公報で開示す
るJ、うに、副ピストンの副圧力室i 1J IJ−ン
弁に直接連通させて、この副圧力室のサージ圧力発生を
防ぐことにまり、ポンプのサージ圧力を吸収する方法が
提案さnている。しかしながら、こわらのいうnの場合
にも、ポンプ設定圧力を変えるときは谷IJ IJ−7
弁の設定圧力も変える必要があり、そうしないとポンプ
の設定圧力を低くした時はサージ圧力が発生し、逆に設
定圧力を高くした時はポンプ吐出量の一部がリリーフ弁
よりタンクに逃げ、吐出量および馬力損失と油温上昇の
原因とも々る。このため取扱いが面倒である上に、リリ
ーフ弁のヌプリングが大きくなけnばならず、寸た弁が
開きにくいなど問題があった。さらにサージ圧力の吸収
方法としス て、例えば可変吐出量ベーンポンプの吐5油と連通可能
にさf′したアキュムレーターを設置、またσかかるア
キュムレーターとリリーフ弁とを組合わせて設置するこ
とも提案さnている。しかしながらアキュムレーターは
高価であるばかりか、油圧回路の流量および圧力に対応
してアキュムレーターの容量を変えねばならず、丑た調
整などの取扱いも困難であるなどの欠点があった。
In order to absorb the surge pressure of the variable displacement vane pump, for example, IJ I7 is added to the variable displacement vane pump.
- It has been proposed to install a valve to relieve part of the pump discharge pressure. In addition, for example, the auxiliary pressure chamber i 1 J IJ- is connected directly to the auxiliary pressure chamber i 1J IJ- valve of the auxiliary piston, which is disclosed in Japanese Patent Application No. 103624/1989, which is being filed and unpublished by the applicant. In order to prevent the generation of surge pressure, methods have been proposed to absorb the surge pressure of the pump. However, even in the case of stiffness n, when changing the pump setting pressure, the valley IJ IJ-7
It is also necessary to change the set pressure of the valve; otherwise, when the set pressure of the pump is lowered, a surge pressure will occur, and conversely, when the set pressure is set higher, part of the pump discharge volume will escape from the relief valve to the tank. This is said to be the cause of a loss in displacement and horsepower, as well as an increase in oil temperature. For this reason, it is troublesome to handle, and the relief valve's null ring must be large, which poses problems such as the small valve being difficult to open. Furthermore, as a method for absorbing surge pressure, it is also proposed to install an accumulator with f' that can communicate with the discharge oil of a variable displacement vane pump, or to install a combination of an accumulator with σ and a relief valve. I'm here. However, the accumulator is not only expensive, but also has drawbacks such as the capacity of the accumulator must be changed in accordance with the flow rate and pressure of the hydraulic circuit, and it is difficult to handle such adjustments.

本発明の目的は、設定圧力即ちデッドヘッド圧力が変っ
ても調整の必要がないような、可変吐出量ベーンポンプ
のサージ圧力を除去したポンプ全提供することを目的と
する。
SUMMARY OF THE INVENTION It is an object of the present invention to provide a variable displacement vane pump that eliminates surge pressure and does not require adjustment even if the set pressure or deadhead pressure changes.

本発明の別の目的は圧力補償形可変吐出量ベーンポンプ
にサージ圧力全発生させる可変機構の応答遅nに相当す
る量の余剰の副ピストンの副圧力室の圧油をポンプと関
連配置したサージ吸収弁を介してタンクへ逃がし、サー
ジ圧力を発生させないようにした可変吐出量ポンプを提
供することにある。
Another object of the present invention is to absorb excess pressure oil in the auxiliary pressure chamber of the auxiliary piston in an amount corresponding to the response delay n of the variable mechanism that generates the full surge pressure in a pressure-compensated variable discharge vane pump. An object of the present invention is to provide a variable discharge amount pump which discharges water to a tank via a valve and prevents the generation of surge pressure.

本発明の上記した目的およびその他の目的、および利点
とは、ベーンポンプのローターとリングとの偏心量を小
さくする方向にリンクを押圧する主ピストンと、ポンプ
の吐出油を主ピストンの圧力室に圧力コンペンセーフを
弁して導く油路と、前記圧力室の圧油を績りを介して導
く第2油路と、主ピストン反対側にあって偏心量を大き
くする方向に押圧する副ピストンと、前記ポンプの吐出
圧油を副ピストンの副圧力室に導く第3油路と、を有す
る可変吐出量ベーンポンプにおいて、前記圧力室の圧油
が導かnた小ピストン、小ピストンによって開閉さする
弁装置、前記副圧力室の制御圧油を前記弁装置に導くバ
イパス油路、および前記弁装置“ηが開か才′1.たと
き前記制御圧油を弁装置からタンクに導くじレン油路か
らなるサージ吸収弁全関連配置したことを特徴とする可
変吐出量ベーンポンプによって達成することができる。
The above-mentioned and other objects and advantages of the present invention include a main piston that presses a link in a direction that reduces the amount of eccentricity between the rotor and ring of a vane pump, and a main piston that presses a link in a direction that reduces the amount of eccentricity between the rotor and ring of a vane pump, and a pressure chamber that pumps discharged oil from the pump into a pressure chamber of the main piston. an oil passage that guides the compen safe by valve, a second oil passage that guides the pressure oil in the pressure chamber through the passage, and an auxiliary piston that is located on the opposite side of the main piston and presses in a direction to increase the amount of eccentricity. a third oil passage for guiding discharge pressure oil of the pump to a sub-pressure chamber of a sub-piston; a small piston to which the pressure oil of the pressure chamber is guided; and a valve device opened and closed by the small piston. , a bypass oil passage for guiding the control pressure oil in the auxiliary pressure chamber to the valve device, and a bypass oil passage for guiding the control pressure oil from the valve device to the tank when the valve device “η” is opened. This can be achieved by a variable displacement vane pump characterized by a surge absorbing valve all associated with the arrangement.

前記圧力室の圧油の圧力は圧力コンペンセータで絞らn
ることと、絞りを適当に選択することによって、ポンプ
の設定圧力を変えても、fff7ち同じポンプで設定圧
力(デッドヘッド圧力〕が上下しても、丑たは最高圧力
が異るポンプ間において設定圧力が異っても、はぼ例え
ば20 KyfAol〜3゜すj/dといった比較的狭
い範囲の王力域に保つことができる。このため、ポンプ
の設定圧力即ちデッドヘッド圧力が変えても、サージ吸
収弁の圧力設定を変える必要がなく、従って追加的調整
を必要とせずに効率的にサージ圧力を除去することがで
きる。
The pressure of the pressure oil in the pressure chamber is throttled by a pressure compensator.
By properly selecting the orifice, even if the set pressure of the pump is changed, fff7 Even if the set pressure (dead head pressure) of the same pump increases or decreases, it will not work between pumps with different maximum pressures. Even if the set pressure differs, the power can be maintained within a relatively narrow range of, for example, 20 KyfAol to 3°Sj/d.For this reason, even if the set pressure of the pump, that is, the deadhead pressure, changes, There is no need to change the pressure setting of the surge absorption valve, and therefore surge pressure can be efficiently removed without the need for additional adjustments.

前記サージ圧吸収弁はポンプ内IThはポンプ外に配置
してもよいが、好葦しくに配管を簡単にし・装置全小型
化するために、前記油路と前記バイパス油路とを連通し
てもよい。ポンプ容量が大きく、→ノーーン圧力の発生
全防止するために多量の余剰のポンプ圧油を逃す必要が
あるときは、好lしくに、前記バイパス油路に、前記弁
装置に裏って作動さてしるリリーフ弁を弁じてもよい。
Although the surge pressure absorption valve may be placed inside the pump and outside the pump, it is preferable to connect the oil passage and the bypass oil passage in order to simplify the piping and downsize the entire device. Good too. When the pump capacity is large and it is necessary to release a large amount of excess pump pressure oil in order to completely prevent the generation of noon pressure, it is preferable to operate the pump in the bypass oil passage behind the valve device. A safety relief valve may be activated.

葦1こ、サージ吸収性能t、J:、p効果的にするため
に、前記圧力室の圧油は復方向にのみ絞ら扛る絞り弁を
介して前記小ピストンに導かnるJ、うにし、弁装置の
復帰音紋9弁によって若干遅らせポンプ圧油のタンクへ
の逃し量を大きくしてもよい。
In order to make the surge absorption performance effective, the pressure oil in the pressure chamber is guided to the small piston through a throttle valve that throttles only in the backward direction. , the amount of pump pressure oil released into the tank may be increased by slightly delaying the return sound pattern 9 valve of the valve device.

前記弁装置はポペット弁が好丑しいが、スプール弁であ
ってもよい。さらに好丑しくに、弁装置は開度を制限す
るストッパを設けることができる。
The valve device is preferably a poppet valve, but may also be a spool valve. More preferably, the valve device can be provided with a stopper that limits the degree of opening.

本発明の可変吐出量ベーンポンプが油圧回路に使用さn
たとき、例えば実際の使用においてシリンダーが急激に
ストロークエンドしたとする。そうすると、可変ポンプ
の可変機構が作用し、ポンプの吐出量はゼロに近い素置
で、即ちテッドヘッド吐出貴重で減少させらnる。従来
の公知の可変吐出量ベーンポンプでは、このとき可変機
構の応答遅nにより、第1図で実線で示すようなポンプ
圧力CP)にサージ圧力(Ps )が発生する。そして
若干の振動的波動をくり返した後にテッドヘッド圧力C
PDH)に安定する。このとき主ピストンの制御圧力(
PP)もポンプ圧力の)とほぼ同等なサーブ 圧力(キ
P8)2発生させ、その後ポンプのテッドヘッド圧力(
PDH)に対応した制御圧力であるデッドヘッド時の圧
力CPPDH)に安定する。本発明では、この制御圧力
(PPi:小ピストンに作用させて弁装置を開いて副ピ
ストンの副圧力室の制御圧油の一部全タンクに逃すこと
によってサージ圧力発生の原因となる副圧力室の異常圧
を防止し、リングの移即1をスムーズに行ない、サージ
圧力全除去したものとなった。より正確に言えば、サー
ジ吸収弁が作動する設定圧力は制御圧力(Pp)の上記
デッドヘッド圧力(PpDH,)より若干高い圧力CP
PR)に設定さn、こnに対応したポンプ圧力HPRに
相当する。そしてポンプ圧力(P)におけるこのFRI
こえるサージ圧力(Pりが除去さ扛、制御圧力(Pつに
おいて、このPPRkこえるサージ圧力が除去さnる。
The variable displacement vane pump of the present invention is used in a hydraulic circuit.
For example, suppose that the cylinder suddenly reaches the end of its stroke in actual use. Then, the variable mechanism of the variable pump comes into play, and the discharge amount of the pump is reduced to near zero, that is, the ted head discharge volume is reduced. In the conventional known variable discharge amount vane pump, a surge pressure (Ps) is generated in the pump pressure (CP) as shown by the solid line in FIG. 1 due to the response delay n of the variable mechanism. After repeating some vibrational waves, the ted head pressure C
PDH). At this time, the control pressure of the main piston (
PP) also generates a serve pressure (ki P8)2 which is almost the same as the pump pressure (), and then the pump's ted head pressure (
The dead head pressure CPPDH) is the control pressure corresponding to the deadhead pressure CPPDH). In the present invention, this control pressure (PPi) is applied to the small piston to open the valve device and release a part of the control pressure oil in the sub-pressure chamber of the sub-piston to the entire tank, which causes the surge pressure to be generated in the sub-pressure chamber. This prevents abnormal pressure from occurring, allows ring transfer 1 to occur smoothly, and completely eliminates surge pressure.To be more precise, the set pressure at which the surge absorption valve operates is equal to the dead pressure of the control pressure (Pp). Pressure CP slightly higher than head pressure (PpDH,)
PR) is set to n, which corresponds to the pump pressure HPR corresponding to n. and this FRI at pump pressure (P)
At the control pressure (P), the surge pressure exceeding PPRk is removed.

その上に、副ピストンの副圧力室における異常圧力発生
が防止するように応答性そのものを高めたものである。
In addition, the responsiveness itself is improved to prevent abnormal pressure from occurring in the sub-pressure chamber of the sub-piston.

不発明は例示的な好適諸冥施例について、図面を参照し
てエリ詳細に説明さnるであろう。第2図に示す可変吐
出量べ〜ンボンプのサージ吸収弁(A)を除いた部分は
、特開昭57−5585号公報に開示さnた可変吐出量
ベーンポンプであって、この部分自体は本発明を構成し
ないので、詳細((説明しない。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Exemplary preferred embodiments of the invention will be described in detail with reference to the drawings. The part of the variable discharge vane pump shown in FIG. 2 excluding the surge absorption valve (A) is the variable discharge vane pump disclosed in Japanese Patent Application Laid-Open No. 57-5585, and this part itself is not included in this book. Since it does not constitute an invention, details (( will not be explained.

第2図は工作機械や産業装置などに使用される液田式O
J変吐出量ベーンポンプを副ピストンおよび主ピストン
の谷軸心を通る垂直な面で切断した断面図で示す。第3
図は第2図ケ油圧回路図で概略的に示したものである。
Figure 2 shows the liquid field type O used in machine tools and industrial equipment.
The J-variable displacement vane pump is shown in a cross-sectional view taken along a perpendicular plane passing through the valley axes of the sub-piston and the main piston. Third
The diagram is schematically shown in FIG. 2 (hydraulic circuit diagram).

ポンプ不休(1)内には・放射方向に出入自在に複数個
のベーン(9)全挿入したロータ(8)と、ロータ(8
)を囲む可変装會であるリング(7)と、図示しない側
板がロータ(8)とリング(7〕の両側に具えらnてい
る。副ピストン(5)は一端をリング(7)に当接し、
ロータ(8)の中心(01〕に向けてリング(7)全押
圧するようスプリング(10に、J:り他端が付勢さn
ている。さらに副ピストン(5)ヲ作用させる副圧力室
(ハ)にはポンプ吐出圧が油路tA(ポンプ吐出油室(
1つと連通ずる図示しない油路を含む〕によって絞り弁
体(ト)を介して導かn、副ピストン(5)のポンプ吐
出aEk受ける面(5′)に作用して副ピストン(5)
ヲ第2図、第3図でみて右方向にリング(7)を押圧す
るよう付勢するようにさnている。ロータ(s)i中心
(01〕に関して副ピストン(5)の反対側に副ビス!
・ン(5)とほぼ同軸上に主ピストン(4)が設けら几
ている。主ピストン(4)は一端ケリング(7)K当接
し他端(グ吐出量調整ねじ(13に当接可能にさ扛てい
る。吐出量調整ねじ(13は主ピストン(4)を介して
リンク(7)の最大偏心量を限定するものである。
Inside the pump (1) are a plurality of vanes (9) that can freely move in and out in the radial direction, a fully inserted rotor (8), and a rotor (8).
) and side plates (not shown) are provided on both sides of the rotor (8) and the ring (7).The sub piston (5) has one end in contact with the ring (7). contact,
The other end of the spring (10, J) is biased to fully press the ring (7) towards the center (01) of the rotor (8)
ing. Furthermore, the pump discharge pressure is applied to the sub-pressure chamber (c) which acts on the sub-piston (5) in the oil passage tA (pump discharge oil chamber (
(includes an oil passage (not shown) that communicates with one of the oil passages) through the throttle valve body (g), and acts on the surface (5') that receives the pump discharge aEk of the sub-piston (5), thereby causing the sub-piston (5) to
The ring (7) is biased to be pressed in the right direction as viewed in FIGS. 2 and 3. A secondary screw on the opposite side of the secondary piston (5) with respect to the rotor (s) i center (01)!
- A main piston (4) is provided almost coaxially with the piston (5). The main piston (4) is in contact with the Kelling (7) K at one end, and the other end (the main piston (4) is in contact with a discharge rate adjustment screw (13).The discharge rate adjustment screw (13) is linked via the main piston (4). (7) The maximum amount of eccentricity is limited.

主ピストン(4)全作動させる圧力室(ハ)にはポンプ
吐出油が油路C])(ポンプ吐出油室OQと連通ずる図
示しない油路を含む〕を通り、圧力コンペンセータ(3
)ヲ介して4力)nており、ポンプ吐出圧を受ける面(
4′〕に作用して主ピストン(4)を第2図、第3図で
みて左方向にリング(7)を抑圧するよう付勢するよう
にされている。圧力コンペンセータ(3)は、主ピスト
ン(4)に作用する油圧力を制御するものであって、ス
フ−リンク(1υで閉止方向に付勢さ2%1cスプール
(6)と、圧力調整ねじ(lΦと、ボー!・(1ηIA
 C’19)とを有し、ポンプ吐出圧が圧力調整ねしく
1ゆで設定さnた圧力以下ではスプール(6)の受圧面
が油路Q1)と連通するボー) (17) ’eボート
θ印に対して閉止している。
The main piston (4) is fully operated in the pressure chamber (c) through which the pump discharge oil passes through the oil passage C]) (including an oil passage (not shown) that communicates with the pump discharge oil chamber OQ) and passes through the pressure compensator (3).
) through 4 forces), and the surface receiving the pump discharge pressure (
4'] to urge the main piston (4) to the left in FIGS. 2 and 3 so as to suppress the ring (7). The pressure compensator (3) controls the hydraulic pressure acting on the main piston (4), and is connected to the Suf-Link (2% 1c spool (6) biased in the closing direction by 1υ) and the pressure adjustment screw ( lΦ and Bo! (1ηIA
C'19), and when the pump discharge pressure is lower than the pressure set by pressure adjustment, the pressure receiving surface of the spool (6) communicates with the oil passage Q1) (17) 'e boat θ Closed against the mark.

そしてポンプ吐出圧が前記設定圧力以上になると圧油は
ボー+4ηからボートQ樽へ流扛圧力室(ハ)に流入す
るようにさtている。ボー) (19)はタンク即ちポ
ンプドレン部と連通したドレンボートである。
When the pump discharge pressure exceeds the set pressure, the pressure oil flows from Bo+4η to the boat Q barrel into the pressure chamber (c). (19) is a drain boat that communicates with the tank or pump drain section.

本実施例では主ピストン(4)のほぼ中央に圧力室ひい
ては面(41ツに一端が開口し他端は絞りα2を介して
タンク(ポンプドレン部)と連通ずる第2油路(ハ)が
軸方向に内股さ彊、でいる。第2図、第3図の状態はポ
ンプが停止した位置でもあり、リング(7)はスプリン
グ(10により副ピストン(5)を介して右方向に押さ
nてお9、リング(7)の中心とロ一り(8)ノ中心(
e)は吐出調整ねじα1で設定される最大偏心量だけ偏
心している。い葦ロータ(8)が矢印方向c反時計方向
うに回転さnると、ポンプは下側の吸入室■0から図示
しないボートを介して油を吸入し、上側の吐出室0Qか
ら吐出圧の〕のポンプ吐出油を図示しないホートラ介し
て吐出する。このポンプ吐出圧の)は第3油路彌絞り弁
体□□□を通って副ピストて圧力コンベンセータ(3)
のスプール(6)の受圧面に作用する。
In this embodiment, there is a second oil passage (c) located approximately in the center of the main piston (4), which has one end open on the pressure chamber and thus the surface (41), and the other end communicates with the tank (pump drain part) via the aperture α2. The state shown in Figures 2 and 3 is also the position where the pump is stopped, and the ring (7) is pushed to the right by the spring (10) via the sub-piston (5). 9. Center of ring (7) and center of ring (8) (
e) is eccentric by the maximum eccentricity set by the discharge adjustment screw α1. When the reed rotor (8) rotates counterclockwise in the direction of the arrow C, the pump sucks oil from the lower suction chamber 0 through a boat (not shown), and increases the discharge pressure from the upper discharge chamber 0Q. ] The pump discharge oil is discharged through a holer (not shown). This pump discharge pressure) is passed through the third oil passage throttle valve body □□□ to the sub piston and then to the pressure convencator (3).
It acts on the pressure receiving surface of the spool (6).

この受圧面に作用するポンプ吐出圧(P)による油圧力
が圧力調整ねじ0ゆで設定さnたスプリング←優のばね
力より小である時は、リング(7)は副圧力室(ハ)に
作用する油圧力とスプリング00のばね力の合力とが作
用する副ピストン(5)により右方向に向けて押し付け
らn、ポンプは吐出量調整ねじalで設定さnた最大偏
心量に応じた吐出量を吐出する。
When the hydraulic pressure due to the pump discharge pressure (P) acting on this pressure-receiving surface is smaller than the spring force set by the pressure adjusting screw 0, the ring (7) moves into the sub-pressure chamber (c). The sub-piston (5) on which the combined force of the hydraulic pressure and the spring force of spring 00 acts pushes the pump toward the right, and the pump discharges according to the maximum eccentricity set with the discharge adjustment screw al. Dispense amount.

ポンプ吐出圧の)が高くなり、スプール(6)の受圧面
に作用する油圧力がスプリングaυのばね力よりも犬と
なると・スプール(6)は右方向に移動せしめらnる。
When the pump discharge pressure) becomes high and the hydraulic pressure acting on the pressure receiving surface of the spool (6) becomes stronger than the spring force of the spring aυ, the spool (6) is moved to the right.

するとポンプ吐出油は油路(ハ)からボートαηα印ヲ
通り主ピストン(4)の圧力室(財)に入る。この圧油
は一部絞り0りと第2油路(財)を通り出口(ハ)から
図示しないポンプドレン部(ひいてはタンク〕に逃j%
るが、絞りα2で絞らnた圧油は圧力室@の圧力を高め
面(41〕に作用する。ポンプ吐出I″E(”)が高く
なるにつnてスプール(6)の右方向移動が増すことに
なり、圧力室(ハ)の制御圧力(Pp)が上昇しつい(
(は主ピストン(4)の面(41)に作用する制御圧力
(Pp)による油圧力が副ピストン(5)の面(51)
に作用する油圧力とスプリング(10との合力に打ち勝
ち、リング(7)全左方向に移動せしむる。このためポ
ンプの吐出量は減少し、ポンプ吐出圧(P)があらかじ
め圧力調整ねじ(14で設定さnた圧力即ちデッドヘッ
ド圧力(PD)I) 丑で上昇するともはや圧油を吐出
しないデッドヘッドの状態となり、リング(7)の中心
(02〕はロータ(8)の中心(O19とほぼ等しくな
る。
Then, the pump discharge oil passes through the boat αηα mark from the oil passage (c) and enters the pressure chamber (damage) of the main piston (4). A portion of this pressure oil passes through the second oil passage (goods) and escapes from the outlet (c) to the pump drain section (and by extension, the tank) (not shown).
However, the pressure oil throttled by the throttle α2 increases the pressure in the pressure chamber and acts on the surface (41). As the pump discharge I″E (″) increases, the spool (6) moves to the right. increases, and the control pressure (Pp) of the pressure chamber (c) increases (
(The hydraulic pressure due to the control pressure (Pp) acting on the surface (41) of the main piston (4) is applied to the surface (51) of the secondary piston (5).
The ring (7) overcomes the resultant force of the hydraulic pressure acting on the spring (10) and moves completely to the left.As a result, the discharge amount of the pump decreases, and the pump discharge pressure (P) is adjusted in advance by adjusting the pressure adjustment screw ( When the pressure set in step 14 (i.e., dead head pressure (PD) I) rises, it becomes a dead head state where pressure oil is no longer discharged, and the center of the ring (7) (02) is the center of the rotor (8) (O19). is almost equal to

次にポンプ吐出圧(”)が上記設定圧力CPDH)以下
に低下すると、スプール(6)は左方に移動し、圧力室
(ハ)へ流入する圧油の量が減少し、結果として圧力室
(ハ)の圧力が低下することになり、リング(7)は副
ピストン(5)に作用する油圧力とスプリングθ0との
合力KJ:って右方向へ移動させらnる。このためポン
プ吐出量は増大しポンプは第2図、第3図の状態に戻っ
てゆく。
Next, when the pump discharge pressure ('') decreases below the set pressure CPDH), the spool (6) moves to the left and the amount of pressure oil flowing into the pressure chamber (c) decreases, resulting in The pressure in (c) decreases, and the ring (7) is not moved to the right by the resultant force KJ: of the hydraulic pressure acting on the sub-piston (5) and the spring θ0.As a result, the pump discharge The amount increases and the pump returns to the state shown in FIGS. 2 and 3.

第2図、第3図で示す(A)は本発明によるサージ吸収
弁全全体として示す。サージ吸収弁(A)は、圧カコン
ペンセーク(3)と1体(加工を容易にするため別体と
してもよい)もののハウジング(101)と、ハウジン
グ(101)に穿設さt′した中空孔内に摺動可能に嵌
合さnた小ピストン(102)と、小ピストン(102
)の油室(110)に主ピストン(4)の圧力室(ハ)
の制御圧油を導く油路(103)と、小ピストン(10
2)と小径連結ロンド(105)で連結さ、f′したボ
ペ スト(107)を有する弁装置(B)と、を含む。
(A) shown in FIGS. 2 and 3 shows the entire surge absorption valve according to the present invention. The surge absorption valve (A) consists of a housing (101) that is integrated with the pressure compensator (3) (they may be separate units for ease of processing), and a hollow hole t' drilled in the housing (101). a small piston (102) slidably fitted into the small piston (102);
) of the main piston (4) in the oil chamber (110) of the main piston (4).
an oil passage (103) that guides control pressure oil, and a small piston (10
2) and a valve device (B) connected by a small diameter connecting rod (105) and having an f'-shaped boppest (107).

弁装置CB)はボペツl−(107) 2ポンプ吐出圧
ボート(P)に対してクンクホート(T)k閉止するよ
うにスプリング(]08)で抑圧さn、このスズリンク
の強さはねじ(]、 1.1 )で調節可能にさnてい
る。実施例では ボペッ1(107)の開度を制限する
ストソバ(109)が設けら肚ているが、こnはスプリ
ング(108)のスプリング力に比べてサージ圧力によ
る小ピストン(102)を押圧する力が非常に大きい時
にボペツ) (107)が行過ぎて作動不能などの不具
合を起さぬように安全のため、および油圧回路のサージ
圧力の大きさを与で最大開度の調整を任急に行うために
設けらnている。吐出油ホード(P)には副ピストン(
5)の副圧力室@の制御圧油が図示しないポンプ内部通
路を含むバイパス油路(104)で導か汎、タンクボ−
,l−(T)は図示しないポンプ内部通路を含むドレン
油路(10すに、J:クポンプのドレン通路に連通さg
でいる。
The valve device CB) is suppressed by a spring (]08) so as to close the pump discharge pressure boat (P) against the pump discharge pressure boat (P), and the strength of this tin link is determined by the screw ( ], 1.1). In the embodiment, a stroke bar (109) is provided to limit the opening degree of the boppet 1 (107), but this presses the small piston (102) due to surge pressure compared to the spring force of the spring (108). When the force is extremely large, it is necessary to adjust the maximum opening degree in order to prevent problems such as inoperability due to excessive force (107), and to take into account the magnitude of the surge pressure in the hydraulic circuit. There are a number of ways to do this. The discharge oil hoard (P) has an auxiliary piston (
5) The control pressure oil in the auxiliary pressure chamber @ is guided through a bypass oil passage (104) including a pump internal passage (not shown).
, l-(T) is a drain oil passage (10) including a pump internal passage (not shown);
I'm here.

主ピストン(4)の油室(イ)の制御圧力(PP) n
圧力コンペンセータ(3)を介してポンプ吐出油を導き
、かつ絞90の全ポンプ定格吐出圧力、流量に応じて適
切に選択するコトに、に!ll、通常20 ’yf/c
d −a 。
Control pressure (PP) of oil chamber (a) of main piston (4) n
In order to guide the pump discharge oil through the pressure compensator (3) and to appropriately select it according to the total pump rated discharge pressure and flow rate of the throttle 90! ll, usually 20'yf/c
d-a.

’yfArlといったきわめて狭い範囲内に設定するこ
とができる。そしてこの制御圧力(PP)は設定圧力即
ちテッドヘッド圧力が変っても、葦たに最高圧力が異る
ポンプ間において設定圧力が異っていてもほぼ上記の圧
力域内に保つことができる。ボベツ) (107) ’
i押すスプリング(108)の強さは第1図でさきに説
明したようなデッドヘッド時の圧力(PPD)l)エフ
幾分高い圧力(PPR)に設定さnlこ扛に対応したポ
ンプ吐出圧力は(h)となる。
'yfArl' can be set within an extremely narrow range. This control pressure (PP) can be maintained approximately within the above pressure range even if the set pressure, that is, the ted head pressure changes, or even if the set pressures differ between pumps with different maximum pressures. Bobetsu) (107)'
The strength of the pushing spring (108) is set to the pressure at dead head (PPD) as explained earlier in Figure 1. becomes (h).

ポンプに対しての油圧回路の負荷即ちアクチュエータの
起動停正葦たはバルブの開閉によって加えらnる負荷が
漸増的に増大する時は、ポンプ圧力の)i−j:第1図
のようなサージ圧力(Ps)−i発生することなくデッ
ドヘッド圧力(PD)I) 壕で静的に上昇する。この
ときは制御圧力(PP)も圧力CPPDH) ’!で静
的に上昇する。この時にサージ吸収弁(A)の小ピスト
ン(302)に作用する油圧力もスプリング(108)
の設定圧力CPPR) k超えることがないので、第2
図、第3図で示すように、ポペット(107)は閉じら
nた1寸で、弁装置中)は不作動状態にある。
When the load on the hydraulic circuit to the pump, that is, the load applied by starting/stopping the actuator or opening/closing the valve, increases gradually, the pump pressure (i-j) is as shown in Figure 1. Dead head pressure (PD) I) rises statically in the trench without generating surge pressure (Ps)-i. At this time, the control pressure (PP) is also the pressure CPPDH)'! rises statically. At this time, the hydraulic pressure acting on the small piston (302) of the surge absorption valve (A) is also caused by the spring (108).
The set pressure CPPR) k cannot be exceeded, so the second
As shown in FIG. 3, the poppet (107) is closed and the valve system (in the valve system) is in an inoperative state.

こnに対してポンプ負荷が、例えばシリンダーが急激に
ストロークエスドして停止した場合または升が完全に急
激に閉じらnた時などにおいては、油圧回路内ひいては
ポンプ内部にサージ圧力(PS)が発生する。そうする
と制御圧力(PP)も第1図で説明したように類似した
ピーク圧力を示す。この制御圧力(Pp )のサージ圧
力が設定圧力CPPR)エフ大きくなると、ボベツ) 
(107)は第2図、第3図でみて右方に移動させらn
、吐出圧ボー1− (へ)からタンクボー1− (T)
に向けて副圧力室(ハ)の制御圧油が逃げる。こnによ
って、サージ圧力(PS)は第1図でみて上記圧力CP
PR)に対応したポンプ圧力(PR)をこえる圧力が除
去さnる。制御圧力(PP)がスズリンク(1os)の
設定圧力CPPR) jり小さくなると、ボペツ) (
107)がスプリング(108)に押さγして閉じら扛
るので、副圧力室(ハ)の制御圧油は逃げなくなる。こ
の制御圧力(PI’)は上記のようにほぼ狭い圧力域内
にあるため、従来のすIJ−フバルプを設けてポンプ吐
出圧油金遣す場合に比較して、ポンプ設定圧力部ちデッ
ドヘッド圧力が変るたびに設定圧(PpR) ’i変え
る必要がなく、ポンプ設定圧力に拘りなく、常に最良の
サージ吸収能力を保持することができる。上記において
、サージ圧力が発生すると、絞り弁体■を介して副圧力
室(ハ)にもこのサージ圧力が伝わり、リング(7)が
デッドヘッド状態へ吐出量を減少させる方向に移動する
ことを妨ける方向に副ピストン(5)全作用させる。同
時に主ピストン(4)の圧力室(イ)(′こもサージ圧
力が伝わるために、主ピストン(4)がリング(7)ヲ
副ピストンに向けて押圧するため、副ピストン(5)の
副圧力室の2は上記サージ吸収弁(A)がないときはサ
ージ圧力(Ps)よりさらに高い圧力にさらさnlそこ
で副ピストン(5)はさらにリング(7)を右方に押し
て結果的にさらにサージ圧力を高めるものとなるが、本
発明はかかる状態を防止した。
On the other hand, when the pump load is, for example, when the cylinder suddenly strokes and stops, or when the cell is completely suddenly closed, surge pressure (PS) is generated in the hydraulic circuit and eventually inside the pump. occurs. The control pressure (PP) then exhibits a similar peak pressure as explained in FIG. When the surge pressure of this control pressure (Pp) increases, the set pressure CPPR)
(107) is moved to the right in Figures 2 and 3.
, discharge pressure bow 1- (to) to tank bow 1- (T)
The control pressure oil in the auxiliary pressure chamber (c) escapes towards. Due to this, the surge pressure (PS) becomes the above pressure CP as seen in Figure 1.
Pressures exceeding the pump pressure (PR) corresponding to PR) are removed. When the control pressure (PP) becomes smaller than the set pressure CPPR) of the tin link (1os), the
107) is pushed by the spring (108) and is not closed, so that the control pressure oil in the auxiliary pressure chamber (C) does not escape. Since this control pressure (PI') is within an almost narrow pressure range as mentioned above, compared to the case where a conventional IJ valve is installed and the pump discharge pressure is pumped, the pump set pressure part or dead head pressure is There is no need to change the set pressure (PpR) every time the pump pressure changes, and the best surge absorption capacity can always be maintained regardless of the pump set pressure. In the above, when surge pressure is generated, this surge pressure is also transmitted to the auxiliary pressure chamber (C) via the throttle valve body (3), causing the ring (7) to move in the direction of reducing the discharge amount to a deadhead state. Fully actuate the sub piston (5) in the blocking direction. At the same time, the main piston (4)'s pressure chamber (a) (') is also transmitted with surge pressure, and the main piston (4) presses the ring (7) toward the sub-piston, resulting in the sub-pressure of the sub-piston (5). Chamber 2 is exposed to a pressure even higher than the surge pressure (Ps) when there is no surge absorption valve (A), so the secondary piston (5) further pushes the ring (7) to the right, resulting in even more surge pressure. However, the present invention prevents such a situation.

このように本発明全使用した可変吐出量ベーンポンプは
、スプリング(108)を一度設定丁nば、面倒な調整
を必要とすることなく、常に有効にサージ圧力を除去す
ることができるので、ポンプの寿命を延は丁ことができ
、さらに過大な圧力負荷VC、J:る歪みに起因する機
械精度のR下、性能低下および機器の破損を防止できる
も゛のとなった。
In this way, the variable discharge amount vane pump used in the present invention can effectively remove surge pressure at all times without the need for troublesome adjustments once the spring (108) is set. The service life can be extended, and furthermore, it is possible to prevent performance deterioration and equipment damage under mechanical precision R caused by excessive pressure load VC, J: distortion.

好普しい上記実施例では、ポンプ吐出油を副ピストン(
5)の副圧力室(22に導く第3油路翰に絞り弁体03
0)か介されているがこnげ、サージ吸収弁(A)が開
いて副圧力室(イ)の制御圧油がタンクに逃けたとき、
ポンプから補給さ1%るポンプ吐出油の供給の時間おく
汎をさせて1.J:、p有効に副圧力室32の圧力を下
けるためであり、サージ圧力が比較的に少であるときは
、こ扛を省略してもよい。
In the preferred embodiment described above, the pump discharge oil is transferred to the secondary piston (
5) Throttle valve body 03 is installed in the third oil passage leading to the auxiliary pressure chamber (22).
0) When the surge absorption valve (A) opens and the control pressure oil in the auxiliary pressure chamber (A) escapes to the tank,
1. Let the supply of 1% pump discharge oil replenish from the pump take some time.1. J:, p This is to effectively lower the pressure in the sub-pressure chamber 32, and when the surge pressure is relatively small, this step may be omitted.

第4図は第2図とは異るサージ吸収弁を示し、第5図は
第4図のサージ吸収弁を第2図に示すような可変吐出量
ベーンポンプに応用したときの油圧回路図を示す概略図
である。第2図、第3図と均等な部材は同じ符号で表わ
す。第4図に示す実施例ではポンプ容量が太きくなり、
副圧力室(イ)の制御圧油のIJ IJ−フ量を多くす
る必要がある場合、ポンプ内部寸たに油圧回路内にリリ
ーフ弁(112)を介し、バイパス油路(104)と連
通するリリーフ入口(1,13)に副圧力室(イ)の制
御圧油が導か汎、サージ吸収弁(A)の吐出油ボートの
)は油路(114)でリリーフ油室(月99と連通さn
ている。そして小ピストン(1,02)が作動さn1ポ
ペツト(107)が開かnると、油室(1,19)の圧
力が降下して、リリーフ弁体(11,5)が開き、バイ
パス油路(104)の制御圧油を大量にドレン油路(1
17)に逃すようにさnている。
Fig. 4 shows a surge absorption valve different from Fig. 2, and Fig. 5 shows a hydraulic circuit diagram when the surge absorption valve of Fig. 4 is applied to a variable discharge amount vane pump as shown in Fig. 2. It is a schematic diagram. Components equivalent to those in FIGS. 2 and 3 are designated by the same reference numerals. In the embodiment shown in FIG. 4, the pump capacity is increased,
If it is necessary to increase the amount of control pressure oil in the auxiliary pressure chamber (A), the pump internal dimension is communicated with the bypass oil passage (104) via a relief valve (112) in the hydraulic circuit. The control pressure oil of the auxiliary pressure chamber (A) is guided to the relief inlet (1, 13), and the discharge oil boat of the surge absorption valve (A) is communicated with the relief oil chamber (99) through the oil passage (114). n
ing. Then, when the small piston (1, 02) is operated and the n1 poppet (107) is opened, the pressure in the oil chamber (1, 19) decreases, the relief valve body (11, 5) opens, and the bypass oil passage is opened. A large amount of control pressure oil (104) is supplied to the drain oil path (104).
17).

さらに別の実施例を示’[!6図では、弁装置は小ピス
トン(101)と小径ロンド(105’)によって連結
さf′したスプール(120)を有するスプール弁であ
り、コイルはね(1os’)によってスプール(120
) u吐出油ボートノ)ヲタンクボー+−(T)に対し
て閉止しており、スプール(120)の移動はヌトッパ
(109’)によって制限される。この作動はさきに第
2図、第3図で述べたポペット弁とほぼ同じであり、説
明を省略する。第6図ではさらにサージ吸収性能をエフ
効果的にするために、主ピストン(4)の圧力室(財)
の圧油を小ピストン(101)の油室(110)に導く
油路(1,03)に復方向にのみ絞らnる絞り弁(12
1,、)を介したので、サージ圧力が下がり弁装置即ち
第6図ではスプール(120)がコイルはね(108’
)によって閉じら汎る弁装置の復帰音紋り弁(12] 
)によって若干遅らせ、副圧力室■つの制御圧油のタン
クへのリリーフ量ヲ太きくしである。
Here's another example! In Figure 6, the valve device is a spool valve with a spool (120) connected by a small piston (101) and a small diameter rond (105'), which is connected to the spool (120) by a coil spring (1os').
) The discharge oil boat is closed to the tank boat +- (T), and the movement of the spool (120) is restricted by the nutopper (109'). This operation is almost the same as that of the poppet valve previously described with reference to FIGS. 2 and 3, and the explanation thereof will be omitted. In Figure 6, in order to make the surge absorption performance even more effective, the pressure chamber of the main piston (4) is
A throttle valve (12) is installed in the oil passage (1,03) that leads the pressure oil to the oil chamber (110) of the small piston (101) in the backward direction.
1,, ), the surge pressure decreases and the valve device, that is, the spool (120) in FIG. 6, springs off the coil (108'
) return sound valve (12) of the valve device closed by
), which increases the amount of relief of control pressure oil into the tank from the auxiliary pressure chamber.

なお実施例ではサージ吸収弁(八〕はポンプと一体的に
配置さnているが、ボング外に配属し、ポンプとの間を
配管で連結してもよい。
In the embodiment, the surge absorption valve (8) is arranged integrally with the pump, but it may be arranged outside the bong and connected to the pump by piping.

【図面の簡単な説明】 iff 1図は可変吐出量ベーンポンプの圧力と時fb
’1との関係を示すグラフを示し、第2図は不発明の好
適実施例を示す断面図を示し、第3図t/:r、第2図
1を油圧回路図で概略的に示し、第4図および第5図は
本発明の別の好適実施例を示し、第4図は第2図とは異
るサージ吸収弁を示し、第5図はこのサージ吸収弁を使
用した装置の概略油圧回路図を示し、第6図はさら(C
別の不発明の好適実施例全庁す概略油圧回路図を示す。 A・・・サージ吸収弁  B・・・弁装置3・・・圧力
コンペンセータ 4・・・主ピストン5・・・副ピスト
ン   7・・・1ノング12 ・・・ 絞 リ   
              20 ・・・ 狛532
山路21・・・油 路     22・・・副ピストン
室23・・・圧力室     24・・・第2油路30
・・・絞9弁体   102・・・小ピストン104・
・・バイハスl’[4] 路106・・・ドレン油路1
07・・・ポペット108・・・スプリング108’・
・・コイルはh    1o9.1o9’・・・ヌトッ
パ112・・・リリーフ弁   120 ・・2プール
】21・・・絞り弁 代理人弁理士  河 内 潤 ニ セ 齢□ C rf″1 rh
[Brief explanation of the drawings] if 1 Figure shows the pressure and time fb of the variable discharge vane pump.
Figure 2 shows a cross-sectional view of a preferred embodiment of the invention, Figure 3 shows a schematic diagram of 1 in a hydraulic circuit diagram, 4 and 5 show another preferred embodiment of the present invention, FIG. 4 shows a surge absorption valve different from that in FIG. 2, and FIG. 5 shows a schematic diagram of a device using this surge absorption valve. The hydraulic circuit diagram is shown, and FIG.
FIG. 6 shows a schematic hydraulic circuit diagram of another preferred embodiment; A...Surge absorption valve B...Valve device 3...Pressure compensator 4...Main piston 5...Sub-piston 7...1 Nong 12... Throttle
20... Koma532
Mountain path 21...Oil passage 22...Sub-piston chamber 23...Pressure chamber 24...Second oil passage 30
... Throttle 9 valve body 102 ... Small piston 104.
...Bayhas l'[4] Route 106...Drain oil route 1
07...Poppet 108...Spring 108'
... Coil is h 1o9.1o9' ... Nutoppa 112 ... Relief valve 120 ... 2 pools] 21 ... Throttle valve agent Jun Kawachi Fake age □ C rf″1 rh

Claims (7)

【特許請求の範囲】[Claims] (1)ベーンポンプのローターとリングとの偏心量を小
さくする方向にリンクを押圧する主ピストンと、ポンプ
の吐出圧油を主ピストンの圧力室に王カコンペンセータ
を介して導く油路と、前記圧力室の圧油音紋りを介して
導く第2油路と、主ピストン反対側にあって偏心量を大
きくする方向に押圧する副ピストンと、前記ポンプの吐
出圧油を副ピストンの副圧力室に導く第3油路と、を有
する可変吐出量ベーンポンプにおいて、前記圧力室の圧
油が導か:rした小ピストン、小ピストンによって開閉
さ扛る弁装置、前記副圧力室の制御圧油を前記弁装置に
導くバイパス゛油路、および前記弁装置が開かnたとき
前記制御圧油を弁装置からタンクに導くドレン油路から
なるサージ吸収弁を関連配置したことを特徴とする可変
吐出量ベーンポンプ。
(1) A main piston that presses the link in a direction that reduces the amount of eccentricity between the rotor and the ring of the vane pump, an oil passage that guides the pump's discharge pressure oil to the pressure chamber of the main piston via a pressure compensator, and the pressure A second oil passage that guides the pressure oil through the sound pattern of the chamber, a sub-piston that is located on the opposite side of the main piston and presses in a direction to increase the amount of eccentricity, and a sub-pressure chamber of the sub-piston that directs the pressure oil discharged from the pump. A variable discharge amount vane pump having a third oil passage that leads the pressure oil in the pressure chamber to the pressure chamber. A variable discharge amount vane pump characterized in that a surge absorption valve is arranged in conjunction with a bypass oil passage leading to a valve device, and a drain oil passage guiding the control pressure oil from the valve device to a tank when the valve device is opened.
(2)  前記第3油路は絞り弁体を介さnている特許
請求の範囲第1項記載の可変吐出量ベーンポンプ。
(2) The variable discharge amount vane pump according to claim 1, wherein the third oil passage is provided through a throttle valve element.
(3)  前記油路と前記バイパス油路とは連通さnた
特許請求の範囲第1項記載の可変吐出量ポンプ。
(3) The variable discharge amount pump according to claim 1, wherein the oil passage and the bypass oil passage are in communication with each other.
(4)  前記バイパス油路に前記弁装置によって作動
さnるIJ IJ−7弁を介した特許請求の範囲第1項
記載の可変吐出量ポンプ。
(4) The variable discharge amount pump according to claim 1, wherein the bypass oil passage is provided with an IJ IJ-7 valve operated by the valve device.
(5)  前記圧力室の圧油は復方向にのみ絞らnる絞
り弁を介して前記小ピストンに導かfる特許請求の範囲
xi項記載の可変吐出量ポンプ。
(5) The variable discharge amount pump according to claim xi, wherein the pressure oil in the pressure chamber is guided to the small piston via a throttle valve that throttles only in the backward direction.
(6)  前記弁装置はスプリングによって閉止方向に
付勢さnるポペットを有し、前記小ピストンによって前
記スプリングに抗して前記ポペットが開かする弁である
特許請求の範囲第1項記載の可変吐出量ポンプ。
(6) The variable valve according to claim 1, wherein the valve device has a poppet that is biased in a closing direction by a spring, and the poppet is a valve that is opened by the small piston against the spring. Discharge pump.
(7)  前記弁装置はコイルばねによって閉止方向に
付勢されるスプールヲ有し、前記小ピストンによって前
記コイルばねに抗して前記スグールが開かわるスプール
弁である特許請求の範囲iJ項記載の可変吐出量ポンプ
(7) The variable valve according to claim iJ, wherein the valve device has a spool that is biased in a closing direction by a coil spring, and the spool valve is opened by the small piston against the coil spring. Discharge pump.
JP17281682A 1982-09-30 1982-09-30 Variable delivery volume vane pump Granted JPS5960088A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17281682A JPS5960088A (en) 1982-09-30 1982-09-30 Variable delivery volume vane pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17281682A JPS5960088A (en) 1982-09-30 1982-09-30 Variable delivery volume vane pump

Publications (2)

Publication Number Publication Date
JPS5960088A true JPS5960088A (en) 1984-04-05
JPS622156B2 JPS622156B2 (en) 1987-01-17

Family

ID=15948898

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17281682A Granted JPS5960088A (en) 1982-09-30 1982-09-30 Variable delivery volume vane pump

Country Status (1)

Country Link
JP (1) JPS5960088A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61178588A (en) * 1985-02-01 1986-08-11 マンネスマン・レクロス・ゲーエムベーハー Control valve for variable delivery pump
US7040988B2 (en) 2002-05-29 2006-05-09 Kawasaki Jukogyo Kabushiki Kaisha Compression elastic coupling device
CN105351188A (en) * 2015-11-04 2016-02-24 湖南机油泵股份有限公司 Combination valve type control system of secondary variable displacement vane pump
WO2018163767A1 (en) * 2017-03-10 2018-09-13 マツダ株式会社 Hydraulic pressure suppky device for automatic transmission

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61178588A (en) * 1985-02-01 1986-08-11 マンネスマン・レクロス・ゲーエムベーハー Control valve for variable delivery pump
US7040988B2 (en) 2002-05-29 2006-05-09 Kawasaki Jukogyo Kabushiki Kaisha Compression elastic coupling device
CN105351188A (en) * 2015-11-04 2016-02-24 湖南机油泵股份有限公司 Combination valve type control system of secondary variable displacement vane pump
WO2018163767A1 (en) * 2017-03-10 2018-09-13 マツダ株式会社 Hydraulic pressure suppky device for automatic transmission

Also Published As

Publication number Publication date
JPS622156B2 (en) 1987-01-17

Similar Documents

Publication Publication Date Title
US8033107B2 (en) Hydrostatic drive having volumetric flow equalisation
US6601552B2 (en) Hydraulically controllable globe valve
KR100764119B1 (en) Pilot poppet type relief valve
US20100221126A1 (en) Variable Displacement Variable Pressure Vane Pump System
US2080810A (en) Pump control
CA1040972A (en) Demand compensated hydraulic system with pilot line pressure-maintaining valve
US8459019B2 (en) System and method for pilot-operated high pressure valve
US4307654A (en) Filling and exhaust valve for the control of the hydraulic flow on presses and shears
JPS5960088A (en) Variable delivery volume vane pump
JPS6157474B2 (en)
JP2007506048A (en) Hydraulic control and adjustment system with volume equalization
JP2002089505A (en) Hydraulic circuit
US3431857A (en) Controls for overcenter motor-pump unit
US3588285A (en) Hydraulic pump
US1798435A (en) Regulator for variable-capacity compressors
US3016018A (en) Variable displacement pump
JP3891616B2 (en) Input torque control circuit for variable displacement pump
JPS5960083A (en) Variable delivery volume pump
US3768375A (en) Control apparatus for a hydraulic consumer motor
KR20100015148A (en) Bypass valve operated by hydraulic pressure
JP2815964B2 (en) Relief valve device
JPH1150968A (en) Adjustable hydraulic working machine
CN111492146A (en) Fluid pressure driving device
US823845A (en) Relief device and attachment for compressors.
KR101942638B1 (en) Three-Way Two-Position Anti-surge High Flow Regenerative Valve Assembly