WO2018163767A1 - Hydraulic pressure suppky device for automatic transmission - Google Patents

Hydraulic pressure suppky device for automatic transmission Download PDF

Info

Publication number
WO2018163767A1
WO2018163767A1 PCT/JP2018/005663 JP2018005663W WO2018163767A1 WO 2018163767 A1 WO2018163767 A1 WO 2018163767A1 JP 2018005663 W JP2018005663 W JP 2018005663W WO 2018163767 A1 WO2018163767 A1 WO 2018163767A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
pressure
control chamber
hydraulic pressure
line
Prior art date
Application number
PCT/JP2018/005663
Other languages
French (fr)
Japanese (ja)
Inventor
弘一 松浦
竜洋 南
昌宏 鍛冶
貴士 石山
Original Assignee
マツダ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マツダ株式会社 filed Critical マツダ株式会社
Publication of WO2018163767A1 publication Critical patent/WO2018163767A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/18Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber
    • F04C14/22Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations characterised by varying the volume of the working chamber by changing the eccentricity between cooperating members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing

Definitions

  • the present invention relates to a hydraulic pressure supply device for an automatic transmission.
  • a variable displacement oil pump is used as a hydraulic supply source of a hydraulic circuit for controlling frictional engagement elements (clutch, brake, etc.) of an automatic transmission mounted on a vehicle. May be used.
  • the discharge pressure of the oil pump is the original pressure of oil supplied to each part of the automatic transmission as line pressure.
  • An oil pump disclosed in Patent Documents 1 and 2 includes a drive shaft that is rotationally driven, a rotor that is coupled to the drive shaft, a cam ring that is disposed radially outside the rotor, and an inner peripheral surface of the cam ring. And a plurality of vanes which are provided so as to be capable of advancing and retreating in the radial direction with respect to the rotor and defining a pump chamber.
  • the cam ring is pressed by a piston inserted into the cylinder so that the amount of eccentricity of the cam ring with respect to the drive shaft (rotor) changes. That is, the amount of eccentricity changes according to the hydraulic pressure of the control chamber in the cylinder, and the larger the amount of eccentricity, the higher the discharge pressure of the oil pump.
  • Oil discharged from the oil pump is supplied to a hydraulic circuit.
  • the oil is also supplied to the control chamber in the cylinder via a regulator valve. That is, the hydraulic pressure output from the output portion of the regulator valve is fed back to the control chamber.
  • the cam ring is disposed in the housing, and a control chamber in which hydraulic pressure is fed back from the regulator valve is formed between the housing and the cam ring.
  • the regulator valve transmits the feedback hydraulic pressure (feedback hydraulic pressure) according to the discharge pressure of the oil pump, the control chamber of the oil pump (the control chamber in the cylinder, the housing and the cam ring). Including the control room between). In this way, the regulator valve adjusts the discharge pressure of the oil pump to a predetermined pressure.
  • the line pressure is controlled to a preset target value (for example, a constant value)
  • a preset target value for example, a constant value
  • the discharge pressure of the oil pump decreases.
  • the feedback hydraulic pressure is decreased, so that the eccentric amount of the cam ring is increased.
  • the discharge pressure of the oil pump increases.
  • the discharge pressure (line pressure) of the oil pump is adjusted to a predetermined pressure (the target value).
  • the target value of the line pressure itself may be increased and changed depending on the output of the engine, etc.
  • High responsiveness is required to raise the actual line pressure to the target value.
  • the present invention has been made in view of such a point, and an object of the present invention is to improve the response of a rise in line pressure in a hydraulic pressure supply device for an automatic transmission having a variable displacement oil pump. And the stabilization of the line pressure.
  • a variable displacement oil pump for generating hydraulic pressure used for controlling the automatic transmission, and a discharge of the oil pump, for a hydraulic pressure supply device for an automatic transmission are provided.
  • a regulator valve that adjusts the pressure to a predetermined pressure; and a feedback oil passage that guides the hydraulic pressure output from the output portion of the regulator valve to the control chamber of the oil pump.
  • the oil pump increases the hydraulic pressure in the control chamber.
  • the discharge pressure is reduced, and the discharge pressure is increased by lowering the hydraulic pressure in the control chamber, and is provided in the feedback oil passage to discharge oil from the control chamber.
  • the oil supply restriction device for restricting the oil supply is further provided.
  • the oil pressure in the control chamber of the oil pump is increased to decrease the line pressure toward the predetermined pressure.
  • the oil supply restriction device restricts the oil supply to the control chamber, so that the line pressure is gradually reduced.
  • the feedback oil passage includes a first oil passage portion and a second oil passage portion connected in parallel to each other, and the oil supply restriction device includes the first oil passage portion.
  • An orifice provided in one oil passage and a check valve provided in the second oil passage and restricting the passage of oil in a direction from the output portion toward the control chamber.
  • oil is supplied from the feedback oil path to the output side of the orifice and the check valve in the feedback oil path through a throttle.
  • a drain oil passage for draining may be connected.
  • the regulator valve discharges oil discharged from the control chamber to the feedback oil passage in a state where output of hydraulic pressure from the output unit is stopped. It may be configured to have a drain port that drains and regulates the drain of oil in the feedback oil passage when the hydraulic pressure is output from the output unit.
  • the oil supply restriction device is a relief valve provided in the feedback oil passage, and is closed when oil pressure is output from the output portion of the regulator valve, In a state where the output of hydraulic pressure from the output unit is stopped, the relief valve is opened, and the oil discharged from the control chamber to the feedback oil passage is provided in the feedback oil passage, and the relief valve opened is provided.
  • a drain oil passage for draining is connected, and the oil supply restriction device further includes an orifice provided on the output portion side of a connection portion with the drain oil passage in the feedback oil passage.
  • the feedback oil passage is provided with the oil supply restriction device for restricting the oil supply to the control chamber as compared with the oil discharged from the control chamber of the oil pump.
  • FIG. 2 is a view corresponding to FIG. 1 showing a state in which oil is discharged from the control chamber of the oil pump in the first embodiment.
  • FIG. 2 is a view corresponding to FIG. 1 illustrating a state in which oil supply to the control chamber of the oil pump is performed in the first embodiment.
  • It is a circuit diagram which shows a part of hydraulic pressure supply apparatus which concerns on a 1st comparative example. It is a figure which shows a part of hydraulic pressure supply apparatus which concerns on a 2nd comparative example. It is a graph which shows transition of the line pressure at the time of gear shifting of the automatic transmission in the 1st comparative example.
  • FIG. 11 is a view corresponding to FIG. 10 illustrating a state in which oil is discharged from the control chamber of the oil pump in the second embodiment.
  • FIG. 11 is a view corresponding to FIG. 10 illustrating a state in which oil supply to the control chamber of the oil pump is performed in the second embodiment.
  • FIG. 14 is a view corresponding to FIG. 13 showing a state where oil is discharged from the control chamber of the oil pump in the third embodiment.
  • FIG. 14 is a view corresponding to FIG. 13 illustrating a state in which oil supply to the control chamber of the oil pump is performed in the third embodiment.
  • FIG. 1 shows a hydraulic pressure supply device 10 for an automatic transmission according to a first embodiment.
  • the automatic transmission and hydraulic pressure supply device 10 is mounted on a vehicle.
  • the hydraulic pressure supply device 10 includes a variable displacement oil pump 20 as a hydraulic pressure supply source that generates hydraulic pressure used for controlling the automatic transmission, and a regulator valve 40 that adjusts the discharge pressure of the oil pump 20 to a predetermined pressure. It has.
  • the discharge pressure of the oil pump 20 becomes the original pressure of oil supplied to each part of the automatic transmission as a line pressure.
  • the oil pump 20 is disposed on the outer side in the radial direction of the rotor 26, a housing 22 having a ring-shaped cross section that accommodates components described below, a drive shaft 24 that is rotationally driven, a rotor 26 that is coupled to the drive shaft 24, and the rotor 26. And a plurality of vanes 34 provided so as to protrude radially outward from the outer peripheral surface of the rotor 26 and to contact the inner peripheral surface of the cam ring 30.
  • the housing 22 has a suction port 22a for sucking oil into the housing 22 from the oil pan 70, and a discharge port 22b for discharging oil boosted by the oil pump 20 to the outside of the housing 22.
  • the drive shaft 24 is rotationally driven by a crankshaft of an engine mounted on the vehicle.
  • the drive shaft 24 is driven to rotate counterclockwise in FIG. 1 while the engine is being driven.
  • the rotor 26 is disposed on the axis of the drive shaft 24 and rotates with the drive shaft 24 around the axis.
  • the cam ring 30 is rotatably supported by a support shaft 31 parallel to the drive shaft 24.
  • a spring 32 is interposed between the outer peripheral surface of the cam ring 30 and the inner peripheral surface of the housing 22.
  • the cam ring 30 is biased by a spring 32 so as to be eccentric with respect to the axis of the rotor 26 (axis of the drive shaft 24). That is, the biasing direction of the spring 32 with respect to the cam ring 30 is a direction in which the eccentric amount of the cam ring 30 with respect to the axis of the rotor 26 is increased (leftward in FIG. 1).
  • the plurality of vanes 34 are arranged radially in the circumferential direction of the rotor 26 and spaced from each other as viewed from the axial direction of the rotor 26. Each vane 34 is held by the rotor 26 in a state in which the movement of the rotor 26 in the circumferential direction is restricted, and thus rotates around the axis of the drive shaft 24 together with the rotor 26.
  • each vane 34 is held by the rotor 26 so that it can advance and retreat in the radial direction with respect to the rotor 26.
  • Each vane 34 is configured such that the end of each vane 34 on the outer side in the radial direction of the rotor 26 slides on the inner peripheral surface of the cam ring 30 while the rotor 26 rotates.
  • a plurality of pump chambers 35 surrounded by the outer peripheral surface of the rotor 26, the inner peripheral surface of the cam ring 30, and a pair of adjacent vanes 34 are formed. Since the cam ring 30 is eccentric with respect to the axial center of the rotor 26, the radial interval between the outer peripheral surface of the rotor 26 and the inner peripheral surface of the cam ring 30 varies depending on the position in the circumferential direction. Therefore, there is a volume difference between the plurality of pump chambers 35, and the volume of each pump chamber 35 changes according to the rotation of the rotor 26.
  • each pump chamber 35 communicates with the suction port 22a when the volume is relatively small, and then discharge port when the volume is decreased after increasing once. It communicates with 22b. Thereby, the oil sucked into the pump chamber 35 from the suction port 22a is discharged from the discharge port 22b in a state where the pressure is increased by driving the oil pump 20.
  • a control chamber 36 to which hydraulic pressure for controlling the discharge pressure of the oil pump 20 is supplied is provided.
  • the control chamber 36 is disposed on the opposite side of the spring 32 with the cam ring 30 interposed therebetween.
  • an opposing chamber 38 that faces the control chamber 36 is provided between the outer peripheral surface of the cam ring 30 and the inner peripheral surface of the housing 22.
  • a spring 32 is disposed in the facing chamber 38.
  • the control chamber 36 and the facing chamber 38 are partitioned by, for example, a resin seal member 37.
  • An oil drain passage 64 for draining the oil that has flowed into the counter chamber 38 is connected to the counter chamber 38.
  • the oil pump 20 is configured such that the discharge pressure of the oil pump 20 decreases as the hydraulic pressure in the control chamber 36 increases, while the discharge pressure increases as the hydraulic pressure in the control chamber 36 decreases. ing. Thereby, the discharge pressure of the oil pump 20 can be adjusted by controlling the hydraulic pressure in the control chamber 36.
  • the discharge port 22b of the oil pump 20 is connected via a main line 51 to a hydraulic circuit 2 that controls the supply and discharge of oil to and from the engagement hydraulic chamber of the friction engagement element of the automatic transmission.
  • An accumulator 71 is connected to the main line 51, thereby suppressing oil vibration in the main line 51.
  • a subline 52 is connected to a portion of the main line 51 on the downstream side (hydraulic circuit 2 side) of the accumulator 71.
  • This subline 52 is an oil passage that guides the discharge pressure of the oil pump 20 to the regulator valve 40.
  • the subline 52 is branched into a first input line 53, a first control line 54, a second input line 55, and a second control line 56 at the downstream side (regulator valve 40 side) of the subline 52.
  • the regulator valve 40 includes a spool 42 that is movable in the axial direction, and a return spring 44 that biases the spool 42 toward one axial side of the spool 42 (the right side in FIG. 1).
  • the regulator valve 40 includes a first control port A1, a second control port A2, a first input port B1, a second input port B2, an output port C1 (an output portion of the regulator valve 40), and an emergency drain port C2. .
  • the hydraulic pressure input to the first control port A1 presses the spool 42 toward the side opposite to the urging force of the return spring 44 (left side in FIG. 1).
  • the hydraulic pressure input to the second control port A2 presses the spool 42 toward the same side as the urging force of the return spring 44 (the right side in FIG. 1).
  • the first control port A1 is connected to the first control line 54.
  • the second control port A2 is connected to the second control line 56.
  • the first input port B1 is connected to the first input line 53.
  • the second input port B2 is connected to the second input line 55.
  • the first control line 54 is provided with an orifice 72.
  • oil is supplied to the first control port A1 in a state where the flow rate is limited by the orifice 72. Further, a hydraulic pressure corresponding to the discharge pressure (line pressure) of the oil pump 20 is input to the first control port A1.
  • the second control line 56 is provided with a pressure reducing valve 73, a hydraulic control valve 74, and an orifice 75. Accordingly, the hydraulic pressure supplied to the second control line 56 is controlled by the hydraulic control valve 74 so as to have a preset pressure after being reduced by the pressure reducing valve 73.
  • the oil hydraulically controlled by the hydraulic control valve 74 is supplied to the second control port A2 in a state where the flow rate is limited by the orifice 75.
  • an electromagnetic valve capable of controlling the output of the hydraulic control valve 74 (the hydraulic pressure input to the second control port A2) according to a control signal to the hydraulic control valve 74 is used. It is done.
  • the hydraulic pressure (the set pressure) input to the second control port A2 is set to a value such that the line pressure becomes a preset target value (the predetermined pressure).
  • the axial position of the spool 42 of the regulator valve 40 is determined by the input hydraulic pressure (line pressure) to the first control port A1, the input hydraulic pressure (the set pressure) to the second control port A2, and the biasing force of the return spring 44. It depends on the balance.
  • the emergency drain port C ⁇ b> 2 is connected to the oil pan 70 through the emergency drain line 62.
  • the emergency drain port C2 communicates with the second input port B2 in a state where the second input port B2 is opened.
  • the second input port B2 is opened when the line pressure rises abnormally.
  • excess oil is drained via the second input port B2, the emergency drain port C2, and the emergency drain line 62, so that the first control port A1, the second control port A2, and the first input port are drained. It is possible to restrict excessive oil from flowing into B1. As a result, the reliability of the line pressure control by the regulator valve 40 is ensured.
  • the output port C1 is connected to the control chamber 36 of the oil pump 20 via a feedback line 57 as a feedback oil path.
  • the output port C1 communicates with the first input port B1 when the first input port B1 is open.
  • the line pressure input to the first input port B1 is output as it is from the output port C1, and the hydraulic pressure output from the output port C1 passes through the feedback line 57.
  • the control chamber 36 of the oil pump 20 Through the control chamber 36 of the oil pump 20.
  • the feedback line 57 is provided with an oil supply restriction device 80 that restricts oil supply to the control chamber 36 as compared with oil discharged from the control chamber 36.
  • the feedback line 57 has a first oil passage 58 and a second oil passage 59 connected in parallel to each other.
  • the oil supply restriction device 80 includes an orifice 81 provided in the first oil passage portion 58 and a check valve 82 provided in the second oil passage portion 59.
  • the orifice 81 causes the direction from the output port C1 side to the control chamber 36 side (oil supply direction to the control chamber 36) and the direction from the control chamber 36 side to the output port C1 side (control).
  • the oil flow rate is limited in any of the directions of oil draining from the chamber 36).
  • the check valve 82 is a valve that regulates the passage of oil in the direction from the output port C1 side toward the control chamber 36 (oil supply direction to the control chamber 36).
  • the second oil passage portion 59 allows passage of oil only in the direction from the control chamber 36 side to the output port C1 side (oil drain direction from the control chamber 36).
  • the oil supply to the control chamber 36 is performed by the orifice 81 of the first oil passage portion 58 and the check valve 82 of the second oil passage portion 59 compared to the oil discharged from the control chamber 36. Is limited.
  • a drain line 60 is connected to the portion of the feedback line 57 closer to the output port C1 than the orifice 81 and the check valve 82.
  • the drain line 60 is connected to a portion of the feedback line 57 that is closer to the output port C ⁇ b> 1 than the parallel portion of the first oil passage portion 58 and the second oil passage portion 59. As a result, the oil flowing through the feedback line 57 is drained via the drain line 60.
  • the drain line 60 is provided with an orifice 76 (throttle).
  • the orifice 76 restricts the flow rate of oil drained through the drain line 60.
  • the drain line 60 is a drain oil passage that drains oil from the feedback line 57 through the throttle.
  • the output of the hydraulic control valve 74 (the set pressure) is controlled to a constant pressure. Therefore, in the regulator valve 40, since a constant hydraulic pressure is input to the second control port A2, the movement of the spool 42 in the axial direction is performed exclusively according to the hydraulic pressure input to the first control port A1. It will be.
  • the hydraulic pressure input to the first control port A1 varies according to the variation in the discharge pressure of the oil pump 20, that is, the variation in the line pressure. Therefore, the spool 42 of the regulator valve 40 moves to the left in FIG. 1 when the line pressure increases, and moves to the right in FIG. 1 when the line pressure decreases.
  • the first input port B1 of the regulator valve 40 is switched between the closed state shown in FIG. 2 and the open state shown in FIG. That is, the first input port B1 is closed when the line pressure decreases with respect to the predetermined pressure, and is open when the line pressure increases with respect to the predetermined pressure.
  • the oil flowing from the control chamber 36 side toward the output port C1 side passes through the orifice 81.
  • the oil flowing from the control chamber 36 side toward the output port C1 side passes through the check valve 82 that is opened. Accordingly, a larger amount of oil flows in the second oil passage portion 59 than in the first oil passage portion 58.
  • the oil that has flowed through the first oil passage 58 and the second oil passage 59 in this way (oil drained from the control chamber 36) is drained via the drain line 60. Thereby, smooth oil drainage from the control chamber 36 is promoted. Therefore, the hydraulic pressure in the control chamber 36 can be quickly reduced, and the discharge pressure (line pressure) of the oil pump 20 can be quickly increased.
  • the oil flowing through the feedback line 57 from the output port C1 side toward the control chamber 36 side is restricted from passing through the second oil passage portion 59 by the check valve 82, and flows through the first oil passage portion 58 by the orifice 81. Is limited. Thereby, the oil supply to the control chamber 36 is restricted as compared with the oil drained from the control chamber. Therefore, the hydraulic pressure in the control chamber 36 can be gradually increased, and the discharge pressure (line pressure) of the oil pump 20 can be gradually decreased.
  • the surplus portion flowing through the feedback line 57 is guided to the drain line 60 and drained.
  • the amount of oil supplied to the control chamber 36 through the first oil passage portion 58 of the feedback line 57 can be stabilized, and as a result, the influence of the output fluctuation of the regulator valve 40 on the hydraulic pressure of the control chamber 36 can be reduced. Can be reduced.
  • the drain amount from the feedback line 57 to the drain line 60 is limited by the orifice 76, so that excessive drain is suppressed. Therefore, by supplying an appropriate amount of oil from the feedback line 57 to the control chamber 36, it is possible to prevent the oil supply to the control chamber 36 from being significantly delayed or insufficient.
  • the hydraulic pressure supply device according to the first comparative example is different from the above-described hydraulic pressure supply device 10 in the feedback line 57 in the parallel portion of the first oil passage portion 58 and the second oil passage portion 59 and the oil supply.
  • the configuration is the same as that of the first embodiment except that the limiting device 80 is not provided.
  • the hydraulic pressure supply device according to the second comparative example also includes a parallel portion of the first oil path portion 58 and the second oil path portion 59 in the feedback line 57 and the oil supply restriction device with respect to the hydraulic pressure supply device 10.
  • the difference is that 80 is not provided.
  • the feedback line 57 is provided with an orifice 81 similar to the orifice 81 of the first oil passage portion 58 in the first embodiment.
  • the graph shown in FIG. 5A shows that in the first comparative example, the shift of the automatic transmission is performed when the vehicle travels in which the line pressure target value Po (see the alternate long and short dash line) is controlled to a predetermined pressure P1 (here, a constant value). Shows the transition of the actual line pressure P when.
  • the graph shown in FIG. 5B shows that in the second comparative example, the shift of the automatic transmission is performed when the vehicle travels in which the line pressure target value Po (see the alternate long and short dash line) is controlled to a predetermined pressure P1 (here, a constant value). Shows the transition of the actual line pressure P when.
  • the shift of the automatic transmission is changed when the vehicle travels in which the line pressure target value Po (see the alternate long and short dash line) is controlled to a predetermined pressure P1 (here, constant value).
  • P1 a predetermined pressure
  • the line pressure P thus rapidly increased exceeds the predetermined pressure P1, thereby opening the first input port B1 of the regulator valve 40 and supplying oil to the control chamber 36 via the feedback line 57.
  • the oil supply restriction device 80 is not provided in the feedback line 57, the oil supply to the control chamber 36 is also performed quickly without being restricted, as is the case of the oil drained from the control chamber 36. For this reason, the line pressure P drops rapidly and again falls below the predetermined pressure P1, and the oil is discharged from the control chamber 36 again.
  • the line pressure P exceeds the predetermined pressure P1
  • the oil supply to the control chamber 36 is switched. Since this oil supply is restricted by the oil supply restriction device 80, the line pressure P gradually decreases. As a result, the hunting of the line pressure P is suppressed, and the line pressure P can be quickly stabilized at the predetermined pressure P1 or a value close to the predetermined pressure P1.
  • the line pressure P that has decreased with the start of shifting can be quickly increased and stabilized to a desired pressure (predetermined pressure P1).
  • the slip of the frictional engagement element to be fastened can be suppressed. Therefore, the accuracy of the shift control of the automatic transmission can be improved.
  • the graph of FIG. 7A shows the actual line pressure P when the line pressure target value Po is increased from a predetermined pressure P1 (hereinafter referred to as a first predetermined pressure P1) to a second predetermined pressure P2 in the first comparative example. Shows the transition.
  • the graph of FIG. 7B shows the transition of the actual line pressure P when the target value Po of the line pressure is increased from the first predetermined pressure P1 to the second predetermined pressure P2 in the second comparative example.
  • the graph of FIG. 8 shows a transition of the actual line pressure P when the target value Po of the line pressure is increased from the first predetermined pressure P1 to the second predetermined pressure P2 in the first embodiment.
  • the line pressure P thus rapidly increased exceeds the second predetermined pressure P2, whereby the first input port B1 of the regulator valve 40 is opened, and oil is supplied to the control chamber 36 via the feedback line 57. .
  • the oil supply to the control chamber 36 is also performed quickly without being restricted, similarly to the oil drain from the control chamber 36, so the line pressure P drops rapidly and the second predetermined pressure P2 is set again. The oil is discharged from the control chamber 36 again.
  • the line pressure P becomes lower than the second predetermined pressure P2, which is the new target value Po, due to the increase of the target value Po (time t2).
  • the check valve 82 in the oil supply restriction device 80 is opened, and quick oil is discharged via the feedback line 57 and the drain line 60. Is performed, the line pressure P quickly rises to the second predetermined pressure P2.
  • the line pressure P can be quickly increased as the target value Po increases, and can be stabilized at a desired pressure (second predetermined pressure P2). High-precision hydraulic control according to the desired line pressure can be performed.
  • FIGS. 9A and 9B show an example of a specific configuration of the oil supply restriction device 80 according to the first embodiment. Note that the configuration of the hydraulic pressure supply device 10 other than the oil supply restriction device 80 is as described above, and therefore, the description thereof is omitted here and the illustration thereof is omitted in FIGS. 9A and 9B.
  • the oil supply restriction device 80 is configured in a unit shape and provided in the feedback line 57.
  • the oil supply restriction device 80 is an integrated unit of an orifice 81 and a check valve 82.
  • the oil supply restriction device 80 includes a housing 151 provided on the feedback line 57.
  • the housing 151 includes a first communication port 152 that communicates an internal space (an oil passage space S1 described later) of the housing 151 with an oil passage portion of the feedback line 57 closer to the output port C1 than the housing 151, and a housing.
  • a second communication port 153 that communicates with the oil passage portion closer to the control chamber 36 than 151 is provided.
  • the first communication port 152 and the second communication port 153 are arranged to face each other in the length direction of the feedback line 57.
  • An oil passage space S ⁇ b> 1 that connects the first communication port 152 and the second communication port 153 is formed in the housing 151.
  • a check valve 82 is accommodated in the housing 151 so as to be slidable in a direction opposite to the first communication port 152 and the second communication port 153.
  • the check valve 82 has a bottomed cylindrical valve body 181 that extends in the length direction of the feedback line 57 and is opened to the first communication port 152 side.
  • the valve body 181 has a hole 183 that extends in the length direction of the feedback line 57 and opens to the first communication port 152 side, and a bottom 184 that closes the opening of the hole 183 on the second communication port 153 side. Is provided.
  • a spring 185 that urges the valve body 181 toward the second communication port 153 is accommodated in the hole 183.
  • a plurality of grooves 186 extending in the axial direction of the valve body 181 are provided on the outer peripheral surface of the valve body 181 at intervals in the circumferential direction. Each groove portion 186 always communicates with the first communication port 152 and can communicate with the second communication port 153 according to the position of the valve body 181 in the axial direction.
  • each groove portion 186 communicates with the second communication port 153, an oil passage portion that extends from the first communication port 152 to the second communication port 153 through the groove portion 186 is formed in the oil passage space S1 in the housing 151. Is done.
  • This oil passage portion corresponds to the aforementioned second oil passage portion 59 (see FIGS. 1 to 3).
  • the orifice 81 is provided so as to penetrate the bottom 184 of the valve body 181, whereby the orifice 81 and the valve body 181 (check valve 82) are integrated.
  • the orifice 81 has a smaller diameter than the first communication port 152, the second communication port 153, and the hole 183.
  • the orifice 81 is provided at the bottom 184 so that the internal space of the hole 183 communicates with the second communication port 153.
  • an oil passage portion is formed from the first communication port 152 to the second communication port 153 via the internal space of the hole 183 and the orifice 81.
  • This oil passage portion corresponds to the aforementioned first oil passage portion 58 (see FIGS. 1 to 3).
  • the orifice 81 and the groove 186 are in communication with both the first communication port 152 and the second communication port 153.
  • the oil flowing from the second communication port 153 side to the first communication port 152 side can be passed through both the orifice 81 and the groove portion 186. Therefore, the oil discharged from the control chamber 36 to the feedback line 57 is quickly drained through the drain line 60 without being restricted by the oil supply restriction device 80 (see FIG. 2).
  • the two oil passage portions corresponding to the first oil passage portion 58 and the second oil passage portion 59 can be formed in the oil passage space S ⁇ b> 1 in the housing 151. it can.
  • the parallel portion of the first oil passage 58 and the second oil passage 59 in the feedback line 57 can be made compact. .
  • the configuration of the above-described oil supply restriction device 80 is merely an example, and the specific configuration of the oil supply restriction device 80 in the first embodiment is not particularly limited.
  • (Second Embodiment) 10 to 12 show a hydraulic pressure supply device 110 for an automatic transmission according to a second embodiment.
  • the automatic transmission and hydraulic pressure supply device 110 in the second embodiment are also mounted on the vehicle. 10 to 12, the same portions as those in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted.
  • a drain port D1 is provided in the regulator valve 40 in place of the drain line 60 in the first embodiment.
  • the configuration of the feedback line 57 is the same as that of the first embodiment except that the drain line 60 is not connected, and the configuration of the regulator valve 40 is that the drain port D1 is added. Except for this, it is the same as the first embodiment.
  • a drain line 120 is connected to the drain port D1, and the oil in the feedback line 57 is drained through the drain line 120 in a state where the drain port D1 and the output port C1 communicate with each other.
  • the regulator valve 40 when the hydraulic pressure in the control chamber 36 of the oil pump 20 is decreased to increase the line pressure, the regulator valve 40 is in a non-communication state with respect to the output port C1 when the first input port B1 is closed. Thus, the hydraulic pressure output from the output port C1 is stopped. In this output stop state, the drain port D1 is opened and communicated with the output port C1.
  • the oil discharged from the control chamber 36 of the oil pump 20 to the feedback line 57 passes through the first oil passage portion 58 and the second oil passage portion 59, and the drain port D 1 and the drain line 120 of the regulator valve 40. It is drained through. Thereby, smooth oil drainage from the control chamber 36 is promoted. Therefore, as in the first embodiment, the responsiveness can be improved with respect to an increase in line pressure.
  • the regulator valve 40 outputs the hydraulic pressure input to the first input port B1 from the output port C1. To do.
  • the drain port D1 is closed and the output port C1 is disconnected. In this non-communication state, the drain port D ⁇ b> 1 regulates the drain of oil in the feedback line 57.
  • the amount of oil supplied from the discharge port 22b of the oil pump 20 to the first input port B1 of the regulator valve 40 is reduced, and further, the amount of discharge of the oil pump 20 is reduced. Can do. Therefore, the drive loss of the automatic transmission can be reduced, and the fuel consumption performance of the vehicle equipped with the automatic transmission can be improved.
  • FIG. 13 to 15 show a hydraulic pressure supply device 210 for an automatic transmission according to a third embodiment.
  • the automatic transmission and hydraulic pressure supply device 110 in the third embodiment are also mounted on the vehicle. 13 to 15, the same parts as those in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted.
  • the feedback lines 57 are connected in series with each other in place of the first oil passage portion 58 and the second oil passage portion 59 connected in parallel with each other in the first embodiment. It has the 1st oil path part 257 and the 2nd oil path part 258 which were connected.
  • the first oil passage portion 257 and the second oil passage portion 258 are connected to each other via an oil supply restriction device 280 configured in a unit shape.
  • the end of the first oil passage portion 257 opposite to the oil supply restriction device 280 is connected to the output port C1 of the regulator valve 40, and the end of the second oil passage portion 258 opposite to the oil supply restriction device 280 is
  • the oil pump 20 is connected to the control chamber 36.
  • the feedback line 57 is connected to the drain line 260 via the oil supply limiting device 280.
  • the oil supply restriction device 280 has a housing 281 in which an oil passage space S2 is formed.
  • the housing 281 includes a first communication port 282 that allows the oil passage space S2 in the housing 281 to communicate with the first oil passage portion 257 of the feedback line 57, and the oil passage space S2 to the second oil passage portion of the feedback line 57.
  • a second communication port 283 that communicates with 258 and a third communication port 284 that communicates the oil passage space S2 with the drain line 260 are provided.
  • the first communication port 282 and the second communication port 283 are arranged to face each other in the length direction of the feedback line 57.
  • a relief valve 290 is accommodated in the housing 281 so as to be slidable in the opposing direction of the first communication port 282 and the second communication port 283.
  • the relief valve 290 has a bottomed cylindrical valve body 297 that extends in the length direction of the feedback line 57 and opens to the first communication port 282 side.
  • the valve body 297 is provided with a hole portion 291 that extends in the length direction of the feedback line 57 and opens to the first communication port 282 side, and a bottom portion 292 that closes the opening of the hole portion 291 on the second communication port 283 side. It has been.
  • the outer peripheral surface of the valve body 297 is disposed to face the third communication port 284.
  • a spring 293 that biases the valve body 297 toward the second communication port 283 is accommodated in the hole 291 of the valve body 297.
  • One or a plurality of groove portions 294 extending in the axial direction of the valve body 297 are provided in a portion of the outer peripheral surface of the valve body 297 on the second communication port 283 side. The end of the groove 294 on the first communication port 282 side is closed. The groove portion 294 can communicate with both the second communication port 283 and the third communication port 284 according to the position of the valve body 297 in the axial direction.
  • the groove portion 294 In a state where the groove portion 294 communicates with the second communication port 283 (a state where the relief valve 290 is opened), the groove portion 294 is inserted into the housing 281 from a portion between the second communication port 283 and the bottom portion 292 of the valve body 297. An oil passage portion that reaches the third communication port 284 via is formed. The oil passage portion is connected to the drain line 260 via the third communication port 284. The oil passage portion and the drain line 260 constitute a drain oil passage that drains the oil discharged from the control chamber 36 of the oil pump 20 to the feedback line 57 via the opened relief valve 290.
  • An orifice 295 is provided through the bottom 292 of the valve body 297, whereby the orifice 295 and the valve body 297 (relief valve 290) are integrated.
  • the orifice 295 has a smaller diameter than the first communication port 282, the second communication port 283, the third communication port 284, and the hole portion 291.
  • the orifice 295 is provided on the bottom 292 so that the internal space of the hole 291 communicates with the second communication port 283.
  • an oil passage portion is formed from the first communication port 282 to the second communication port 283 via the internal space of the hole 291 and the orifice 295.
  • the oil passage portion constitutes an oil passage portion that connects the first communication port 282 and the second communication port 283 in the feedback line 57.
  • a portion between the second communication port 283 and the bottom portion 292 of the valve body 297 constitutes a connection portion 285 of the feedback line 57 with the drain oil passage.
  • the orifice 295 is arrange
  • an orifice may be provided in the first oil passage portion 257 of the feedback line 57.
  • the feedback line 57 is connected to the drain line 260 via the groove 294.
  • the flow of oil from the second communication port 283 side to the first communication port 282 side is restricted by the orifice 295, so that the second communication port 283 passes through the groove 294.
  • the flow of oil reaching the third communication port 284 is promoted. Therefore, the oil discharged from the control chamber 36 is smoothly drained through the relief valve 290 and the drain line 260. As a result, quick drainage is possible, and high responsiveness can be obtained with respect to an increase in line pressure.
  • the oil flowing from the first communication port 282 to the second communication port 283 always passes through the orifice 295. That is, the orifice 295 allows oil from the output port C1 to flow toward the control chamber 36 when the relief valve 290 is closed.
  • the relief valve 290 When the relief valve 290 is closed, the flow rate of oil flowing from the output port C1 side to the control chamber 36 in the feedback line 57 is limited by the orifice 295, thereby limiting the oil supply to the control chamber 36. become. As a result, the line pressure can be gradually reduced. Therefore, hunting of the line pressure can be suppressed, and the line pressure can be stabilized at a desired pressure at an early stage.
  • the feedback line 57 includes the first oil passage portion 257 and the second oil passage portion 258 connected in series with each other, and thus the feedback lines of the first and second embodiments.
  • the configuration of the feedback line 57 can be simplified as compared with the case where the first oil passage portion 58 and the second oil passage portion 59 are connected in parallel as in the case of 57.
  • limiting apparatus 280 is only an example, and various changes are possible as the oil supply restriction
  • a spool valve that performs the same function as the oil supply restriction device 280 may be provided on the feedback line 57.
  • the hydraulic pressure supply device including the vane type variable displacement type oil pump is taken as an example.
  • the variable displacement type oil pump is configured to increase the hydraulic pressure in the control chamber of the oil pump.
  • the type and specific configuration of the oil pump are not particularly limited as long as the discharge pressure of the oil pump is reduced, and the discharge pressure is increased by reducing the hydraulic pressure of the control chamber.
  • the present invention is useful for a hydraulic pressure supply device for an automatic transmission provided with a variable displacement type oil pump. It is particularly useful in the field of manufacturing vehicles.
  • Hydraulic circuit 10 Hydraulic supply device 20 Variable displacement oil pump 36 Control room 40 Regulator valve 57 Feedback line (feedback oil passage) 58 First oil passage 59 Second oil passage 60 Drain line (drain oil passage) 76 Orifice 80 Oil Supply Limiting Device 81 Orifice 82 Check Valve 110 Hydraulic Supply Device 260 Drain Line 280 Oil Supply Limiting Device 290 Relief Valve 295 Orifice A1 First Control Port A2 Second Control Port B1 First Input Port C1 Output Port (Output Unit) D1 Drain port

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)

Abstract

This hydraulic pressure supply device (10) for an automatic transmission comprises: a variable displacement oil pump (20); a regulator valve (40) for regulating the discharge pressure of the oil pump to a predetermined pressure; and a feedback oil passage (57) for conducting hydraulic pressure outputted from the regulator valve (output port C1) to the control chamber (36) of the oil pump. The oil pump is configured such that an increase in hydraulic pressure in the control chamber causes a decrease in the discharge pressure and such that a decrease in hydraulic pressure in the control chamber causes an increase in the discharge pressure. The hydraulic pressure supply device (10) further comprises an oil supply limiting device (80) provided in the feedback oil passage and limiting oil supply to the control chamber more than oil discharge from the control chamber.

Description

自動変速機の油圧供給装置Hydraulic transmission device for automatic transmission
 本発明は、自動変速機の油圧供給装置に関する。 The present invention relates to a hydraulic pressure supply device for an automatic transmission.
 特許文献1及び2に開示されているように、車両に搭載される自動変速機の摩擦締結要素(クラッチ、ブレーキ等)を制御するための油圧回路の油圧供給源として、可変容量型のオイルポンプが用いられることがある。このオイルポンプの吐出圧は、ライン圧として、自動変速機の各部に供給されるオイルの元圧となる。 As disclosed in Patent Documents 1 and 2, a variable displacement oil pump is used as a hydraulic supply source of a hydraulic circuit for controlling frictional engagement elements (clutch, brake, etc.) of an automatic transmission mounted on a vehicle. May be used. The discharge pressure of the oil pump is the original pressure of oil supplied to each part of the automatic transmission as line pressure.
 特許文献1及び2に開示されたオイルポンプは、回転駆動される駆動軸と、該駆動軸に連結されたロータと、該ロータの径方向外側に配置されたカムリングと、該カムリングの内周面に接触し、該ロータに対してその径方向に進退可能に設けられてポンプ室を画成する複数のベーンとを備えている。カムリングは、シリンダに嵌挿されたピストンによって、駆動軸(ロータ)に対するカムリングの偏心量が変化するように、押圧される。すなわち、シリンダ内の制御室の油圧に応じて、前記偏心量が変化し、該偏心量が大きいほど、オイルポンプの吐出圧が高くなる。前記オイルポンプから吐出されたオイルは、油圧回路に供給される。また、そのオイルは、レギュレータバルブを経由して前記シリンダ内の制御室にも供給される。つまり、レギュレータバルブの出力部から出力された油圧が、前記制御室にフィードバックされる。尚、前記カムリングをハウジング内に配置して、該ハウジングとカムリングとの間に、レギュレータバルブより油圧がフィードバックされる制御室が形成される場合もある。 An oil pump disclosed in Patent Documents 1 and 2 includes a drive shaft that is rotationally driven, a rotor that is coupled to the drive shaft, a cam ring that is disposed radially outside the rotor, and an inner peripheral surface of the cam ring. And a plurality of vanes which are provided so as to be capable of advancing and retreating in the radial direction with respect to the rotor and defining a pump chamber. The cam ring is pressed by a piston inserted into the cylinder so that the amount of eccentricity of the cam ring with respect to the drive shaft (rotor) changes. That is, the amount of eccentricity changes according to the hydraulic pressure of the control chamber in the cylinder, and the larger the amount of eccentricity, the higher the discharge pressure of the oil pump. Oil discharged from the oil pump is supplied to a hydraulic circuit. The oil is also supplied to the control chamber in the cylinder via a regulator valve. That is, the hydraulic pressure output from the output portion of the regulator valve is fed back to the control chamber. In some cases, the cam ring is disposed in the housing, and a control chamber in which hydraulic pressure is fed back from the regulator valve is formed between the housing and the cam ring.
 このような油圧供給装置において、レギュレータバルブは、オイルポンプの吐出圧に応じて、前記フィードバックされる油圧(フィードバック油圧)を、オイルポンプの制御室(シリンダ内の制御室、及び、ハウジングとカムリングとの間の制御室を含む)に出力するように作動する。このようにして、レギュレータバルブは、オイルポンプの吐出圧を所定圧に調整する。 In such a hydraulic pressure supply device, the regulator valve transmits the feedback hydraulic pressure (feedback hydraulic pressure) according to the discharge pressure of the oil pump, the control chamber of the oil pump (the control chamber in the cylinder, the housing and the cam ring). Including the control room between). In this way, the regulator valve adjusts the discharge pressure of the oil pump to a predetermined pressure.
 例えば、ライン圧が、予め設定された目標値(例えば一定値)に制御される場合において、オイルポンプの吐出圧が上昇すると、これに応じて前記フィードバック油圧が上昇することで、前記カムリングの偏心量が減少する。これにより、オイルポンプの吐出圧が低下する。オイルポンプの吐出圧が低下すると、前記フィードバック油圧が低下することで前記カムリングの偏心量が増大する。これにより、オイルポンプの吐出圧が上昇する。このような油圧のフィードバックが常に行われることで、オイルポンプの吐出圧(ライン圧)が所定圧(前記目標値)に調整される。 For example, when the line pressure is controlled to a preset target value (for example, a constant value), when the discharge pressure of the oil pump rises, the feedback hydraulic pressure rises accordingly, and the cam ring is eccentric. The amount decreases. Thereby, the discharge pressure of the oil pump decreases. When the discharge pressure of the oil pump is decreased, the feedback hydraulic pressure is decreased, so that the eccentric amount of the cam ring is increased. As a result, the discharge pressure of the oil pump increases. By always performing such hydraulic pressure feedback, the discharge pressure (line pressure) of the oil pump is adjusted to a predetermined pressure (the target value).
実開平1-141954号公報Japanese Utility Model Publication No. 1-141954 特開平2-003780号公報JP-A-2-003780
 ところで、前述の油圧供給装置では、自動変速機の変速のために摩擦締結要素の掛け替えが行われるときに、当該変速時に締結すべき1つ又は複数の摩擦締結要素の締結油圧室にはオイルが供給される。このオイルの供給によって、該供給時にライン圧が前記目標値から一時的に低下する。このようにライン圧が低下しても、前記油圧のフィードバックによってライン圧が上昇して前記目標値に戻る。 By the way, in the above-described hydraulic pressure supply device, when the frictional engagement element is switched for shifting of the automatic transmission, oil is supplied to the engagement hydraulic chamber of one or more frictional engagement elements to be engaged at the time of the shift. Supplied. By supplying this oil, the line pressure temporarily decreases from the target value during the supply. Thus, even if the line pressure decreases, the line pressure increases due to the feedback of the hydraulic pressure, and returns to the target value.
 しかし、前記フィードバックによるライン圧の上昇に時間がかかると、前記締結すべき摩擦締結要素を完全に締結させるのに時間がかかり、このため、変速時間の増大や該摩擦締結要素のスリップを招いてしまう。このような変速時間の増大や摩擦締結要素のスリップを抑制するためには、ライン圧の上昇に関する応答性を高めることが求められる。 However, if it takes time to increase the line pressure due to the feedback, it takes time to completely fasten the frictional engagement element to be fastened, which causes an increase in shift time and slipping of the frictional engagement element. End up. In order to suppress such an increase in shift time and slipping of the frictional engagement element, it is required to improve the responsiveness related to the increase in line pressure.
 また、エンジンの出力等に応じて、ライン圧の目標値自体が上昇変更されることもあるが、このときも、ライン圧が目標値になるように高精度の油圧制御を行うためには、実際のライン圧を目標値まで上昇させるにあたって高い応答性が求められる。 In addition, the target value of the line pressure itself may be increased and changed depending on the output of the engine, etc. In this case, in order to perform highly accurate hydraulic control so that the line pressure becomes the target value, High responsiveness is required to raise the actual line pressure to the target value.
 しかしながら、ライン圧の制御において、ライン圧の上昇の応答性を高めようとすれば、オーバーシュートやハンチングが生じることでライン圧が不安定となって、自動変速機の変速制御の精度が低下し易くなる。 However, in the line pressure control, if the responsiveness of the line pressure increase is increased, the line pressure becomes unstable due to overshoot or hunting, and the shift control accuracy of the automatic transmission decreases. It becomes easy.
 本発明は、斯かる点に鑑みてなされたものであり、その目的とするところは、可変容量型のオイルポンプを備えた自動変速機の油圧供給装置において、ライン圧の上昇の応答性の向上と該ライン圧の安定化との両立を図ることにある。 The present invention has been made in view of such a point, and an object of the present invention is to improve the response of a rise in line pressure in a hydraulic pressure supply device for an automatic transmission having a variable displacement oil pump. And the stabilization of the line pressure.
 上記の目的を達成するために、本発明では、自動変速機の油圧供給装置を対象として、前記自動変速機の制御に用いられる油圧を生成する可変容量型のオイルポンプと、前記オイルポンプの吐出圧を所定圧に調整するレギュレータバルブと、前記レギュレータバルブの出力部から出力された油圧を前記オイルポンプの制御室に導くフィードバック油路とを備え、前記オイルポンプは、前記制御室の油圧が上昇することで前記吐出圧が低下する一方、前記制御室の油圧が低下することで前記吐出圧が上昇するように構成されており、前記フィードバック油路に設けられ、前記制御室からの排油に比べて該制御室への給油を制限する給油制限装置を更に備えている、という構成とした。 In order to achieve the above object, according to the present invention, a variable displacement oil pump for generating hydraulic pressure used for controlling the automatic transmission, and a discharge of the oil pump, for a hydraulic pressure supply device for an automatic transmission, are provided. A regulator valve that adjusts the pressure to a predetermined pressure; and a feedback oil passage that guides the hydraulic pressure output from the output portion of the regulator valve to the control chamber of the oil pump. The oil pump increases the hydraulic pressure in the control chamber. The discharge pressure is reduced, and the discharge pressure is increased by lowering the hydraulic pressure in the control chamber, and is provided in the feedback oil passage to discharge oil from the control chamber. Compared with the control room, the oil supply restriction device for restricting the oil supply is further provided.
 前記の構成により、オイルポンプの制御室の油圧を低下させて該オイルポンプの吐出圧(ライン圧)を所定圧に向けて上昇させるときには、前記制御室からの排油を殆ど制限されること速やかに行うことができる。これにより、ライン圧の上昇に関して高い応答性が得られる。この結果、自動変速機の変速時間の短縮及び摩擦締結要素のスリップの抑制を図ることができるとともに、ライン圧が前記所定圧(所望のライン圧)になるように高精度の油圧制御を行うことができる。 With the above configuration, when the oil pressure in the control chamber of the oil pump is reduced and the discharge pressure (line pressure) of the oil pump is increased toward a predetermined pressure, oil drainage from the control chamber is almost limited. Can be done. Thereby, high responsiveness can be obtained with respect to an increase in line pressure. As a result, the shift time of the automatic transmission can be shortened and the slip of the frictional engagement element can be suppressed, and highly accurate hydraulic control is performed so that the line pressure becomes the predetermined pressure (desired line pressure). Can do.
 また、ライン圧が上昇し過ぎて前記所定圧を超えた後には、オイルポンプの制御室の油圧を上昇させてライン圧を前記所定圧に向かけて低下させる。このときには、給油制限装置によって、前記制御室への給油が制限されるので、ライン圧の低下が緩やかに行われる。この結果、ライン圧のハンチングが抑制されて、ライン圧を早期に安定させることができ、これにより、精度の高い変速制御を実現することができる。 Also, after the line pressure has risen too much and exceeded the predetermined pressure, the oil pressure in the control chamber of the oil pump is increased to decrease the line pressure toward the predetermined pressure. At this time, the oil supply restriction device restricts the oil supply to the control chamber, so that the line pressure is gradually reduced. As a result, hunting of the line pressure is suppressed and the line pressure can be stabilized at an early stage, thereby realizing highly accurate shift control.
 前記自動変速機の油圧供給装置の一実施形態において、前記フィードバック油路は、相互に並列に接続された第1油路部及び第2油路部を有し、前記給油制限装置は、前記第1油路部に設けられたオリフィスと、前記第2油路部に設けられ、前記出力部側から前記制御室側に向かう方向のオイルの通過を規制する逆止弁とを有する。 In an embodiment of the hydraulic pressure supply device for the automatic transmission, the feedback oil passage includes a first oil passage portion and a second oil passage portion connected in parallel to each other, and the oil supply restriction device includes the first oil passage portion. An orifice provided in one oil passage and a check valve provided in the second oil passage and restricting the passage of oil in a direction from the output portion toward the control chamber.
 このことで、オイルポンプの制御室の油圧を上昇させてライン圧を低下させるときには、フィードバック油路の第1油路部に設けられたオリフィスと、第2油路部に設けられた逆止弁とによって、前記制御室への給油が制限されることで、ライン圧の低下を緩やかに行うことができる。 Thus, when the oil pressure in the control chamber of the oil pump is increased to reduce the line pressure, the orifice provided in the first oil passage portion of the feedback oil passage and the check valve provided in the second oil passage portion As a result, the supply of oil to the control chamber is limited, so that the line pressure can be gradually reduced.
 一方、オイルポンプの制御室の油圧を低下させてライン圧を上昇させるときには、第2油路部の逆止弁が開放されることで、前記制御室からの排油を素早く行うことができる。 On the other hand, when the oil pressure in the control chamber of the oil pump is lowered to increase the line pressure, the check valve in the second oil passage is opened, so that oil can be quickly discharged from the control chamber.
 したがって、給油制限装置を簡単な構成で実現しながら、ライン圧の上昇の応答性の向上と該ライン圧の安定化との両立を図ることができる。 Therefore, while realizing the oil supply restriction device with a simple configuration, it is possible to achieve both improvement in response to increase in line pressure and stabilization of the line pressure.
 前記給油制限装置が前記オリフィスと前記逆止弁とを有する場合、前記フィードバック油路における前記オリフィス及び前記逆止弁よりも前記出力部側の部分に、該フィードバック油路から絞りを介してオイルをドレンさせるドレン油路が接続されていてもよい。 When the oil supply restriction device has the orifice and the check valve, oil is supplied from the feedback oil path to the output side of the orifice and the check valve in the feedback oil path through a throttle. A drain oil passage for draining may be connected.
 このことにより、オイルポンプの制御室の油圧を低下させてライン圧を上昇させるときには、前記制御室から排出されたオイルがドレン油路を介してドレンされることで、スムーズな排油が促進されて、ライン圧の上昇の応答性のより一層の向上を図ることができる。 As a result, when the oil pressure in the control chamber of the oil pump is decreased to increase the line pressure, the oil discharged from the control chamber is drained through the drain oil passage, thereby facilitating smooth drainage. Thus, it is possible to further improve the response of the increase in line pressure.
 また、オイルポンプの制御室の油圧を上昇させてライン圧を低下させるときには、レギュレータバルブの出力部から前記制御室に向かってフィードバック油路を流れるオイルの余剰分がドレン油路を介してドレンされることで、レギュレータバルブの出力変動が前記制御室の油圧に与える影響を軽減することができる。しかも、絞りによって過剰なオイルのドレンが抑制されるので、前記制御室への給油が著しく遅れたり不足したりすることを抑制することができる。 Further, when the oil pressure in the control chamber of the oil pump is increased to reduce the line pressure, the excess oil flowing through the feedback oil passage from the output portion of the regulator valve toward the control chamber is drained through the drain oil passage. Thus, it is possible to reduce the influence of the output fluctuation of the regulator valve on the hydraulic pressure of the control chamber. In addition, since excessive oil drainage is suppressed by the throttle, it is possible to prevent the oil supply to the control chamber from being significantly delayed or insufficient.
 前記給油制限装置が前記オリフィスと前記逆止弁とを有する場合、前記レギュレータバルブは、前記出力部からの油圧の出力が停止した状態においては前記制御室から前記フィードバック油路に排出されたオイルをドレンしかつ前記出力部からの油圧の出力時には該フィードバック油路のオイルのドレンを規制するドレンポートを有する、という構成であってもよい。 In the case where the oil supply restriction device has the orifice and the check valve, the regulator valve discharges oil discharged from the control chamber to the feedback oil passage in a state where output of hydraulic pressure from the output unit is stopped. It may be configured to have a drain port that drains and regulates the drain of oil in the feedback oil passage when the hydraulic pressure is output from the output unit.
 この構成により、オイルポンプの制御室の油圧を低下させてライン圧を上昇させるときには、前記制御室からフィードバック油路に排出されたオイルがレギュレータバルブのドレンポートからドレンされることで、スムーズな排油が促進されて、ライン圧の上昇の応答性のより一層の向上を図ることができる。 With this configuration, when the oil pressure in the control chamber of the oil pump is decreased to increase the line pressure, the oil discharged from the control chamber to the feedback oil passage is drained from the drain port of the regulator valve, thereby allowing smooth discharge. Oil is promoted, and the response of the increase in line pressure can be further improved.
 また、オイルポンプの制御室の油圧を上昇させてライン圧を低下させるときには、前記フィードバック油路のオイルの、前記ドレンポートからのドレンが規制されることで、前記フィードバック油路を介して前記制御室に供給されるオイルの浪費を抑制することができる。この結果、オイルポンプからレギュレータバルブへのオイル供給量の低減、延いては、オイルポンプの吐出量の低減を図ることができる。したがって、自動変速機の駆動損失が低減されて、該自動変速機が搭載された車両の燃費性能を改善することができる。 Also, when the oil pressure in the control chamber of the oil pump is increased to reduce the line pressure, the drain of the oil in the feedback oil passage from the drain port is restricted, so that the control is performed via the feedback oil passage. Waste of oil supplied to the chamber can be suppressed. As a result, it is possible to reduce the amount of oil supplied from the oil pump to the regulator valve, and thus reduce the discharge amount of the oil pump. Therefore, the drive loss of the automatic transmission can be reduced, and the fuel efficiency performance of the vehicle equipped with the automatic transmission can be improved.
 前記自動変速機の油圧供給装置の別の実施形態において、前記給油制限装置は、前記フィードバック油路に設けられたリリーフ弁であって前記レギュレータバルブの出力部からの油圧の出力時には閉じられかつ該出力部からの油圧の出力が停止した状態においては開放されるリリーフ弁を有し、前記フィードバック油路に、前記制御室から前記フィードバック油路に排出されたオイルを、開放された前記リリーフ弁を介してドレンさせるドレン油路が接続され、更に前記給油制限装置は、前記フィードバック油路における前記ドレン油路との接続部よりも前記出力部側に設けられたオリフィスを更に有する。 In another embodiment of the oil pressure supply device for the automatic transmission, the oil supply restriction device is a relief valve provided in the feedback oil passage, and is closed when oil pressure is output from the output portion of the regulator valve, In a state where the output of hydraulic pressure from the output unit is stopped, the relief valve is opened, and the oil discharged from the control chamber to the feedback oil passage is provided in the feedback oil passage, and the relief valve opened is provided. A drain oil passage for draining is connected, and the oil supply restriction device further includes an orifice provided on the output portion side of a connection portion with the drain oil passage in the feedback oil passage.
 このことにより、オイルポンプの制御室の油圧を上昇させてライン圧を低下させるときには、リリーフ弁が閉じられるとともに、フィードバック油路に設けられたオリフィスによって、前記制御室への給油が制限されることで、ライン圧の低下を緩やかに行うことができる。 As a result, when the oil pressure in the control chamber of the oil pump is increased to lower the line pressure, the relief valve is closed and the oil supply to the control chamber is limited by the orifice provided in the feedback oil passage. Thus, the line pressure can be gradually reduced.
 一方、オイルポンプの制御室の油圧を低下させてライン圧を上昇させるときには、リリーフ弁が開放されることで、前記制御室からの排油が素早くドレンされ、これにより、ライン圧の上昇に関して高い応答性を得ることができる。また、このような排油の促進と給油の制限との両立を、フィードバック油路に相互に並列に接続された複数の油路部を設けることなく実現できるため、フィードバック油路の構成の簡素化を図ることができる。 On the other hand, when the line pressure is increased by lowering the oil pressure in the control chamber of the oil pump, the relief valve is opened, so that the drained oil from the control chamber is drained quickly, and this increases the line pressure. Responsiveness can be obtained. In addition, it is possible to achieve both the promotion of oil drainage and the limitation of oil supply without providing a plurality of oil passage portions connected in parallel to the feedback oil passage, thereby simplifying the configuration of the feedback oil passage. Can be achieved.
 以上説明したように、本発明の自動変速機の油圧供給装置によると、フィードバック油路に、オイルポンプの制御室からの排油に比べて該制御室への給油を制限する給油制限装置が設けられていることにより、ライン圧の上昇の応答性の向上と該ライン圧の安定化との両立を図ることができる。 As described above, according to the hydraulic pressure supply device for an automatic transmission according to the present invention, the feedback oil passage is provided with the oil supply restriction device for restricting the oil supply to the control chamber as compared with the oil discharged from the control chamber of the oil pump. By doing so, it is possible to achieve both improvement in responsiveness of increase in line pressure and stabilization of the line pressure.
第1実施形態に係る自動変速機の油圧供給装置を示す回路図である。It is a circuit diagram which shows the hydraulic pressure supply apparatus of the automatic transmission which concerns on 1st Embodiment. 前記第1実施形態においてオイルポンプの制御室からの排油が行われている状態を示す図1相当図である。FIG. 2 is a view corresponding to FIG. 1 showing a state in which oil is discharged from the control chamber of the oil pump in the first embodiment. 前記第1実施形態においてオイルポンプの制御室への給油が行われている状態を示す図1相当図である。FIG. 2 is a view corresponding to FIG. 1 illustrating a state in which oil supply to the control chamber of the oil pump is performed in the first embodiment. 第1比較例に係る油圧供給装置の一部を示す回路図である。It is a circuit diagram which shows a part of hydraulic pressure supply apparatus which concerns on a 1st comparative example. 第2比較例に係る油圧供給装置の一部を示す図である。It is a figure which shows a part of hydraulic pressure supply apparatus which concerns on a 2nd comparative example. 前記第1比較例における自動変速機の変速時のライン圧の推移を示すグラフである。It is a graph which shows transition of the line pressure at the time of gear shifting of the automatic transmission in the 1st comparative example. 前記第2比較例における自動変速機の変速時のライン圧の推移を示すグラフである。It is a graph which shows transition of the line pressure at the time of the speed change of the automatic transmission in the 2nd comparative example. 前記第1実施形態における自動変速機の変速時のライン圧の推移を示すグラフである。It is a graph which shows transition of the line pressure at the time of the speed change of the automatic transmission in the said 1st Embodiment. 前記第1比較例における目標値上昇時のライン圧の推移を示すグラフである。It is a graph which shows transition of the line pressure at the time of the target value rise in the 1st comparative example. 前記第2比較例における目標値上昇時のライン圧の推移を示すグラフである。It is a graph which shows transition of the line pressure at the time of target value rise in the 2nd comparative example. 前記第1実施形態における目標値上昇時のライン圧の推移を示すグラフである。It is a graph which shows transition of the line pressure at the time of the target value rise in the said 1st Embodiment. 前記第1実施形態において給油制限装置の具体的構成の一例を示す図であって、オイルポンプの制御室への給油が行われている状態を示す。It is a figure which shows an example of the specific structure of the oil supply restriction | limiting apparatus in the said 1st Embodiment, Comprising: The state in which oil supply to the control chamber of an oil pump is performed is shown. 図9Aの給油制限装置においてオイルポンプの制御室への排油が行われている状態を示す。9A shows a state in which oil is discharged into the control chamber of the oil pump in the oil supply restriction device of FIG. 9A. 第2実施形態に係る自動変速機の油圧供給装置を示す回路図である。It is a circuit diagram which shows the hydraulic pressure supply apparatus of the automatic transmission which concerns on 2nd Embodiment. 前記第2実施形態においてオイルポンプの制御室からの排油が行われている状態を示す図10相当図である。FIG. 11 is a view corresponding to FIG. 10 illustrating a state in which oil is discharged from the control chamber of the oil pump in the second embodiment. 前記第2実施形態においてオイルポンプの制御室への給油が行われている状態を示す図10相当図である。FIG. 11 is a view corresponding to FIG. 10 illustrating a state in which oil supply to the control chamber of the oil pump is performed in the second embodiment. 第3実施形態に係る自動変速機の油圧供給装置を示す回路図である。It is a circuit diagram which shows the hydraulic pressure supply apparatus of the automatic transmission which concerns on 3rd Embodiment. 前記第3実施形態においてオイルポンプの制御室からの排油が行われている状態を示す図13相当図である。FIG. 14 is a view corresponding to FIG. 13 showing a state where oil is discharged from the control chamber of the oil pump in the third embodiment. 前記第3実施形態においてオイルポンプの制御室への給油が行われている状態を示す図13相当図である。FIG. 14 is a view corresponding to FIG. 13 illustrating a state in which oil supply to the control chamber of the oil pump is performed in the third embodiment.
 以下、例示的な実施形態を図面に基づいて詳細に説明する。 Hereinafter, exemplary embodiments will be described in detail with reference to the drawings.
 (第1実施形態)
 図1は、第1実施形態に係る自動変速機の油圧供給装置10を示す。この自動変速機及び油圧供給装置10は、車両に搭載されるものである。
(First embodiment)
FIG. 1 shows a hydraulic pressure supply device 10 for an automatic transmission according to a first embodiment. The automatic transmission and hydraulic pressure supply device 10 is mounted on a vehicle.
 油圧供給装置10は、前記自動変速機の制御に用いられる油圧を生成する油圧供給源としての可変容量型のオイルポンプ20と、該オイルポンプ20の吐出圧を所定圧に調整するレギュレータバルブ40とを備えている。このオイルポンプ20の吐出圧は、ライン圧として、前記自動変速機の各部に供給されるオイルの元圧となる。 The hydraulic pressure supply device 10 includes a variable displacement oil pump 20 as a hydraulic pressure supply source that generates hydraulic pressure used for controlling the automatic transmission, and a regulator valve 40 that adjusts the discharge pressure of the oil pump 20 to a predetermined pressure. It has. The discharge pressure of the oil pump 20 becomes the original pressure of oil supplied to each part of the automatic transmission as a line pressure.
 オイルポンプ20は、以下に説明する構成部品を収容する断面リング状のハウジング22と、回転駆動される駆動軸24と、駆動軸24に連結されたロータ26と、ロータ26の径方向外側に配置されたカムリング30と、ロータ26の外周面からその径方向の外側に突出しかつカムリング30の内周面に接触するように設けられた複数のベーン34とを有する。 The oil pump 20 is disposed on the outer side in the radial direction of the rotor 26, a housing 22 having a ring-shaped cross section that accommodates components described below, a drive shaft 24 that is rotationally driven, a rotor 26 that is coupled to the drive shaft 24, and the rotor 26. And a plurality of vanes 34 provided so as to protrude radially outward from the outer peripheral surface of the rotor 26 and to contact the inner peripheral surface of the cam ring 30.
 ハウジング22は、オイルパン70からハウジング22内にオイルを吸入する吸入ポート22aと、オイルポンプ20によって昇圧されたオイルをハウジング22外へ吐出する吐出ポート22bとを有する。 The housing 22 has a suction port 22a for sucking oil into the housing 22 from the oil pan 70, and a discharge port 22b for discharging oil boosted by the oil pump 20 to the outside of the housing 22.
 本実施形態では、駆動軸24は、前記車両に搭載されたエンジンのクランク軸によって回転駆動される。駆動軸24は、前記エンジンの駆動中において、図1で反時計回り方向に回転駆動される。ロータ26は、駆動軸24の軸心上に配置されていて、この軸心回りに駆動軸24と共に回転する。 In this embodiment, the drive shaft 24 is rotationally driven by a crankshaft of an engine mounted on the vehicle. The drive shaft 24 is driven to rotate counterclockwise in FIG. 1 while the engine is being driven. The rotor 26 is disposed on the axis of the drive shaft 24 and rotates with the drive shaft 24 around the axis.
 カムリング30は、駆動軸24に平行な支軸31に回動可能に支持されている。カムリング30の外周面とハウジング22の内周面との間には、スプリング32が介装されている。カムリング30は、スプリング32によって、ロータ26の軸心(駆動軸24の軸心)に対して偏心されるように付勢されている。すなわち、スプリング32のカムリング30に対する付勢方向は、ロータ26の軸心に対するカムリング30の偏心量を増大させる方向(図1の左向き)となっている。 The cam ring 30 is rotatably supported by a support shaft 31 parallel to the drive shaft 24. A spring 32 is interposed between the outer peripheral surface of the cam ring 30 and the inner peripheral surface of the housing 22. The cam ring 30 is biased by a spring 32 so as to be eccentric with respect to the axis of the rotor 26 (axis of the drive shaft 24). That is, the biasing direction of the spring 32 with respect to the cam ring 30 is a direction in which the eccentric amount of the cam ring 30 with respect to the axis of the rotor 26 is increased (leftward in FIG. 1).
 複数のベーン34は、ロータ26の周方向に相互に間隔をあけて、ロータ26の軸心方向から見て放射状に配置されている。各ベーン34は、ロータ26の周方向の移動が規制された状態でロータ26に保持されており、これにより、ロータ26と共に駆動軸24の軸心回りに回動する。 The plurality of vanes 34 are arranged radially in the circumferential direction of the rotor 26 and spaced from each other as viewed from the axial direction of the rotor 26. Each vane 34 is held by the rotor 26 in a state in which the movement of the rotor 26 in the circumferential direction is restricted, and thus rotates around the axis of the drive shaft 24 together with the rotor 26.
 また、各ベーン34は、ロータ26に対してその径方向に進退可能なようにロータ26に保持されている。各ベーン34は、ロータ26の回転中、該各ベーン34におけるロータ26径方向の外側の端部が、カムリング30の内周面上を摺動するように構成されている。 Further, each vane 34 is held by the rotor 26 so that it can advance and retreat in the radial direction with respect to the rotor 26. Each vane 34 is configured such that the end of each vane 34 on the outer side in the radial direction of the rotor 26 slides on the inner peripheral surface of the cam ring 30 while the rotor 26 rotates.
 ロータ26の回転中には、ロータ26の外周面、カムリング30の内周面、及び、相隣接する一対のベーン34で囲まれたポンプ室35が複数形成される。ロータ26の軸心に対してカムリング30が偏心されていることから、ロータ26の外周面とカムリング30の内周面との間の径方向の間隔は、周方向の位置によって異なる。そのため、複数のポンプ室35間には容積差が存在し、各ポンプ室35の容積は、ロータ26の回転に応じて変化する。 During the rotation of the rotor 26, a plurality of pump chambers 35 surrounded by the outer peripheral surface of the rotor 26, the inner peripheral surface of the cam ring 30, and a pair of adjacent vanes 34 are formed. Since the cam ring 30 is eccentric with respect to the axial center of the rotor 26, the radial interval between the outer peripheral surface of the rotor 26 and the inner peripheral surface of the cam ring 30 varies depending on the position in the circumferential direction. Therefore, there is a volume difference between the plurality of pump chambers 35, and the volume of each pump chamber 35 changes according to the rotation of the rotor 26.
 オイルポンプ20の駆動中において、各ポンプ室35は、容積が比較的小さい状態にあるときに吸入ポート22aに連通し、その後、容積が一端増大した後に減少している状態にあるときに吐出ポート22bに連通する。これにより、吸入ポート22aからポンプ室35に吸入されたオイルは、オイルポンプ20の駆動によって昇圧された状態で吐出ポート22bから吐出される。 While the oil pump 20 is being driven, each pump chamber 35 communicates with the suction port 22a when the volume is relatively small, and then discharge port when the volume is decreased after increasing once. It communicates with 22b. Thereby, the oil sucked into the pump chamber 35 from the suction port 22a is discharged from the discharge port 22b in a state where the pressure is increased by driving the oil pump 20.
 カムリング30の外周面とハウジング22の内周面との間には、オイルポンプ20の吐出圧を制御するするための油圧が供給される制御室36が設けられている。この制御室36は、カムリング30を挟んで、スプリング32とは反対側に配置されている。 Between the outer peripheral surface of the cam ring 30 and the inner peripheral surface of the housing 22, a control chamber 36 to which hydraulic pressure for controlling the discharge pressure of the oil pump 20 is supplied is provided. The control chamber 36 is disposed on the opposite side of the spring 32 with the cam ring 30 interposed therebetween.
 また、カムリング30の外周面とハウジング22の内周面との間には、制御室36に対向する対向室38が設けられている。この対向室38内に、スプリング32が配置されている。制御室36と対向室38との間は、例えば樹脂製のシール部材37によって仕切られている。対向室38には、対向室38に流入したオイルをドレンするための排油路64が接続されている。 Further, an opposing chamber 38 that faces the control chamber 36 is provided between the outer peripheral surface of the cam ring 30 and the inner peripheral surface of the housing 22. A spring 32 is disposed in the facing chamber 38. The control chamber 36 and the facing chamber 38 are partitioned by, for example, a resin seal member 37. An oil drain passage 64 for draining the oil that has flowed into the counter chamber 38 is connected to the counter chamber 38.
 制御室36に供給される油圧が上昇すると、カムリング30は、スプリング32の付勢力に抗して対向室38側に変位し、これにより、ロータ26の軸心に対するカムリング30の偏心量が減少する。 When the hydraulic pressure supplied to the control chamber 36 increases, the cam ring 30 is displaced toward the facing chamber 38 against the urging force of the spring 32, thereby reducing the amount of eccentricity of the cam ring 30 with respect to the axis of the rotor 26. .
 一方、制御室36に供給される油圧が減少すると、カムリング30は、スプリング32の付勢力によって制御室36側に変位し、これにより、ロータ26の軸心に対するカムリング30の偏心量が増大する。 On the other hand, when the hydraulic pressure supplied to the control chamber 36 decreases, the cam ring 30 is displaced toward the control chamber 36 by the urging force of the spring 32, thereby increasing the amount of eccentricity of the cam ring 30 with respect to the axis of the rotor 26.
 カムリング30の偏心量が増大すると、ポンプ室35間の容積差が拡大し、これにより、オイルポンプ20の吐出圧が上昇する。逆に、カムリング30の偏心量が減少すると、ポンプ室35間の容積差が縮小することで、オイルポンプ20の吐出圧が低下する。 When the amount of eccentricity of the cam ring 30 increases, the volume difference between the pump chambers 35 increases, and thereby the discharge pressure of the oil pump 20 increases. Conversely, when the amount of eccentricity of the cam ring 30 decreases, the volume difference between the pump chambers 35 decreases, and the discharge pressure of the oil pump 20 decreases.
 このように、オイルポンプ20は、制御室36の油圧が上昇することでオイルポンプ20の吐出圧が低下する一方、制御室36の油圧が低下することで前記吐出圧が上昇するように構成されている。これにより、制御室36の油圧を制御することで、オイルポンプ20の吐出圧を調整することが可能になっている。 As described above, the oil pump 20 is configured such that the discharge pressure of the oil pump 20 decreases as the hydraulic pressure in the control chamber 36 increases, while the discharge pressure increases as the hydraulic pressure in the control chamber 36 decreases. ing. Thereby, the discharge pressure of the oil pump 20 can be adjusted by controlling the hydraulic pressure in the control chamber 36.
 オイルポンプ20の吐出ポート22bは、メインライン51を介して、前記自動変速機の摩擦締結要素の締結油圧室へのオイルの給排を制御する油圧回路2に接続されている。メインライン51には、アキュームレータ71が接続されており、これにより、メインライン51における油振の抑制が図られている。 The discharge port 22b of the oil pump 20 is connected via a main line 51 to a hydraulic circuit 2 that controls the supply and discharge of oil to and from the engagement hydraulic chamber of the friction engagement element of the automatic transmission. An accumulator 71 is connected to the main line 51, thereby suppressing oil vibration in the main line 51.
 メインライン51におけるアキュームレータ71よりも下流側(油圧回路2側)の部分には、サブライン52が接続されている。このサブライン52は、オイルポンプ20の吐出圧をレギュレータバルブ40に導く油路である。 A subline 52 is connected to a portion of the main line 51 on the downstream side (hydraulic circuit 2 side) of the accumulator 71. This subline 52 is an oil passage that guides the discharge pressure of the oil pump 20 to the regulator valve 40.
 サブライン52は、該サブライン52の下流側(レギュレータバルブ40側)の部分において、第1入力ライン53、第1制御ライン54,第2入力ライン55及び第2制御ライン56に分岐されている。 The subline 52 is branched into a first input line 53, a first control line 54, a second input line 55, and a second control line 56 at the downstream side (regulator valve 40 side) of the subline 52.
 レギュレータバルブ40は、軸方向に移動可能なスプール42と、このスプール42の軸方向一側(図1の右側)に向けてスプール42を付勢するリターンスプリング44とを有する。 The regulator valve 40 includes a spool 42 that is movable in the axial direction, and a return spring 44 that biases the spool 42 toward one axial side of the spool 42 (the right side in FIG. 1).
 また、レギュレータバルブ40は、第1制御ポートA1、第2制御ポートA2、第1入力ポートB1、第2入力ポートB2、出力ポートC1(レギュレータバルブ40の出力部)及び緊急用ドレンポートC2を有する。 The regulator valve 40 includes a first control port A1, a second control port A2, a first input port B1, a second input port B2, an output port C1 (an output portion of the regulator valve 40), and an emergency drain port C2. .
 第1制御ポートA1に入力された油圧は、スプール42を、リターンスプリング44の付勢力とは反対側(図1の左側)に向けて押圧する。第2制御ポートA2に入力された油圧は、スプール42を、リターンスプリング44の付勢力と同じ側(図1の右側)に向けて押圧する。 The hydraulic pressure input to the first control port A1 presses the spool 42 toward the side opposite to the urging force of the return spring 44 (left side in FIG. 1). The hydraulic pressure input to the second control port A2 presses the spool 42 toward the same side as the urging force of the return spring 44 (the right side in FIG. 1).
 第1制御ポートA1は、第1制御ライン54に接続されている。第2制御ポートA2は、第2制御ライン56に接続されている。第1入力ポートB1は、第1入力ライン53接続されている。第2入力ポートB2は、第2入力ライン55に接続されている。 The first control port A1 is connected to the first control line 54. The second control port A2 is connected to the second control line 56. The first input port B1 is connected to the first input line 53. The second input port B2 is connected to the second input line 55.
 第1制御ライン54には、オリフィス72が設けられている。これにより、第1制御ポートA1には、オリフィス72によって流量が制限された状態でオイルが供給される。また、第1制御ポートA1には、オイルポンプ20の吐出圧(ライン圧)に応じた油圧が入力される。 The first control line 54 is provided with an orifice 72. Thus, oil is supplied to the first control port A1 in a state where the flow rate is limited by the orifice 72. Further, a hydraulic pressure corresponding to the discharge pressure (line pressure) of the oil pump 20 is input to the first control port A1.
 第2制御ライン56には、減圧弁73、油圧制御弁74及びオリフィス75が設けられている。これにより、第2制御ライン56に供給された油圧は、減圧弁73によって減圧された後、油圧制御弁74によって、予め設定された設定圧になるように制御される。この油圧制御弁74によって油圧制御されたオイルは、オリフィス75によって流量が制限された状態で第2制御ポートA2に供給される。 The second control line 56 is provided with a pressure reducing valve 73, a hydraulic control valve 74, and an orifice 75. Accordingly, the hydraulic pressure supplied to the second control line 56 is controlled by the hydraulic control valve 74 so as to have a preset pressure after being reduced by the pressure reducing valve 73. The oil hydraulically controlled by the hydraulic control valve 74 is supplied to the second control port A2 in a state where the flow rate is limited by the orifice 75.
 本実施形態では、油圧制御弁74としては、油圧制御弁74への制御信号に応じて、油圧制御弁74の出力(第2制御ポートA2に入力される油圧)を制御可能な電磁弁が用いられる。第2制御ポートA2に入力される油圧(前記設定圧)は、ライン圧が、予め設定された目標値(前記所定圧)となるような値に設定される。 In the present embodiment, as the hydraulic control valve 74, an electromagnetic valve capable of controlling the output of the hydraulic control valve 74 (the hydraulic pressure input to the second control port A2) according to a control signal to the hydraulic control valve 74 is used. It is done. The hydraulic pressure (the set pressure) input to the second control port A2 is set to a value such that the line pressure becomes a preset target value (the predetermined pressure).
 レギュレータバルブ40のスプール42の軸方向位置は、第1制御ポートA1への入力油圧(ライン圧)と、第2制御ポートA2への入力油圧(前記設定圧)及びリターンスプリング44の付勢力とのバランスによって決まる。 The axial position of the spool 42 of the regulator valve 40 is determined by the input hydraulic pressure (line pressure) to the first control port A1, the input hydraulic pressure (the set pressure) to the second control port A2, and the biasing force of the return spring 44. It depends on the balance.
 緊急用ドレンポートC2は、緊急用ドレンライン62を介してオイルパン70に接続されている。緊急用ドレンポートC2は、第2入力ポートB2が開放された状態において該、第2入力ポートB2に連通する。第2入力ポートB2は、ライン圧が異常上昇したときに開放される。このとき、余剰オイルが、第2入力ポートB2、緊急用ドレンポートC2及び緊急用ドレンライン62を経由してドレンされることで、第1制御ポートA1、第2制御ポートA2及び第1入力ポートB1に過剰なオイルが流入するのを規制することができる。この結果、レギュレータバルブ40によるライン圧制の信頼性が確保される。 The emergency drain port C <b> 2 is connected to the oil pan 70 through the emergency drain line 62. The emergency drain port C2 communicates with the second input port B2 in a state where the second input port B2 is opened. The second input port B2 is opened when the line pressure rises abnormally. At this time, excess oil is drained via the second input port B2, the emergency drain port C2, and the emergency drain line 62, so that the first control port A1, the second control port A2, and the first input port are drained. It is possible to restrict excessive oil from flowing into B1. As a result, the reliability of the line pressure control by the regulator valve 40 is ensured.
 出力ポートC1は、フィードバック油路としてのフィードバックライン57を介して、オイルポンプ20の制御室36に接続されている。出力ポートC1は、第1入力ポートB1が開放された状態において該第1入力ポートB1に連通する。出力ポートC1が第1入力ポートB1に連通した状態において、第1入力ポートB1に入力されたライン圧は、そのまま出力ポートC1から出力され、出力ポートC1から出力された油圧が、フィードバックライン57を介して、オイルポンプ20の制御室36に導かれる。 The output port C1 is connected to the control chamber 36 of the oil pump 20 via a feedback line 57 as a feedback oil path. The output port C1 communicates with the first input port B1 when the first input port B1 is open. In the state where the output port C1 is in communication with the first input port B1, the line pressure input to the first input port B1 is output as it is from the output port C1, and the hydraulic pressure output from the output port C1 passes through the feedback line 57. Through the control chamber 36 of the oil pump 20.
 フィードバックライン57には、制御室36からの排油に比べて制御室36への給油を制限する給油制限装置80が設けられている。 The feedback line 57 is provided with an oil supply restriction device 80 that restricts oil supply to the control chamber 36 as compared with oil discharged from the control chamber 36.
 具体的に、フィードバックライン57は、相互に並列に接続された第1油路部58及び第2油路部59を有している。給油制限装置80は、第1油路部58に設けられたオリフィス81と、第2油路部59に設けられた逆止弁82とを有する。 Specifically, the feedback line 57 has a first oil passage 58 and a second oil passage 59 connected in parallel to each other. The oil supply restriction device 80 includes an orifice 81 provided in the first oil passage portion 58 and a check valve 82 provided in the second oil passage portion 59.
 第1油路部58では、オリフィス81によって、出力ポートC1側から制御室36側に向かう方向(制御室36への給油方向)、及び、制御室36側から出力ポートC1側に向かう方向(制御室36からの排油方向)のいずれにおいても、オイルの流量が制限される。 In the first oil passage section 58, the orifice 81 causes the direction from the output port C1 side to the control chamber 36 side (oil supply direction to the control chamber 36) and the direction from the control chamber 36 side to the output port C1 side (control). The oil flow rate is limited in any of the directions of oil draining from the chamber 36).
 逆止弁82は、出力ポートC1側から制御室36側に向かう方向(制御室36への給油方向)のオイルの通過を規制する弁である。この逆止弁82によって、第2油路部59では、制御室36側から出力ポートC1側に向かう方向(制御室36からの排油方向)のみのオイルの通過が許容される。 The check valve 82 is a valve that regulates the passage of oil in the direction from the output port C1 side toward the control chamber 36 (oil supply direction to the control chamber 36). By the check valve 82, the second oil passage portion 59 allows passage of oil only in the direction from the control chamber 36 side to the output port C1 side (oil drain direction from the control chamber 36).
 このように、フィードバックライン57では、第1油路部58のオリフィス81と、第2油路部59の逆止弁82とによって、制御室36からの排油に比べて制御室36への給油が制限される。 As described above, in the feedback line 57, the oil supply to the control chamber 36 is performed by the orifice 81 of the first oil passage portion 58 and the check valve 82 of the second oil passage portion 59 compared to the oil discharged from the control chamber 36. Is limited.
 フィードバックライン57におけるオリフィス81及び逆止弁82よりも出力ポートC1側の部分には、ドレンライン60が接続されている。このドレンライン60は、フィードバックライン57における、第1油路部58及び第2油路部59の並列部分よりも出力ポートC1側の部分に接続されている。これにより、フィードバックライン57を流れるオイルは、ドレンライン60を経由してドレンされることになる。 A drain line 60 is connected to the portion of the feedback line 57 closer to the output port C1 than the orifice 81 and the check valve 82. The drain line 60 is connected to a portion of the feedback line 57 that is closer to the output port C <b> 1 than the parallel portion of the first oil passage portion 58 and the second oil passage portion 59. As a result, the oil flowing through the feedback line 57 is drained via the drain line 60.
 ドレンライン60には、オリフィス76(絞り)が設けられている。このオリフィス76によって、ドレンライン60を経由してドレンされるオイルの流量が制限される。このように、ドレンライン60は、フィードバックライン57から絞りを介してオイルをドレンさせるドレン油路である。 The drain line 60 is provided with an orifice 76 (throttle). The orifice 76 restricts the flow rate of oil drained through the drain line 60. As described above, the drain line 60 is a drain oil passage that drains oil from the feedback line 57 through the throttle.
 以上のように構成された油圧供給装置10において、ライン圧が前記所定圧に制御されるとき、油圧制御弁74の出力(前記設定圧)は、一定圧に制御される。そのため、レギュレータバルブ40において、第2制御ポートA2には、一定の油圧が入力されることから、スプール42の軸方向の移動は、専ら、第1制御ポートA1に入力される油圧に応じて行われることになる。 In the hydraulic pressure supply device 10 configured as described above, when the line pressure is controlled to the predetermined pressure, the output of the hydraulic control valve 74 (the set pressure) is controlled to a constant pressure. Therefore, in the regulator valve 40, since a constant hydraulic pressure is input to the second control port A2, the movement of the spool 42 in the axial direction is performed exclusively according to the hydraulic pressure input to the first control port A1. It will be.
 第1制御ポートA1に入力される油圧は、オイルポンプ20の吐出圧の変動、すなわちライン圧の変動に応じて変動する。そのため、レギュレータバルブ40のスプール42は、ライン圧が上昇したときには図1の左側へ移動する一方、ライン圧が低下したときには図1の右側へ移動することになる。 The hydraulic pressure input to the first control port A1 varies according to the variation in the discharge pressure of the oil pump 20, that is, the variation in the line pressure. Therefore, the spool 42 of the regulator valve 40 moves to the left in FIG. 1 when the line pressure increases, and moves to the right in FIG. 1 when the line pressure decreases.
 このようなスプール42の軸方向の移動に応じて、レギュレータバルブ40の第1入力ポートB1は、図2に示す閉状態と、図3に示す開状態との間で切り換えられる。すなわち、第1入力ポートB1は、ライン圧が前記所定圧に対して低下したときには、閉状態となり、ライン圧が前記所定圧に対して上昇したときには、開状態となる。 According to the axial movement of the spool 42, the first input port B1 of the regulator valve 40 is switched between the closed state shown in FIG. 2 and the open state shown in FIG. That is, the first input port B1 is closed when the line pressure decreases with respect to the predetermined pressure, and is open when the line pressure increases with respect to the predetermined pressure.
 図2に示すように、第1入力ポートB1が閉じられて出力ポートC1に対して非連通状態となっているときには、出力ポートC1からフィードバックライン57への油圧の出力は停止される。これにより、オイルポンプ20の制御室36への給油が停止されることで、制御室36からフィードバックライン57へオイルが排出される。 As shown in FIG. 2, when the first input port B1 is closed and is not in communication with the output port C1, the output of hydraulic pressure from the output port C1 to the feedback line 57 is stopped. As a result, oil supply to the control chamber 36 of the oil pump 20 is stopped, so that oil is discharged from the control chamber 36 to the feedback line 57.
 このとき、フィードバックライン57の第1油路部58では、制御室36側から出力ポートC1側に向かって流れるオイルがオリフィス81を通過する。また、第2油路部59では、制御室36側から出力ポートC1側に向かって流れるオイルが、開放状態とされた逆止弁82を通過する。これにより、第2油路部59では、第1油路部58よりも多量のオイルが流れる。 At this time, in the first oil passage portion 58 of the feedback line 57, the oil flowing from the control chamber 36 side toward the output port C1 side passes through the orifice 81. In the second oil passage portion 59, the oil flowing from the control chamber 36 side toward the output port C1 side passes through the check valve 82 that is opened. Accordingly, a larger amount of oil flows in the second oil passage portion 59 than in the first oil passage portion 58.
 このようして第1油路部58及び第2油路部59を流れたオイル(制御室36からの排油)は、ドレンライン60を経由してドレンされる。これにより、制御室36からのスムーズな排油が促進される。したがって、制御室36の油圧を速やかに低下させて、オイルポンプ20の吐出圧(ライン圧)を迅速に上昇させることができる。 The oil that has flowed through the first oil passage 58 and the second oil passage 59 in this way (oil drained from the control chamber 36) is drained via the drain line 60. Thereby, smooth oil drainage from the control chamber 36 is promoted. Therefore, the hydraulic pressure in the control chamber 36 can be quickly reduced, and the discharge pressure (line pressure) of the oil pump 20 can be quickly increased.
 一方、図3に示すように、第1入力ポートB1が開放されて出力ポートC1に連通した状態となっているときには、オイルポンプ20の吐出ポート22bからメインライン51,サブライン52及び第1入力ライン53を経由して第1入力ポートB1に供給されたオイルは、出力ポートC1からフィードバックライン57に導かれ、更にフィードバックライン57を経由してオイルポンプ20の制御室36に導かれる。 On the other hand, as shown in FIG. 3, when the first input port B1 is opened and communicated with the output port C1, the main port 51, the subline 52, and the first input line are connected from the discharge port 22b of the oil pump 20. The oil supplied to the first input port B <b> 1 via 53 is led from the output port C <b> 1 to the feedback line 57, and further led to the control chamber 36 of the oil pump 20 via the feedback line 57.
 出力ポートC1側から制御室36側に向かってフィードバックライン57を流れるオイルは、逆止弁82によって第2油路部59の通過が規制されるとともに、オリフィス81によって第1油路部58における流通が制限される。これにより、制御室からの排油に比べて制御室36への給油が制限される。したがって、制御室36の油圧を緩やかに上昇させて、オイルポンプ20の吐出圧(ライン圧)を緩やかに低下させることができる。 The oil flowing through the feedback line 57 from the output port C1 side toward the control chamber 36 side is restricted from passing through the second oil passage portion 59 by the check valve 82, and flows through the first oil passage portion 58 by the orifice 81. Is limited. Thereby, the oil supply to the control chamber 36 is restricted as compared with the oil drained from the control chamber. Therefore, the hydraulic pressure in the control chamber 36 can be gradually increased, and the discharge pressure (line pressure) of the oil pump 20 can be gradually decreased.
 また、制御室36への給油時には、フィードバックライン57を流れる余剰分は、ドレンライン60に導かれてドレンされる。これにより、フィードバックライン57の第1油路部58を通って制御室36に供給されるオイル量の安定化が図れ、この結果、レギュレータバルブ40の出力変動が制御室36の油圧に与える影響を軽減することができる。 Further, at the time of refueling to the control chamber 36, the surplus portion flowing through the feedback line 57 is guided to the drain line 60 and drained. As a result, the amount of oil supplied to the control chamber 36 through the first oil passage portion 58 of the feedback line 57 can be stabilized, and as a result, the influence of the output fluctuation of the regulator valve 40 on the hydraulic pressure of the control chamber 36 can be reduced. Can be reduced.
 さらに、制御室36への給油時には、フィードバックライン57からドレンライン60へのドレン量が、オリフィス76によって制限されるため、過剰なドレンが抑制される。したがって、フィードバックライン57から制御室36へ適量の給油がなされることで、制御室36への給油が著しく遅れたり不足したりすることを抑制することができる。 Furthermore, when refueling the control chamber 36, the drain amount from the feedback line 57 to the drain line 60 is limited by the orifice 76, so that excessive drain is suppressed. Therefore, by supplying an appropriate amount of oil from the feedback line 57 to the control chamber 36, it is possible to prevent the oil supply to the control chamber 36 from being significantly delayed or insufficient.
 ここで、図4Aに示す第1比較例及び図4Bに示す第2比較例と比較しながら、第1実施形態の作用効果についてより具体的に説明する。 Here, the effects of the first embodiment will be described in more detail while comparing with the first comparative example shown in FIG. 4A and the second comparative example shown in FIG. 4B.
 図4Aに示すように、第1比較例に係る油圧供給装置は、前述の油圧供給装置10に対して、フィードバックライン57において第1油路部58及び第2油路部59の並列部分及び給油制限装置80が設けられていない点が異なり、その他の構成は第1実施形態と同様である。 As shown in FIG. 4A, the hydraulic pressure supply device according to the first comparative example is different from the above-described hydraulic pressure supply device 10 in the feedback line 57 in the parallel portion of the first oil passage portion 58 and the second oil passage portion 59 and the oil supply. The configuration is the same as that of the first embodiment except that the limiting device 80 is not provided.
 図4Bに示すように、第2比較例に係る油圧供給装置も、油圧供給装置10に対して、フィードバックライン57において第1油路部58及び第2油路部59の並列部分及び給油制限装置80が設けられていない点が異なる。但し、第2比較例に係る油圧供給装置においては、フィードバックライン57に、第1実施形態における第1油路部58のオリフィス81と同様のオリフィス81が設けられている。 As shown in FIG. 4B, the hydraulic pressure supply device according to the second comparative example also includes a parallel portion of the first oil path portion 58 and the second oil path portion 59 in the feedback line 57 and the oil supply restriction device with respect to the hydraulic pressure supply device 10. The difference is that 80 is not provided. However, in the hydraulic pressure supply device according to the second comparative example, the feedback line 57 is provided with an orifice 81 similar to the orifice 81 of the first oil passage portion 58 in the first embodiment.
 図5Aに示すグラフは、前記第1比較例において、ライン圧の目標値Po(一点鎖線参照)が所定圧P1(ここでは、一定値)に制御されている車両走行時に、自動変速機の変速が行われるときの実際のライン圧Pの推移を示す。 The graph shown in FIG. 5A shows that in the first comparative example, the shift of the automatic transmission is performed when the vehicle travels in which the line pressure target value Po (see the alternate long and short dash line) is controlled to a predetermined pressure P1 (here, a constant value). Shows the transition of the actual line pressure P when.
 図5Bに示すグラフは、前記第2比較例において、ライン圧の目標値Po(一点鎖線参照)が所定圧P1(ここでは、一定値)に制御されている車両走行時に、自動変速機の変速が行われるときの実際のライン圧Pの推移を示す。 The graph shown in FIG. 5B shows that in the second comparative example, the shift of the automatic transmission is performed when the vehicle travels in which the line pressure target value Po (see the alternate long and short dash line) is controlled to a predetermined pressure P1 (here, a constant value). Shows the transition of the actual line pressure P when.
 図6に示すグラフは、第1実施形態において、ライン圧の目標値Po(一点鎖線参照)が所定圧P1(ここでは、一定値)に制御されている車両走行時に、自動変速機の変速が行われるときの実際のライン圧Pの推移を示す。 In the graph shown in FIG. 6, in the first embodiment, the shift of the automatic transmission is changed when the vehicle travels in which the line pressure target value Po (see the alternate long and short dash line) is controlled to a predetermined pressure P1 (here, constant value). The transition of the actual line pressure P when performed is shown.
 図5A、図5B及び図6において、時刻t1において、自動変速機の変速が開始されたとする。これにより、当該変速時に締結すべき1つ又は複数の摩擦締結要素の締結油圧室にオイルが供給されることで、ライン圧Pが所定圧P1よりも低くなる。このため、レギュレータバルブ40の第1入力ポートB1が閉状態となり、制御室36からフィードバックライン57へオイルが排出される。 In FIG. 5A, FIG. 5B, and FIG. 6, it is assumed that the shift of the automatic transmission is started at time t1. As a result, the line pressure P becomes lower than the predetermined pressure P1 by supplying oil to the engagement hydraulic chambers of the one or more friction engagement elements to be engaged at the time of the gear change. Therefore, the first input port B1 of the regulator valve 40 is closed, and oil is discharged from the control chamber 36 to the feedback line 57.
 図5Aに示すように、第1比較例では、時刻t1で、自動変速機の変速が開始されてライン圧Pが所定圧P1よりも低くなったとき、オイルポンプ20の制御室36からフィードバックライン57への排油が制限されることなく速やかに行われる。この結果、ライン圧Pは急上昇する。 As shown in FIG. 5A, in the first comparative example, when the shift of the automatic transmission is started at time t1 and the line pressure P becomes lower than the predetermined pressure P1, the feedback line is supplied from the control chamber 36 of the oil pump 20. Oil draining to 57 is promptly performed without restriction. As a result, the line pressure P increases rapidly.
 このように急上昇したライン圧Pは所定圧P1を超え、これにより、レギュレータバルブ40の第1入力ポートB1が開状態となり、フィードバックライン57を介して制御室36にオイルが供給される。第1比較例では、フィードバックライン57に給油制限装置80が設けられていないので、制御室36への給油も、制御室36からの排油と同様に、制限されることなく速やかに行われる。このため、ライン圧Pが急降下して再び所定圧P1を下回り、再び制御室36からの排油が行われる。 The line pressure P thus rapidly increased exceeds the predetermined pressure P1, thereby opening the first input port B1 of the regulator valve 40 and supplying oil to the control chamber 36 via the feedback line 57. In the first comparative example, since the oil supply restriction device 80 is not provided in the feedback line 57, the oil supply to the control chamber 36 is also performed quickly without being restricted, as is the case of the oil drained from the control chamber 36. For this reason, the line pressure P drops rapidly and again falls below the predetermined pressure P1, and the oil is discharged from the control chamber 36 again.
 このように、第1比較例では、ライン圧Pの急上昇と急降下とを繰り返すハンチングが生じ易くなる。そのため、ライン圧Pが所定圧P1に安定するまでには時間がかかり、その間、前記締結すべき摩擦締結要素の締結油圧室に供給される油圧が不安定となって、自動変速機の変速制御の精度が低下する可能性がある。 Thus, in the first comparative example, hunting that repeats a rapid rise and fall of the line pressure P is likely to occur. Therefore, it takes time until the line pressure P stabilizes at the predetermined pressure P1, and during this time, the hydraulic pressure supplied to the engagement hydraulic chamber of the friction engagement element to be engaged becomes unstable, and the shift control of the automatic transmission is performed. Accuracy may be reduced.
 図5Bに示すように、第2比較例では、自動変速機の変速が開始されてライン圧Pが所定圧P1よりも低くなったとき、制御室36からの排油が行われるが、この排油は、フィードバックライン57に設けられたオリフィス83(図4B参照)によって制限される。 As shown in FIG. 5B, in the second comparative example, when the shift of the automatic transmission is started and the line pressure P becomes lower than the predetermined pressure P1, oil is discharged from the control chamber 36. Oil is limited by an orifice 83 (see FIG. 4B) provided in the feedback line 57.
 そのため、第2比較例では、ライン圧Pが所定圧P1にまで上昇するのに時間がかかり、これにより、前記締結すべき摩擦締結要素を完全に締結させるのに時間がかかり、この結果、変速時間が増大したり、該摩擦締結要素の締結力の不足によりスリップが生じたりする。 For this reason, in the second comparative example, it takes time for the line pressure P to rise to the predetermined pressure P1, and thus it takes time to completely fasten the frictional engagement element to be fastened. Time may increase or slip may occur due to insufficient fastening force of the frictional engagement element.
 これに対し、第1実施形態では、図6に示すように、変速の開始(時刻t1)によってライン圧Pが低下した後、ライン圧Pを上昇させるために制御室36からの排油が行われるとき、給油制限装置80における逆止弁82が開放されて、フィードバックライン57及びドレンライン60を経由した速やかな排油が行われることで、ライン圧Pは所定圧P1まで速やかに上昇する。 On the other hand, in the first embodiment, as shown in FIG. 6, after the line pressure P decreases due to the start of shifting (time t1), oil is discharged from the control chamber 36 in order to increase the line pressure P. In this case, the check valve 82 in the oil supply restriction device 80 is opened, and quick oil draining via the feedback line 57 and the drain line 60 is performed, so that the line pressure P quickly rises to the predetermined pressure P1.
 そして、ライン圧Pが所定圧P1を超えると、制御室36への給油に切り換わる。この給油が給油制限装置80によって制限されるので、ライン圧Pが緩やかに低下する。この結果、ライン圧Pのハンチングが抑制されて、ライン圧Pを、所定圧P1又は所定圧P1に近い値に早期に安定させることができる。 Then, when the line pressure P exceeds the predetermined pressure P1, the oil supply to the control chamber 36 is switched. Since this oil supply is restricted by the oil supply restriction device 80, the line pressure P gradually decreases. As a result, the hunting of the line pressure P is suppressed, and the line pressure P can be quickly stabilized at the predetermined pressure P1 or a value close to the predetermined pressure P1.
 このように、第1実施形態では、変速の開始に伴って低下したライン圧Pを速やかに上昇させて所望の圧力(所定圧P1)に安定させることができるため、変速時間の短縮、及び、前記締結すべき摩擦締結要素のスリップの抑制を図ることができる。よって、自動変速機の変速制御の精度を向上させることができる。 As described above, in the first embodiment, the line pressure P that has decreased with the start of shifting can be quickly increased and stabilized to a desired pressure (predetermined pressure P1). The slip of the frictional engagement element to be fastened can be suppressed. Therefore, the accuracy of the shift control of the automatic transmission can be improved.
 図7Aのグラフは、第1比較例において、ライン圧の目標値Poを、所定圧P1(以下、第1所定圧P1という)から第2所定圧P2に上昇させたときの実際のライン圧Pの推移を示す。 The graph of FIG. 7A shows the actual line pressure P when the line pressure target value Po is increased from a predetermined pressure P1 (hereinafter referred to as a first predetermined pressure P1) to a second predetermined pressure P2 in the first comparative example. Shows the transition.
 図7Bのグラフは、第2比較例において、ライン圧の目標値Poを、第1所定圧P1から第2所定圧P2に上昇させたときの実際のライン圧Pの推移を示す。 The graph of FIG. 7B shows the transition of the actual line pressure P when the target value Po of the line pressure is increased from the first predetermined pressure P1 to the second predetermined pressure P2 in the second comparative example.
 図8のグラフは、第1実施形態において、ライン圧の目標値Poを、第1所定圧P1から第2所定圧P2に上昇させたときの実際のライン圧Pの推移を示す。 The graph of FIG. 8 shows a transition of the actual line pressure P when the target value Po of the line pressure is increased from the first predetermined pressure P1 to the second predetermined pressure P2 in the first embodiment.
 前記のようなライン圧の目標値Poの変更は、油圧制御弁74への制御信号の変更によって、第2制御ポートA2に入力される油圧(前記設定圧)を変更することで可能になる。目標値Poが第2所定圧P2に変更された後においては、第1入力ポートB1は、ライン圧Pが第2所定圧P2に対して低下したときには、閉状態となり、ライン圧Pが第2所定圧P2に対して上昇したときには、開状態となる。 It is possible to change the target value Po of the line pressure as described above by changing the hydraulic pressure (the set pressure) input to the second control port A2 by changing the control signal to the hydraulic control valve 74. After the target value Po is changed to the second predetermined pressure P2, the first input port B1 is closed when the line pressure P is lower than the second predetermined pressure P2, and the line pressure P is the second pressure P2. When it rises with respect to the predetermined pressure P2, it will be in an open state.
 図7A、図7B及び図8において、時刻t2で、目標値Poが第1所定圧P1から第2所定圧P2に上昇されると、ライン圧Pが第2所定圧P2よりも低くなるため、レギュレータバルブ40の第1入力ポートB1が閉状態となり、制御室36からフィードバックライン57へオイルが排出される。 7A, 7B and 8, when the target value Po is increased from the first predetermined pressure P1 to the second predetermined pressure P2 at time t2, the line pressure P becomes lower than the second predetermined pressure P2. The first input port B1 of the regulator valve 40 is closed, and oil is discharged from the control chamber 36 to the feedback line 57.
 図7Aに示すように、第1比較例では、時刻t2で、目標値Poが第1所定圧P1から第2所定圧P2に上昇されると、オイルポンプ20の制御室36からフィードバックライン57への排油が行われる。この排油は制限されることなく速やかに行われて、ライン圧Pが急上昇する。 As shown in FIG. 7A, in the first comparative example, when the target value Po is increased from the first predetermined pressure P1 to the second predetermined pressure P2 at time t2, the control chamber 36 of the oil pump 20 returns to the feedback line 57. Is drained. This draining of oil is promptly performed without restriction, and the line pressure P increases rapidly.
 このようにして急上昇したライン圧Pは第2所定圧P2を超え、これにより、レギュレータバルブ40の第1入力ポートB1が開状態となり、フィードバックライン57を介して制御室36にオイルが供給される。第1比較例では、制御室36への給油も、制御室36からの排油と同様に、制限されることなく速やかに行われるため、ライン圧Pが急降下して再び第2所定圧P2を下回り、再び制御室36からの排油が行われる。 The line pressure P thus rapidly increased exceeds the second predetermined pressure P2, whereby the first input port B1 of the regulator valve 40 is opened, and oil is supplied to the control chamber 36 via the feedback line 57. . In the first comparative example, the oil supply to the control chamber 36 is also performed quickly without being restricted, similarly to the oil drain from the control chamber 36, so the line pressure P drops rapidly and the second predetermined pressure P2 is set again. The oil is discharged from the control chamber 36 again.
 このように、第1比較例では、ライン圧の目標値が上昇されたときもハンチングが生じ易くなる。このため、ライン圧Pが第2所定圧P2に安定するまでには時間がかかり、その間の油圧制御の精度が低下し易くなる。 Thus, in the first comparative example, hunting is likely to occur even when the target value of the line pressure is increased. For this reason, it takes time for the line pressure P to stabilize at the second predetermined pressure P2, and the accuracy of the hydraulic control during that time is likely to decrease.
 図7Bに示すように、第2比較例では、時刻t2で、目標値Poが第1所定圧P1から第2所定圧P2に上昇されると、制御室36からの排油が行われるが、この排油はオリフィス83によって制限されるため、ライン圧Pが第2所定圧P2にまで上昇するのに時間がかかり、油圧制御の精度が低下し易くなる。 As shown in FIG. 7B, in the second comparative example, when the target value Po is increased from the first predetermined pressure P1 to the second predetermined pressure P2 at time t2, oil is discharged from the control chamber 36. Since this drainage is limited by the orifice 83, it takes time for the line pressure P to rise to the second predetermined pressure P2, and the accuracy of hydraulic control tends to be reduced.
 これに対して、第1実施形態では、図8に示すように、目標値Poの上昇(時刻t2)によってライン圧Pが、新たな目標値Poである第2所定圧P2よりも低くなった後、ライン圧Pを上昇させるために制御室36からの排油が行われるとき、給油制限装置80における逆止弁82が開放されて、フィードバックライン57及びドレンライン60を経由した速やかな排油が行われることで、ライン圧Pは第2所定圧P2まで速やかに上昇する。 On the other hand, in the first embodiment, as shown in FIG. 8, the line pressure P becomes lower than the second predetermined pressure P2, which is the new target value Po, due to the increase of the target value Po (time t2). After that, when oil is discharged from the control chamber 36 in order to increase the line pressure P, the check valve 82 in the oil supply restriction device 80 is opened, and quick oil is discharged via the feedback line 57 and the drain line 60. Is performed, the line pressure P quickly rises to the second predetermined pressure P2.
 そして、ライン圧Pが第2所定圧P2を超えて、制御室36への給油に切り換わると、この給油が給油制限装置80によって制限されるので、ライン圧Pが緩やかに低下する。この結果、ライン圧Pのハンチングが抑制されて、ライン圧Pを、第2所定圧P2又は第2所定圧P2に近い値に早期に安定させることができる。 Then, when the line pressure P exceeds the second predetermined pressure P2 and is switched to refueling to the control chamber 36, the refueling is restricted by the refueling restriction device 80, so that the line pressure P gradually decreases. As a result, the hunting of the line pressure P is suppressed, and the line pressure P can be quickly stabilized to the second predetermined pressure P2 or a value close to the second predetermined pressure P2.
 このように、第1実施形態では、目標値Poの上昇に従ってライン圧Pを速やかに上昇させて所望の圧力(第2所定圧P2)に安定させることができる。所望のライン圧に従った高精度の油圧制御を行うことができる。 Thus, in the first embodiment, the line pressure P can be quickly increased as the target value Po increases, and can be stabilized at a desired pressure (second predetermined pressure P2). High-precision hydraulic control according to the desired line pressure can be performed.
 図9A及び図9Bは、第1実施形態における給油制限装置80の具体的構成の一例を示す。尚、給油制限装置80以外の油圧供給装置10の構成は、前述の通りであるため、ここでは説明を省略するとともに、図9A及び図9Bでは図示を省略している。 9A and 9B show an example of a specific configuration of the oil supply restriction device 80 according to the first embodiment. Note that the configuration of the hydraulic pressure supply device 10 other than the oil supply restriction device 80 is as described above, and therefore, the description thereof is omitted here and the illustration thereof is omitted in FIGS. 9A and 9B.
 図9A及び図9Bの構成例では、給油制限装置80がユニット状に構成されてフィードバックライン57に設けられている。この給油制限装置80は、オリフィス81と逆止弁82とを一体化したものである。 9A and 9B, the oil supply restriction device 80 is configured in a unit shape and provided in the feedback line 57. The oil supply restriction device 80 is an integrated unit of an orifice 81 and a check valve 82.
 給油制限装置80は、フィードバックライン57上に設けられたハウジング151を有する。このハウジング151には、該ハウジング151の内部空間(後述の油路空間S1)を、フィードバックライン57における、ハウジング151よりも出力ポートC1側の油路部分に連通させる第1連通口152と、ハウジング151よりも制御室36側の油路部分に連通させる第2連通口153とが設けられている。 The oil supply restriction device 80 includes a housing 151 provided on the feedback line 57. The housing 151 includes a first communication port 152 that communicates an internal space (an oil passage space S1 described later) of the housing 151 with an oil passage portion of the feedback line 57 closer to the output port C1 than the housing 151, and a housing. A second communication port 153 that communicates with the oil passage portion closer to the control chamber 36 than 151 is provided.
 第1連通口152及び第2連通口153は、フィードバックライン57の長さ方向に互いに対向するように配置されている。ハウジング151内には、第1連通口152と第2連通口153との間を繋ぐ油路空間S1が形成されている。また、ハウジング151内には、第1連通口152と第2連通口153との対向方向にスライド可能なように逆止弁82が収容されている。 The first communication port 152 and the second communication port 153 are arranged to face each other in the length direction of the feedback line 57. An oil passage space S <b> 1 that connects the first communication port 152 and the second communication port 153 is formed in the housing 151. Further, a check valve 82 is accommodated in the housing 151 so as to be slidable in a direction opposite to the first communication port 152 and the second communication port 153.
 逆止弁82は、フィードバックライン57の長さ方向に延びかつ第1連通口152側に開放されるような有底筒状の弁体181を有する。この弁体181には、フィードバックライン57の長さ方向に延びかつ第1連通口152側に開口した穴部183と、この穴部183の第2連通口153側の開口を塞ぐ底部184とが設けられている。穴部183内には、弁体181を第2連通口153側に付勢するスプリング185が収容されている。弁体181の外周面には、弁体181の軸方向に延びる複数の溝部186が周方向に間隔をあけて設けられている。各溝部186は、常に第1連通口152に連通し、弁体181の軸方向の位置に応じて第2連通口153に連通可能とされている。 The check valve 82 has a bottomed cylindrical valve body 181 that extends in the length direction of the feedback line 57 and is opened to the first communication port 152 side. The valve body 181 has a hole 183 that extends in the length direction of the feedback line 57 and opens to the first communication port 152 side, and a bottom 184 that closes the opening of the hole 183 on the second communication port 153 side. Is provided. A spring 185 that urges the valve body 181 toward the second communication port 153 is accommodated in the hole 183. A plurality of grooves 186 extending in the axial direction of the valve body 181 are provided on the outer peripheral surface of the valve body 181 at intervals in the circumferential direction. Each groove portion 186 always communicates with the first communication port 152 and can communicate with the second communication port 153 according to the position of the valve body 181 in the axial direction.
 各溝部186が第2連通口153に連通した状態において、ハウジング151内の油路空間S1には、第1連通口152から溝部186を経由して第2連通口153に至る油路部分が形成される。この油路部分は、前述の第2油路部59(図1~図3参照)に相当する。 In a state where each groove portion 186 communicates with the second communication port 153, an oil passage portion that extends from the first communication port 152 to the second communication port 153 through the groove portion 186 is formed in the oil passage space S1 in the housing 151. Is done. This oil passage portion corresponds to the aforementioned second oil passage portion 59 (see FIGS. 1 to 3).
 オリフィス81は、弁体181の底部184を貫通して設けられており、これにより、オリフィス81と弁体181(逆止弁82)とが一体化されている。オリフィス81は、第1連通口152、第2連通口153及び穴部183よりも小径とされている。オリフィス81は、穴部183の内部空間を第2連通口153に連通させるように底部184に設けられている。 The orifice 81 is provided so as to penetrate the bottom 184 of the valve body 181, whereby the orifice 81 and the valve body 181 (check valve 82) are integrated. The orifice 81 has a smaller diameter than the first communication port 152, the second communication port 153, and the hole 183. The orifice 81 is provided at the bottom 184 so that the internal space of the hole 183 communicates with the second communication port 153.
 これにより、ハウジング151内の油路空間S1には、第1連通口152から穴部183の内部空間及びオリフィス81を経由して第2連通口153に至る油路部分が形成される。この油路部分は、前述の第1油路部58(図1~図3参照)に相当する。 Thereby, in the oil passage space S1 in the housing 151, an oil passage portion is formed from the first communication port 152 to the second communication port 153 via the internal space of the hole 183 and the orifice 81. This oil passage portion corresponds to the aforementioned first oil passage portion 58 (see FIGS. 1 to 3).
 図9Aに示すように、フィードバックライン57において、レギュレータバルブ40の出力ポートC1側からオイルポンプ20の制御室36側に向かってオイルが流れるとき、第1連通口152からハウジング151内に供給される油圧と、スプリング185の付勢力とによって、弁体181が第2連通口153側に移動して、弁体181の底部184によって第2連通口153が塞がれる。このとき、第2連通口153と溝部186とが非連通状態になる。これにより、第1連通口152から第2連通口153へ流れるオイルは全て、オリフィス81(第1油路部58)を通過することになる(図3参照)。 As shown in FIG. 9A, when oil flows from the output port C1 side of the regulator valve 40 toward the control chamber 36 side of the oil pump 20 in the feedback line 57, the oil is supplied from the first communication port 152 into the housing 151. The valve body 181 moves to the second communication port 153 side by the hydraulic pressure and the urging force of the spring 185, and the second communication port 153 is blocked by the bottom 184 of the valve body 181. At this time, the 2nd communicating port 153 and the groove part 186 will be in a non-communication state. Thereby, all of the oil flowing from the first communication port 152 to the second communication port 153 passes through the orifice 81 (first oil passage portion 58) (see FIG. 3).
 このとき、フィードバックライン57において出力ポートC1側から制御室36側へ流れるオイルの流量は、給油制限装置80のオリフィス81によって制限され、これによって、制御室36への給油が制限される。 At this time, the flow rate of oil flowing from the output port C1 side to the control chamber 36 side in the feedback line 57 is limited by the orifice 81 of the oil supply limiting device 80, thereby limiting the oil supply to the control chamber 36.
 一方、図9Bに示すように、フィードバックライン57において、オイルポンプ20の制御室36側からレギュレータバルブ40の出力ポートC1側に向かってオイルが流れるとき、第2連通口153からハウジング151内に供給される油圧によって、弁体181がスプリング185の付勢力に抗して第1連通口152側に移動して、第2連通口153が開放されるとともに、第2連通口153と溝部186とが非連通状態になる。 On the other hand, as shown in FIG. 9B, when oil flows from the control chamber 36 side of the oil pump 20 toward the output port C1 side of the regulator valve 40 in the feedback line 57, the oil is supplied from the second communication port 153 into the housing 151. Due to the hydraulic pressure, the valve body 181 moves against the urging force of the spring 185 toward the first communication port 152 side, the second communication port 153 is opened, and the second communication port 153 and the groove 186 are connected. It becomes a disconnected state.
 このとき、オリフィス81及び溝部186は、第1連通口152及び第2連通口153の双方に連通した状態となる。これにより、オリフィス81及び溝部186の双方において、第2連通口153側から第1連通口152側へ流れるオイルの通過が可能になる。したがって、制御室36からフィードバックライン57へ排出されたオイルは、給油制限装置80による流量の制限がなされることなく、ドレンライン60を経由して速やかにドレンされる(図2参照)。 At this time, the orifice 81 and the groove 186 are in communication with both the first communication port 152 and the second communication port 153. As a result, the oil flowing from the second communication port 153 side to the first communication port 152 side can be passed through both the orifice 81 and the groove portion 186. Therefore, the oil discharged from the control chamber 36 to the feedback line 57 is quickly drained through the drain line 60 without being restricted by the oil supply restriction device 80 (see FIG. 2).
 前記構成の給油制限装置80によれば、第1油路部58及び第2油路部59に相当する2つの油路部分を、ハウジング151内の油路空間S1に集約して形成することができる。この結果、オリフィス81と逆止弁82とを一体化することと相俟って、フィードバックライン57における第1油路部58及び第2油路部59の並列部分を、コンパクト化することができる。 According to the oil supply restriction device 80 configured as described above, the two oil passage portions corresponding to the first oil passage portion 58 and the second oil passage portion 59 can be formed in the oil passage space S <b> 1 in the housing 151. it can. As a result, in combination with the integration of the orifice 81 and the check valve 82, the parallel portion of the first oil passage 58 and the second oil passage 59 in the feedback line 57 can be made compact. .
 尚、前述の給油制限装置80の構成はあくまでも一例に過ぎず、第1実施形態における給油制限装置80の具体的構成は、特に限定されるものでない。 Note that the configuration of the above-described oil supply restriction device 80 is merely an example, and the specific configuration of the oil supply restriction device 80 in the first embodiment is not particularly limited.
 (第2実施形態)
 図10~図12は、第2実施形態に係る自動変速機の油圧供給装置110を示す。第2実施形態における自動変速機及び油圧供給装置110も、車両に搭載されるものである。尚、図10~図12において、図1と同じ部分については、同じ符号を付して、その説明を省略する。
(Second Embodiment)
10 to 12 show a hydraulic pressure supply device 110 for an automatic transmission according to a second embodiment. The automatic transmission and hydraulic pressure supply device 110 in the second embodiment are also mounted on the vehicle. 10 to 12, the same portions as those in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted.
 図10に示すように、第2実施形態では、第1実施形態におけるドレンライン60に代えて、レギュレータバルブ40にドレンポートD1が設けられている。 As shown in FIG. 10, in the second embodiment, a drain port D1 is provided in the regulator valve 40 in place of the drain line 60 in the first embodiment.
 第2実施形態において、フィードバックライン57の構成は、ドレンライン60接続されていない点を除けば、第1実施形態と同様であり、レギュレータバルブ40の構成は、ドレンポートD1が追加された点を除けば、第1実施形態と同様である。 In the second embodiment, the configuration of the feedback line 57 is the same as that of the first embodiment except that the drain line 60 is not connected, and the configuration of the regulator valve 40 is that the drain port D1 is added. Except for this, it is the same as the first embodiment.
 ドレンポートD1には、ドレンライン120が接続されており、ドレンポートD1と出力ポートC1とが連通した状態において、フィードバックライン57のオイルが、ドレンライン120を介してドレンされることになる。 A drain line 120 is connected to the drain port D1, and the oil in the feedback line 57 is drained through the drain line 120 in a state where the drain port D1 and the output port C1 communicate with each other.
 図11に示すように、オイルポンプ20の制御室36の油圧を低下させてライン圧を上昇させるとき、レギュレータバルブ40は、第1入力ポートB1が閉じられて出力ポートC1に対して非連通状態となることで、出力ポートC1からの油圧の出力が停止された状態になる。この出力停止状態において、ドレンポートD1が開放されて出力ポートC1と連通される。 As shown in FIG. 11, when the hydraulic pressure in the control chamber 36 of the oil pump 20 is decreased to increase the line pressure, the regulator valve 40 is in a non-communication state with respect to the output port C1 when the first input port B1 is closed. Thus, the hydraulic pressure output from the output port C1 is stopped. In this output stop state, the drain port D1 is opened and communicated with the output port C1.
 このとき、オイルポンプ20の制御室36からフィードバックライン57に排出されたオイルが、第1油路部58及び第2油路部59を通過するとともに、レギュレータバルブ40のドレンポートD1及びドレンライン120を介してドレンされる。これにより、制御室36からのスムーズな排油が促進される。したがって、第1実施形態と同様に、ライン圧の上昇に関して応答性の向上を図ることができる。 At this time, the oil discharged from the control chamber 36 of the oil pump 20 to the feedback line 57 passes through the first oil passage portion 58 and the second oil passage portion 59, and the drain port D 1 and the drain line 120 of the regulator valve 40. It is drained through. Thereby, smooth oil drainage from the control chamber 36 is promoted. Therefore, as in the first embodiment, the responsiveness can be improved with respect to an increase in line pressure.
 一方、図12に示すように、オイルポンプ20の制御室36の油圧を上昇させてライン圧を低下させるとき、レギュレータバルブ40は、第1入力ポートB1に入力された油圧を出力ポートC1から出力する。この出力ポートC1からの油圧の出力時には、ドレンポートD1が閉じられて出力ポートC1に対して非連通状態となる。この非連通状態で、ドレンポートD1は、フィードバックライン57のオイルのドレンを規制する。 On the other hand, as shown in FIG. 12, when the hydraulic pressure in the control chamber 36 of the oil pump 20 is increased to decrease the line pressure, the regulator valve 40 outputs the hydraulic pressure input to the first input port B1 from the output port C1. To do. When the hydraulic pressure is output from the output port C1, the drain port D1 is closed and the output port C1 is disconnected. In this non-communication state, the drain port D <b> 1 regulates the drain of oil in the feedback line 57.
 出力ポートC1からの油圧の出力時には、第1入力ポートB1から出力ポートC1へ流れるオイルは、ドレンポートD1からドレンされることはない。また、フィードバックライン57を流れるオイルが、フィードバックライン57の途中でドレンされることなく、オイルポンプ20の制御室36に供給される。 When oil pressure is output from the output port C1, the oil flowing from the first input port B1 to the output port C1 is not drained from the drain port D1. Further, the oil flowing through the feedback line 57 is supplied to the control chamber 36 of the oil pump 20 without being drained in the middle of the feedback line 57.
 このように、制御室36への給油時にオイルのドレンが規制されるため、オイルポンプ20からレギュレータバルブ40及びフィードバックライン57を介して制御室36に供給されるオイルの浪費を抑制することができる。 In this way, since oil drainage is restricted when refueling the control chamber 36, waste of oil supplied from the oil pump 20 to the control chamber 36 via the regulator valve 40 and the feedback line 57 can be suppressed. .
 したがって、第2実施形態によれば、オイルポンプ20の吐出ポート22bからレギュレータバルブ40の第1入力ポートB1へのオイル供給量の低減、延いては、オイルポンプ20の吐出量の低減を図ることができる。よって、自動変速機の駆動損失が低減されて、該自動変速機が搭載された車両の燃費性能を改善することができる。 Therefore, according to the second embodiment, the amount of oil supplied from the discharge port 22b of the oil pump 20 to the first input port B1 of the regulator valve 40 is reduced, and further, the amount of discharge of the oil pump 20 is reduced. Can do. Therefore, the drive loss of the automatic transmission can be reduced, and the fuel consumption performance of the vehicle equipped with the automatic transmission can be improved.
 尚、第2実施形態における給油制限装置80の具体的構成も、特に限定されるものでない。第1実施形態で説明した具体的構成(図9A及び図9Bに示す構成)と同様の構成が採用されてもよい。 In addition, the specific structure of the oil supply restriction | limiting apparatus 80 in 2nd Embodiment is not specifically limited, either. A configuration similar to the specific configuration described in the first embodiment (the configuration illustrated in FIGS. 9A and 9B) may be employed.
 (第3実施形態)
 図13~図15は、第3実施形態に係る自動変速機の油圧供給装置210を示す。第3実施形態における自動変速機及び油圧供給装置110も、車両に搭載されるものである。尚、図13~図15において、図1と同じ部分については、同じ符号を付して、その説明を省略する。
(Third embodiment)
13 to 15 show a hydraulic pressure supply device 210 for an automatic transmission according to a third embodiment. The automatic transmission and hydraulic pressure supply device 110 in the third embodiment are also mounted on the vehicle. 13 to 15, the same parts as those in FIG. 1 are denoted by the same reference numerals, and the description thereof is omitted.
 図13に示すように、第3実施形態において、フィードバックライン57は、第1実施形態における、互いに並列に接続された第1油路部58及び第2油路部59に代えて、互いに直列に接続された第1油路部257及び第2油路部258を有する。 As shown in FIG. 13, in the third embodiment, the feedback lines 57 are connected in series with each other in place of the first oil passage portion 58 and the second oil passage portion 59 connected in parallel with each other in the first embodiment. It has the 1st oil path part 257 and the 2nd oil path part 258 which were connected.
 第1油路部257及び第2油路部258は、ユニット状に構成された給油制限装置280を介して相互に接続されている。第1油路部257における給油制限装置280とは反対側の端部は、レギュレータバルブ40の出力ポートC1に接続され、第2油路部258における給油制限装置280とは反対側の端部は、オイルポンプ20の制御室36に接続されている。また、フィードバックライン57には、給油制限装置280を介してドレンライン260に接続されている。 The first oil passage portion 257 and the second oil passage portion 258 are connected to each other via an oil supply restriction device 280 configured in a unit shape. The end of the first oil passage portion 257 opposite to the oil supply restriction device 280 is connected to the output port C1 of the regulator valve 40, and the end of the second oil passage portion 258 opposite to the oil supply restriction device 280 is The oil pump 20 is connected to the control chamber 36. Further, the feedback line 57 is connected to the drain line 260 via the oil supply limiting device 280.
 給油制限装置280は、内部に油路空間S2が形成されたハウジング281を有する。このハウジング281には、ハウジング281内の油路空間S2をフィードバックライン57の第1油路部257に連通させる第1連通口282と、該油路空間S2をフィードバックライン57の第2油路部258に連通させる第2連通口283と、該油路空間S2をドレンライン260に連通させる第3連通口284とが設けられている。 The oil supply restriction device 280 has a housing 281 in which an oil passage space S2 is formed. The housing 281 includes a first communication port 282 that allows the oil passage space S2 in the housing 281 to communicate with the first oil passage portion 257 of the feedback line 57, and the oil passage space S2 to the second oil passage portion of the feedback line 57. A second communication port 283 that communicates with 258 and a third communication port 284 that communicates the oil passage space S2 with the drain line 260 are provided.
 第1連通口282と第2連通口283とは、フィードバックライン57の長さ方向に互いに対向するように配置されている。ハウジング281内には、第1連通口282と第2連通口283との対向方向にスライド可能なようにリリーフ弁290が収容されている。 The first communication port 282 and the second communication port 283 are arranged to face each other in the length direction of the feedback line 57. A relief valve 290 is accommodated in the housing 281 so as to be slidable in the opposing direction of the first communication port 282 and the second communication port 283.
 リリーフ弁290は、フィードバックライン57の長さ方向に延びかつ第1連通口282側に開放されるような有底筒状の弁体297を有する。弁体297には、フィードバックライン57の長さ方向に延びかつ第1連通口282側に開口した穴部291と、この穴部291の第2連通口283側の開口を塞ぐ底部292とが設けられている。弁体297の外周面は、第3連通口284に対向配置されている。 The relief valve 290 has a bottomed cylindrical valve body 297 that extends in the length direction of the feedback line 57 and opens to the first communication port 282 side. The valve body 297 is provided with a hole portion 291 that extends in the length direction of the feedback line 57 and opens to the first communication port 282 side, and a bottom portion 292 that closes the opening of the hole portion 291 on the second communication port 283 side. It has been. The outer peripheral surface of the valve body 297 is disposed to face the third communication port 284.
 弁体297の穴部291内には、弁体297を第2連通口283側に付勢するスプリング293が収容されている。弁体297の外周面における第2連通口283側の部分には、弁体297の軸方向に延びる1つ又は複数の溝部294が設けられている。溝部294の第1連通口282側の端部は閉塞されている。そして、溝部294は、弁体297の軸方向の位置に応じて、第2連通口283及び第3連通口284の両方に連通可能とされている。 A spring 293 that biases the valve body 297 toward the second communication port 283 is accommodated in the hole 291 of the valve body 297. One or a plurality of groove portions 294 extending in the axial direction of the valve body 297 are provided in a portion of the outer peripheral surface of the valve body 297 on the second communication port 283 side. The end of the groove 294 on the first communication port 282 side is closed. The groove portion 294 can communicate with both the second communication port 283 and the third communication port 284 according to the position of the valve body 297 in the axial direction.
 溝部294が第2連通口283に連通した状態(リリーフ弁290が開放された状態)において、ハウジング281内には、第2連通口283と弁体297の底部292との間の部分から溝部294を経由して第3連通口284に至る油路部分が形成される。当該油路部分は、第3連通口284を介してドレンライン260に接続されている。当該油路部分とドレンライン260とによって、オイルポンプ20の制御室36からフィードバックライン57に排出されたオイルを、開放されたリリーフ弁290を介してドレンさせるドレン油路が構成される。 In a state where the groove portion 294 communicates with the second communication port 283 (a state where the relief valve 290 is opened), the groove portion 294 is inserted into the housing 281 from a portion between the second communication port 283 and the bottom portion 292 of the valve body 297. An oil passage portion that reaches the third communication port 284 via is formed. The oil passage portion is connected to the drain line 260 via the third communication port 284. The oil passage portion and the drain line 260 constitute a drain oil passage that drains the oil discharged from the control chamber 36 of the oil pump 20 to the feedback line 57 via the opened relief valve 290.
 弁体297の底部292には、オリフィス295が貫通して設けられており、これにより、オリフィス295と弁体297(リリーフ弁290)とが一体化されている。オリフィス295は、第1連通口282、第2連通口283、第3連通口284及び穴部291よりも小径とされている。オリフィス295は、穴部291の内部空間を第2連通口283に連通させるように底部292に設けられている。 An orifice 295 is provided through the bottom 292 of the valve body 297, whereby the orifice 295 and the valve body 297 (relief valve 290) are integrated. The orifice 295 has a smaller diameter than the first communication port 282, the second communication port 283, the third communication port 284, and the hole portion 291. The orifice 295 is provided on the bottom 292 so that the internal space of the hole 291 communicates with the second communication port 283.
 これにより、ハウジング281内の油路空間S2には、第1連通口282から穴部291の内部空間及びオリフィス295を経由して第2連通口283に至る油路部分が形成される。当該油路部分は、フィードバックライン57において第1連通口282と第2連通口283とを繋ぐ油路部分を構成する。 Thereby, in the oil passage space S2 in the housing 281, an oil passage portion is formed from the first communication port 282 to the second communication port 283 via the internal space of the hole 291 and the orifice 295. The oil passage portion constitutes an oil passage portion that connects the first communication port 282 and the second communication port 283 in the feedback line 57.
 ハウジング281内の油路空間S2において、第2連通口283と弁体297の底部292との間の部分は、フィードバックライン57における前記ドレン油路との接続部285を構成する。これにより、フィードバックライン57において、オリフィス295は、前記ドレン油路との接続部285よりも出力ポートC1側に配置されていることになる。尚、オリフィス295に代えて、フィードバックライン57の第1油路部257にオリフィスを設けてもよい。 In the oil passage space S2 in the housing 281, a portion between the second communication port 283 and the bottom portion 292 of the valve body 297 constitutes a connection portion 285 of the feedback line 57 with the drain oil passage. Thereby, in the feedback line 57, the orifice 295 is arrange | positioned rather than the connection part 285 with the said drain oil path at the output port C1 side. Instead of the orifice 295, an orifice may be provided in the first oil passage portion 257 of the feedback line 57.
 このように配置されたオリフィス295によって、フィードバックライン57において、第1油路部257と第2油路部258との間でのオイルの流れ、及び、フィードバックライン57の第1油路部257とドレンライン260との間でのオイルの流れが制限される。 By the orifice 295 arranged in this way, in the feedback line 57, the flow of oil between the first oil passage portion 257 and the second oil passage portion 258, and the first oil passage portion 257 of the feedback line 57 and Oil flow to and from the drain line 260 is restricted.
 図14に示すように、オイルポンプ20の制御室36の油圧を低下させてライン圧を上昇させるとき、レギュレータバルブ40の出力ポートC1からの油圧の出力が停止された状態になって、制御室36から排出されたオイルが、フィードバックライン57の第2油路部258を制御室36側から給油制限装置280に向かって流れる。このとき、給油制限装置280において、第2連通口283側からハウジング281内に供給される油圧によって、リリーフ弁290の弁体297がスプリング293の付勢力に抗して第1連通口282側へ移動して、リリーフ弁290が開放される。これにより、第2連通口283が第3連通口284に連通される。 As shown in FIG. 14, when the hydraulic pressure in the control chamber 36 of the oil pump 20 is decreased to increase the line pressure, the output of the hydraulic pressure from the output port C1 of the regulator valve 40 is stopped, and the control chamber The oil discharged from 36 flows through the second oil passage portion 258 of the feedback line 57 from the control chamber 36 side toward the oil supply restriction device 280. At this time, in the oil supply restriction device 280, the valve body 297 of the relief valve 290 moves toward the first communication port 282 against the urging force of the spring 293 by the hydraulic pressure supplied into the housing 281 from the second communication port 283 side. As a result, the relief valve 290 is opened. As a result, the second communication port 283 communicates with the third communication port 284.
 このようにしてリリーフ弁290が開放されているとき、フィードバックライン57は、溝部294を介してドレンライン260に接続された状態となる。このとき、ハウジング281内の油路空間S2では、オリフィス295によって第2連通口283側から第1連通口282側へのオイルの流れが制限されるので、第2連通口283から溝部294を経由して第3連通口284に至るオイルの流れが促進される。したがって、制御室36から排出されたオイルは、リリーフ弁290及びドレンライン260を介してスムーズにドレンされる。これにより、迅速な排油が可能になるため、ライン圧の上昇に関して高い応答性が得られる。 When the relief valve 290 is thus opened, the feedback line 57 is connected to the drain line 260 via the groove 294. At this time, in the oil passage space S2 in the housing 281, the flow of oil from the second communication port 283 side to the first communication port 282 side is restricted by the orifice 295, so that the second communication port 283 passes through the groove 294. Thus, the flow of oil reaching the third communication port 284 is promoted. Therefore, the oil discharged from the control chamber 36 is smoothly drained through the relief valve 290 and the drain line 260. As a result, quick drainage is possible, and high responsiveness can be obtained with respect to an increase in line pressure.
 一方、図15に示すように、オイルポンプ20の制御室36の油圧を上昇させてライン圧を低下させるときには、レギュレータバルブ40の出力ポートC1から油圧が出力された状態になって、フィードバックライン57においてレギュレータバルブ40の出力ポートC1からオイルポンプ20の制御室36に向かってオイルが流れる。このとき、給油制限装置280では、第1連通口282からハウジング281内に供給される油圧と、スプリング293の付勢力とによって、リリーフ弁290の弁体297が第2連通口283側へ移動して、弁体297の底部292によって第2連通口283が塞がれる。こうして、リリーフ弁290が閉じられる。これにより、第1連通口282から第2連通口283へと流れるオイルは、必ずオリフィス295を通過することになる。すなわち、オリフィス295は、リリーフ弁290が閉じられているときに出力ポートC1からのオイルを制御室36に向けて流すことになる。 On the other hand, as shown in FIG. 15, when the hydraulic pressure in the control chamber 36 of the oil pump 20 is increased to decrease the line pressure, the hydraulic pressure is output from the output port C1 of the regulator valve 40, and the feedback line 57 Then, oil flows from the output port C1 of the regulator valve 40 toward the control chamber 36 of the oil pump 20. At this time, in the oil supply restriction device 280, the valve body 297 of the relief valve 290 moves to the second communication port 283 side by the hydraulic pressure supplied into the housing 281 from the first communication port 282 and the urging force of the spring 293. Thus, the second communication port 283 is closed by the bottom 292 of the valve body 297. Thus, the relief valve 290 is closed. As a result, the oil flowing from the first communication port 282 to the second communication port 283 always passes through the orifice 295. That is, the orifice 295 allows oil from the output port C1 to flow toward the control chamber 36 when the relief valve 290 is closed.
 リリーフ弁290が閉じられているとき、フィードバックライン57において出力ポートC1側から制御室36へと流れるオイルの流量は、オリフィス295によって制限され、これにより、制御室36への給油が制限されることになる。この結果、ライン圧の低下を緩やかに行うことができる。したがって、ライン圧のハンチングを抑制することができて、ライン圧を早期に所望の圧力に安定させることができる。 When the relief valve 290 is closed, the flow rate of oil flowing from the output port C1 side to the control chamber 36 in the feedback line 57 is limited by the orifice 295, thereby limiting the oil supply to the control chamber 36. become. As a result, the line pressure can be gradually reduced. Therefore, hunting of the line pressure can be suppressed, and the line pressure can be stabilized at a desired pressure at an early stage.
 また、第3実施形態によれば、フィードバックライン57が、互いに直列に接続された第1油路部257及び第2油路部258で構成されるため、第1及び第2実施形態のフィードバックライン57のように互いに並列に接続された第1油路部58及び第2油路部59を有する場合に比べて、フィードバックライン57の構成を簡素化することができる。 In addition, according to the third embodiment, the feedback line 57 includes the first oil passage portion 257 and the second oil passage portion 258 connected in series with each other, and thus the feedback lines of the first and second embodiments. The configuration of the feedback line 57 can be simplified as compared with the case where the first oil passage portion 58 and the second oil passage portion 59 are connected in parallel as in the case of 57.
 尚、第3実施形態において、前述の給油制限装置280の構成は一例に過ぎず、給油制限装置280としては種々の変更が可能である。例えば、給油制限装置280と同様の機能を機能を果たすスプール弁をフィードバックライン57上に設けるようにしてもよい。 In addition, in 3rd Embodiment, the structure of the above-mentioned oil supply restriction | limiting apparatus 280 is only an example, and various changes are possible as the oil supply restriction | limiting apparatus 280. FIG. For example, a spool valve that performs the same function as the oil supply restriction device 280 may be provided on the feedback line 57.
 本発明は、前述の実施形態に限られるものではなく、請求の範囲の主旨を逸脱しない範囲で代用が可能である。 The present invention is not limited to the embodiment described above, and can be substituted without departing from the spirit of the claims.
 例えば、前記実施形態では、ベーンタイプの可変容量型のオイルポンプを備えた油圧供給装置を例に挙げたが、可変容量型のオイルポンプが、該オイルポンプの制御室の油圧が上昇することで該オイルポンプの吐出圧が低下する一方、前記制御室の油圧が低下することで前記吐出圧が上昇するように構成されていれば、オイルポンプの種類や具体的構成は、特に限定されない。 For example, in the above-described embodiment, the hydraulic pressure supply device including the vane type variable displacement type oil pump is taken as an example. However, the variable displacement type oil pump is configured to increase the hydraulic pressure in the control chamber of the oil pump. The type and specific configuration of the oil pump are not particularly limited as long as the discharge pressure of the oil pump is reduced, and the discharge pressure is increased by reducing the hydraulic pressure of the control chamber.
 上述の実施形態は単なる例示に過ぎず、本発明の範囲を限定的に解釈してはならない。本発明の範囲は請求の範囲によって定義され、請求の範囲の均等範囲に属する変形や変更は、全て本発明の範囲内のものである。 The above-described embodiment is merely an example, and the scope of the present invention should not be interpreted in a limited manner. The scope of the present invention is defined by the scope of the claims, and all modifications and changes belonging to the equivalent scope of the claims are within the scope of the present invention.
 本発明は、可変容量型のオイルポンプを備えた自動変速機の油圧供給装置に有用であり、この種の油圧供給装置を備えた自動変速機の製造産業分野、及び、該自動変速機が搭載された車両の製造産業分野に特に有用である。 INDUSTRIAL APPLICABILITY The present invention is useful for a hydraulic pressure supply device for an automatic transmission provided with a variable displacement type oil pump. It is particularly useful in the field of manufacturing vehicles.
  2   油圧回路
  10  油圧供給装置
  20  可変容量型のオイルポンプ
  36  制御室
  40  レギュレータバルブ
  57  フィードバックライン(フィードバック油路)
  58  第1油路部
  59  第2油路部
  60  ドレンライン(ドレン油路)
  76  オリフィス(絞り)
  80  給油制限装置
  81  オリフィス
  82  逆止弁
  110 油圧供給装置
  260 ドレンライン
  280 給油制限装置
  290 リリーフ弁
  295 オリフィス
  A1  第1制御ポート
  A2  第2制御ポート
  B1  第1入力ポート
  C1  出力ポート(出力部)
  D1  ドレンポート
2 Hydraulic circuit 10 Hydraulic supply device 20 Variable displacement oil pump 36 Control room 40 Regulator valve 57 Feedback line (feedback oil passage)
58 First oil passage 59 Second oil passage 60 Drain line (drain oil passage)
76 Orifice
80 Oil Supply Limiting Device 81 Orifice 82 Check Valve 110 Hydraulic Supply Device 260 Drain Line 280 Oil Supply Limiting Device 290 Relief Valve 295 Orifice A1 First Control Port A2 Second Control Port B1 First Input Port C1 Output Port (Output Unit)
D1 Drain port

Claims (5)

  1.  自動変速機の油圧供給装置であって、
     前記自動変速機の制御に用いられる油圧を生成する可変容量型のオイルポンプと、
     前記オイルポンプの吐出圧を所定圧に調整するレギュレータバルブと、
     前記レギュレータバルブの出力部から出力された油圧を前記オイルポンプの制御室に導くフィードバック油路とを備え、
     前記オイルポンプは、前記制御室の油圧が上昇することで前記吐出圧が低下する一方、前記制御室の油圧が低下することで前記吐出圧が上昇するように構成されており、
     前記フィードバック油路に設けられ、前記制御室からの排油に比べて該制御室への給油を制限する給油制限装置を更に備えていることを特徴とする自動変速機の油圧供給装置。
    A hydraulic pressure supply device for an automatic transmission,
    A variable displacement oil pump that generates hydraulic pressure used to control the automatic transmission;
    A regulator valve for adjusting the discharge pressure of the oil pump to a predetermined pressure;
    A feedback oil passage for guiding the hydraulic pressure output from the output portion of the regulator valve to the control chamber of the oil pump;
    The oil pump is configured such that the discharge pressure decreases as the hydraulic pressure in the control chamber increases, while the discharge pressure increases as the hydraulic pressure in the control chamber decreases.
    A hydraulic pressure supply device for an automatic transmission, further comprising an oil supply restriction device provided in the feedback oil passage and configured to restrict oil supply to the control chamber as compared with oil discharged from the control chamber.
  2.  請求項1記載の自動変速機の油圧供給装置において、
     前記フィードバック油路は、相互に並列に接続された第1油路部及び第2油路部を有し、
     前記給油制限装置は、前記第1油路部に設けられたオリフィスと、前記第2油路部に設けられ、前記出力部側から前記制御室側に向かう方向のオイルの通過を規制する逆止弁とを有することを特徴とする自動変速機の油圧供給装置。
    In the automatic transmission hydraulic pressure supply device according to claim 1,
    The feedback oil passage has a first oil passage portion and a second oil passage portion connected in parallel to each other,
    The oil supply restriction device is a check that is provided in an orifice provided in the first oil passage and the second oil passage and restricts passage of oil in a direction from the output portion toward the control chamber. And a hydraulic pressure supply device for an automatic transmission.
  3.  請求項2記載の自動変速機の油圧供給装置において、
     前記フィードバック油路における前記オリフィス及び前記逆止弁よりも前記出力部側の部分に、該フィードバック油路から絞りを介してオイルをドレンさせるドレン油路が接続されていることを特徴とする自動変速機の油圧供給装置。
    In the automatic transmission hydraulic pressure supply device according to claim 2,
    A drain oil passage for draining oil from the feedback oil passage through a throttle is connected to a portion of the feedback oil passage closer to the output portion than the orifice and the check valve. Hydraulic supply device for the machine.
  4.  請求項2記載の自動変速機の油圧供給装置において、
     前記レギュレータバルブは、前記出力部からの油圧の出力が停止した状態においては前記制御室から前記フィードバック油路に排出されたオイルをドレンしかつ前記出力部からの油圧の出力時には該フィードバック油路のオイルのドレンを規制するドレンポートを有することを特徴とする自動変速機の油圧供給装置。
    In the automatic transmission hydraulic pressure supply device according to claim 2,
    The regulator valve drains the oil discharged from the control chamber to the feedback oil passage when the output of the oil pressure from the output portion is stopped, and when the oil pressure is output from the output portion, A hydraulic pressure supply device for an automatic transmission having a drain port for regulating drainage of oil.
  5.  請求項1記載の自動変速機の油圧供給装置において、
     前記給油制限装置は、前記フィードバック油路に設けられたリリーフ弁であって前記レギュレータバルブの出力部からの油圧の出力時には閉じられかつ該出力部からの油圧の出力が停止した状態においては開放されるリリーフ弁を有し、
     前記フィードバック油路に、前記制御室から前記フィードバック油路に排出されたオイルを、開放された前記リリーフ弁を介してドレンさせるドレン油路が接続され、
     更に前記給油制限装置は、前記フィードバック油路における前記ドレン油路との接続部よりも前記出力部側に設けられたオリフィスを更に有することを特徴とする自動変速機の油圧供給装置。
    In the automatic transmission hydraulic pressure supply device according to claim 1,
    The oil supply restriction device is a relief valve provided in the feedback oil passage, is closed when hydraulic pressure is output from the output portion of the regulator valve, and is opened when hydraulic pressure output from the output portion is stopped. A relief valve
    A drain oil path for draining oil discharged from the control chamber to the feedback oil path through the opened relief valve is connected to the feedback oil path,
    Further, the oil supply limiting device further includes an orifice provided on the output portion side of a connection portion of the feedback oil passage with the drain oil passage.
PCT/JP2018/005663 2017-03-10 2018-02-19 Hydraulic pressure suppky device for automatic transmission WO2018163767A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-046425 2017-03-10
JP2017046425A JP2018150974A (en) 2017-03-10 2017-03-10 Hydraulic pressure supply device of automatic transmission

Publications (1)

Publication Number Publication Date
WO2018163767A1 true WO2018163767A1 (en) 2018-09-13

Family

ID=63448426

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005663 WO2018163767A1 (en) 2017-03-10 2018-02-19 Hydraulic pressure suppky device for automatic transmission

Country Status (2)

Country Link
JP (1) JP2018150974A (en)
WO (1) WO2018163767A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57186683U (en) * 1981-05-22 1982-11-26
JPS5921093U (en) * 1982-07-30 1984-02-08 日産自動車株式会社 Variable displacement vane pump
JPS5960088A (en) * 1982-09-30 1984-04-05 Nachi Fujikoshi Corp Variable delivery volume vane pump
JPS6032580U (en) * 1983-08-09 1985-03-05 日産自動車株式会社 Variable displacement vane pump
JPH023780A (en) * 1988-03-28 1990-01-09 Nissan Motor Co Ltd Line pressure control device for variable displacement pump
JPH03181673A (en) * 1989-12-07 1991-08-07 Nissan Motor Co Ltd Variable capacity vane pump

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57186683U (en) * 1981-05-22 1982-11-26
JPS5921093U (en) * 1982-07-30 1984-02-08 日産自動車株式会社 Variable displacement vane pump
JPS5960088A (en) * 1982-09-30 1984-04-05 Nachi Fujikoshi Corp Variable delivery volume vane pump
JPS6032580U (en) * 1983-08-09 1985-03-05 日産自動車株式会社 Variable displacement vane pump
JPH023780A (en) * 1988-03-28 1990-01-09 Nissan Motor Co Ltd Line pressure control device for variable displacement pump
JPH03181673A (en) * 1989-12-07 1991-08-07 Nissan Motor Co Ltd Variable capacity vane pump

Also Published As

Publication number Publication date
JP2018150974A (en) 2018-09-27

Similar Documents

Publication Publication Date Title
EP2668379B1 (en) Oil pump with selectable outlet pressure
JP5116546B2 (en) Variable displacement vane pump
JP2010526237A (en) Hydraulic pump with variable flow rate and pressure and improved open loop electrical control
CN107923393B (en) Variable displacement oil pump
JP2009257167A (en) Variable displacement vane pump
US20170184096A1 (en) Variable pressure pump with hydraulic passage
WO2016027145A1 (en) Control device and control method for driving device
WO2016031767A1 (en) Pump device
JP2008025423A (en) Variable displacement pump
US20200025286A1 (en) Hydraulic control device for automatic transmission
WO2018163767A1 (en) Hydraulic pressure suppky device for automatic transmission
KR20160075304A (en) Minimal line pressure disturbance pump switching valve
JP6821257B2 (en) Switching valve device
JP2015048726A (en) Oil pump
JP2019173929A (en) Hydraulic control device for continuously variable transmission
JP2010127214A (en) Vane pump
WO2016043055A1 (en) Pump device
JP6610598B2 (en) Hydraulic transmission device for automatic transmission
JP2017020562A (en) Relief valve
JP6614193B2 (en) Hydraulic transmission device for automatic transmission
JP6001979B2 (en) Variable displacement pump
WO2024190591A1 (en) Variable capacity vane pump
JP5261235B2 (en) Variable displacement vane pump
JPH04171288A (en) Variable capacity vane pump
JP2019065964A (en) Hydraulic control device and power transmission device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18763683

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18763683

Country of ref document: EP

Kind code of ref document: A1