JPS5959917A - Microporous hollow fiber and its manufacture - Google Patents

Microporous hollow fiber and its manufacture

Info

Publication number
JPS5959917A
JPS5959917A JP16844682A JP16844682A JPS5959917A JP S5959917 A JPS5959917 A JP S5959917A JP 16844682 A JP16844682 A JP 16844682A JP 16844682 A JP16844682 A JP 16844682A JP S5959917 A JPS5959917 A JP S5959917A
Authority
JP
Japan
Prior art keywords
temperature
hollow
stretching
fiber
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16844682A
Other languages
Japanese (ja)
Other versions
JPH028047B2 (en
Inventor
Seiichi Hayashi
誠一 林
Takanori Anazawa
穴沢 孝典
Yoshiyuki Ono
善之 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawamura Institute of Chemical Research
DIC Corp
Original Assignee
Kawamura Institute of Chemical Research
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawamura Institute of Chemical Research, Dainippon Ink and Chemicals Co Ltd filed Critical Kawamura Institute of Chemical Research
Priority to JP16844682A priority Critical patent/JPS5959917A/en
Publication of JPS5959917A publication Critical patent/JPS5959917A/en
Publication of JPH028047B2 publication Critical patent/JPH028047B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Artificial Filaments (AREA)

Abstract

PURPOSE:To obtain the titled fiber having high heat resistance and chemical resistance, and useful as an ultrafiltration membrane, etc., by melt-spinning a resin composed of poly(p-phenylene sulfide), etc., through a spinneret for hollow fiber at a specific draft ratio, drawing under specific condition, and heat-setting the fiber. CONSTITUTION:A resin containing >=65wt% of poly(p-phenylene sulfide) is molten and spun through a spinneret for hollow fiber at a draft ratio of >=25 to obtain a hollow fiber. The fiber is drawn at a draw ratio DR1 of 1.0-3.3 and drawing temperature T1 of 20-(Tg+30) deg.C [Tg is the glass transition temperature of the polymer ( deg.C)], heat-set at a stretching ratio DR2 of 0.5-1.5 and temperature T2 of (Tg+20)-(Tg+180) deg.C, drawn again at a draw ratio DR3 of 1.05- 2.8 and temperature T3 of 10-(Tg+10) deg.C, successively drawn at a draw ratio DR4 of 1.0-2.5 and temperature T4 of (Tg+10)-(Tg+180) deg.C, and finally heat-set at a stretching ratio DR5 of 0.7-1.3 and temperature T5 of (Tg+110)-(Tg+ 180) deg.C to obtain a fiber having micropores with an average pore diameter of 0.003-1.5mu and a density of 10<8>-10<12> per 1cm<2> of the outer surface of the fiber.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、ポリ(p−フェニレンスルフィド)を主成分
びそれを溶融紡糸、熱処理延伸等の組合せで能率よく住
産する方法を提供することにある。 従来から、茜分子素柑の使J11形態として微多孔中窒
繊維がル、す、高分子柑製做多孔中空繊維は多くの分野
で使H」されてきた。例えば水、廃液、溶液の分離S精
製6同収に限夕lit ’3め膜として、また、人工腎
臓等の医療器具等である。 これらけいづれも−に記贈多孔中空繊維を隔膜分離膜と
して機能させることであるが、従来から実際に市販され
ていル膜の−Jt4は、セルロース、セルロースアセテ
ート、芳香族ポリアミド、ポリアクリロニトリル、ポリ
サルホン等であった。しかし、これらの素材はいづれも
耐熱性と耐薬品1′トに関して、いづれかの特性に欠点
があり、ユーザーから面1熱性、及び耐薬品性のすぐれ
た膜素材はないかとの要望が強かった。即ち、面1熱性
に関しては、常用で80℃、短時間では95〜100℃
以上の耐熱性が欲しいが、実際にこれまでの市販の膜素
材は常用で80℃は無理である。 他方、耐薬品性に1↓■しては、f111強酸性、i1
強アルカリ性、111i′I堪素性(30c+ppm以
−りの濃度に而1えること)、耐酸化剤性(有機物除去
洗浄剤に耐えること)、耐有機溶剤性に対して、従来の
市販膜素材はいづれかの特性に弱いことが欠点であった
。 他方、従来の微多孔中空繊維の製造方法は、いづれも累
月とその良溶媒との溶液を、中空繊維紡糸1」金から湿
式紡糸し、然る後、貧溶媒の凝固浴中で凝固させ、洗浄
脱溶媒して中空繊維にする、いわゆる半乾式湿式、又は
湿式紡糸による成形方法であった。この方法は、溶媒を
扱うために製造が複雑になること、また、生産j(L度
も5om/分以下であり、生産性が極めて低いことなど
が欠点であった。 本発明者らは、膜の素材として、特に耐熱性、耐薬品性
及び力学的強度のずぐJまた累月の探索と、その累月か
ら微多孔中空繊維を製造する方法について検討した結果
、ポリ(p−フェニレンスルフィド)(以下PPSと略
称する)を主成分とする原料樹脂が累月として適してい
ることを見い出した。ppsは結晶性高分子であり、熱
可塑性を有するので、溶hk!i紡糸ができる。この特
徴を効果的に利用して、溶融紡糸して得た中空繊維を熱
処理して結晶を発生させ、次いで結晶延伸を円滑に行な
って微多孔を生成させ、最後に微多孔構造を熱固定する
という方法である。この方法は、従来の半乾式又は漫式
法とは微多孔を形成させる機構が全く別のものであり、
ユニークであるといえる。 かくして、本発明者らの提案は、65M1仕%以上がポ
リ(p−−)ユニしンスルフイド)からなる微多孔中空
(g維であって、繊維横断面積比による中空率が8〜8
5%である中空繊維はその外表面から内表面へ通じる連
通孔の微多孔を多数有し、微多孔の平均孔径が0.00
′5μmn−6μmである、ことをti&徴とする微多
孔中空棒組の提供と、65庫甲%以上がポリ(p−フェ
ニレンスルフィド)からなる原料)f+1脂を、ドラフ
ト率25以上で中空繊維紡糸口金を通して溶融紡糸して
中空繊維を形成し、該中空1カツ雄な延伸倍率DR,=
 1.0〜3.3.温度T、=20〜(’I”g+30
)℃(Tgはポリマーのガラス転移温度℃)に゛〔延伸
し、次いで、緊張度DR,=05〜1.5、温度’1’
2=(1”g+20 )〜(1g+180)”Cにて熱
処理した後、該中空繊維を延伸倍率DR,=1.05〜
2,8、温度T、=10〜(1g+10)℃にて延伸し
、引続いて延伸倍率DR4=1.D〜2.5、温度T4
−(Tg+10 )〜(Tg+iso℃)にて延伸し、
最後に、緊張度DR,= 0.7〜1,3、温度T5 
” (Tg+ 110 )〜(1g+180)℃にて熱
固定することにより、中空t/鹸1#に微多孔を形成さ
せることを特徴とする、微多孔中空H)J1#の製造法
を提供するものである。 本発明のポリ(p−フェニレンスルフィド)とは、ポリ
マーの主構成単位としてp−フェニレンスルフィドラ9
0モル%以上に含有したポリマーをいう。他に10モル
%未満で含有できる11’η成単位としては、例えば、
メクフエニレジフェニルエーデルスルフイド、ジンエニ
ルケトンスルフイド、ジフェニルスルボンスルフィド、
ビフェニルスルフ゛フェニル、アルコキシ、二1・rl
、ハロゲン基のいづれか)4.5・をf!11示できる
。 また、本発明の1改多孔形成のIIN埋は、溶融紡出「
川と矛めν維を結晶化ざ・υ1、その結晶化物を強fl
i1.l的に延伸して微多孔を11−り成するもので、
ちるから、フラ図的にPPSに他のポリマーをブレンド
(また原料からなる中空繊維を結晶化させて、微Al1
14i’?造的にIT P Sの微結晶領域と、他のポ
リマーの領域から成る複相(^−造を形成させ、どの構
造′ド11を延伸すると、目的とする微多孔が形成され
る場合がある。 PPSにブし/ンドできる他のポリマーのhl:は65
%未満である。他のポリマーが35%以上を占めると、
微多孔の形成、耐熱性、耐薬品性、力学的liI性等の
いづれかに欠点が生じてPPSの特質が消えてくる。ブ
レンドできる他のボIJ −r −トじては、ポリエチ
レンテレフタレート、ポリエチレンテレフタレート、ナ
イロン−6、ナイロン−66、ポリエーテル−1・、ポ
リオキシメチレン、ポリフェニレン品性ポリマーや、ポ
リザルホン、ポリエーテルサルホン等の非品性ポリマー
を例示できる。また、この様な原料4i+l脂は、酸化
防止剤、帯電防止剤、抗菌剤、滑剤、表面活性剤等の添
加剤を必要に応じて適叶含有することができる。 上記の通り規定されたppsを主成分とするポリマーを
中空繊維に溶融紡糸する際の紡糸L」金は、従来から知
られている環状ノズル又はスリット状ノズルのいづれで
もよいが、多殻孔のノズルから多数本の中空U赫1¥を
紡糸するにはスリット状ノズルの方が好適である。溶融
紡糸する際のドラフト率1)fは25以−ヒでなければ
ならない。ここでドラフト率とは、し1金におり−るポ
リマーの吐出速度Voと、中空4・きり維の引取速度V
、の関係式Df=V、/Voである。 1)f<25では、後二[程での微多孔構造の発現が困
難である。即ら、結晶化のための熱処理を経た中空繊維
は脆く伸度がないので、結晶延伸が困難になる。Dfは
25以」二、々rましくは50以上である。 紡糸温度(ノズル部のポリマ一温度)は、可動性の範囲
内で51及的に低温であることが望ましく、300℃近
傍が適当である。PP51
The object of the present invention is to provide a method for efficiently producing poly(p-phenylene sulfide) by combining poly(p-phenylene sulfide) with a combination of melt spinning, heat treatment and stretching, etc. Hitherto, microporous hollow fibers made from microporous nitrogen fibers, and porous hollow fibers made from polymers have been used in many fields. For example, it can be used as a membrane for the separation and purification of water, waste liquid, and solutions, as well as for medical instruments such as artificial kidneys. Each of these uses porous hollow fibers to function as a diaphragm separation membrane, but Jt4, which has been commercially available in the past, is made of cellulose, cellulose acetate, aromatic polyamide, polyacrylonitrile, polysulfone. etc. However, all of these materials have shortcomings in one of the properties regarding heat resistance and chemical resistance, and there has been a strong demand from users for a membrane material with excellent heat resistance and chemical resistance. That is, regarding surface 1 thermal properties, it is 80℃ for regular use and 95-100℃ for short time.
We would like to have the above heat resistance, but in reality, conventional membrane materials on the market cannot be heated to 80°C. On the other hand, if the chemical resistance is 1↓■, f111 strong acidity, i1
Conventional commercially available membrane materials have poor resistance to strong alkalinity, 111i'I resistance (must be kept at a concentration of 30c+ppm or higher), oxidation agent resistance (to withstand organic matter removal cleaning agents), and organic solvent resistance. Its disadvantage was that it was weak in one of its characteristics. On the other hand, conventional methods for producing microporous hollow fibers involve wet-spinning a solution of sludge and its good solvent from hollow fiber spinning 1'' gold, and then coagulating it in a coagulation bath of a poor solvent. This was a so-called semi-dry wet molding method, or a wet spinning method, in which hollow fibers were formed by washing and desolvation. This method has disadvantages such as complicated manufacturing due to the handling of solvent, and extremely low productivity as the production j (L degree is also less than 5 om/min).The present inventors As a material for membranes, we searched for fibers with particular heat resistance, chemical resistance, and mechanical strength, and investigated a method for producing microporous hollow fibers from these fibers.We found that poly(p-phenylene sulfide) ) (hereinafter abbreviated as PPS) has been found to be suitable as a raw material resin as the main component. Since pps is a crystalline polymer and has thermoplasticity, melt hk!i spinning can be performed. By effectively utilizing this feature, the hollow fiber obtained by melt spinning is heat-treated to generate crystals, then the crystals are smoothly stretched to generate microporous, and finally the microporous structure is heat-fixed. This method has a completely different mechanism for forming micropores than the conventional semi-dry method or dry method.
It can be said to be unique. Thus, the present inventors' proposal is a microporous hollow (g-fiber) composed of poly(p--)unisulfide, in which 65M1% or more is poly(p--)unisulfide, and the hollowness ratio according to the fiber cross-sectional area ratio is 8 to 8.
5% hollow fiber has a large number of micropores that communicate from the outer surface to the inner surface, and the average pore diameter of the micropores is 0.00.
Providing a microporous hollow rod set having a diameter of 5 μm to 6 μm, and using F+1 resin (a raw material consisting of poly(p-phenylene sulfide) at 65% or more) as a hollow fiber with a draft rate of 25 or more. A hollow fiber is formed by melt spinning through a spinneret, and the hollow fiber is drawn at a stretching ratio DR,=
1.0-3.3. Temperature T, = 20~('I''g+30
) °C (Tg is the glass transition temperature of the polymer °C).
After heat treatment at 2=(1"g+20) to (1g+180)"C, the hollow fibers are stretched at a draw ratio DR,=1.05 to
2,8, stretching at temperature T = 10~(1g+10)°C, followed by stretching ratio DR4 = 1. D~2.5, temperature T4
- Stretched at (Tg+10) to (Tg+iso°C),
Finally, tension level DR, = 0.7~1.3, temperature T5
”Providing a method for producing microporous hollow H) J1#, which is characterized by forming micropores in hollow T/soap 1# by heat-setting at (Tg+110) to (1g+180)°C. The poly(p-phenylene sulfide) of the present invention refers to p-phenylene sulfide 9 as the main structural unit of the polymer.
It refers to a polymer containing 0 mol% or more. Other 11'η units that can be contained in less than 10 mol% include, for example,
Mekhuenylesiphenyl ether sulfide, dienyl ketone sulfide, diphenyl sulfone sulfide,
biphenylsulfphenyl, alkoxy, 21.rl
, any of the halogen groups) 4.5.f! 11 can be shown. In addition, the IIN embedding of the present invention with 1-modified pore formation can be achieved by melt spinning.
The river and the crystallized ν fiber are υ1, and the crystallized product is strong fl.
i1. It is stretched in a 1-length direction to form 11 microporous holes.
From Chirukara, we blend PPS with other polymers (also by crystallizing the hollow fibers made of raw materials to create fine Al1
14i'? By forming a multi-phase structure consisting of a microcrystalline region of ITPS and a region of other polymers, and stretching which structure 11, the desired microporous structure may be formed. The HL of other polymers that can be loaded into PPS is 65.
less than %. If other polymers account for 35% or more,
The characteristics of PPS are lost due to defects in microporous formation, heat resistance, chemical resistance, mechanical liI properties, etc. Other materials that can be blended include polyethylene terephthalate, polyethylene terephthalate, nylon-6, nylon-66, polyether-1, polyoxymethylene, polyphenylene polymers, polysulfone, polyethersulfone. Examples of non-quality polymers include: Further, such raw material 4i+l fat may contain additives such as antioxidants, antistatic agents, antibacterial agents, lubricants, and surfactants as necessary. When melt-spinning the polymer mainly composed of pps as defined above into hollow fibers, the spun L'gold may be spun using either a conventionally known annular nozzle or a slit-like nozzle, but A slit-shaped nozzle is more suitable for spinning a large number of hollow U-shape yarns from the nozzle. The draft rate during melt spinning 1) f must be 25 or more. Here, the draft rate is the discharge speed Vo of the polymer flowing into the metal and the take-up speed V of the hollow 4-cut fiber.
, the relational expression Df=V,/Vo. 1) When f<25, it is difficult to develop a microporous structure in the second stage. That is, hollow fibers that have undergone heat treatment for crystallization are brittle and have no elongation, making crystal stretching difficult. Df is 25 or more, preferably 50 or more. The spinning temperature (the temperature of the polymer at the nozzle part) is desirably as low as possible within the range of movability, and is suitably around 300°C. PP51

【30%の原料の場合は28
5〜310℃の範囲が好適である。 その理由は、後述の通り、後工程でラメラを発達させる
ための熱処理を行う必要があることからも分る如く、本
発明ではより高い分子配向状態にあることが望ましいた
め、溶融紡糸で成形する未延伸中空縁+146の非晶配
向もより高いことが望ましいからである。 上記の如く、本発明の製造法は低温紡糸気味に紡糸する
のであるが、口金からの吐出時のポリマーの溶th++
粘度は500〜10,000ボイズ、好ましくは3,0
00〜5,000ポイズである。かかる溶i、41:粘
度と曳糸性を与えるために、ポリマーは一定以上の分子
f−を有しなければならない。PP5100%の原料の
場合の分子h1はα−クロロナフタレン溶液中、205
℃で測定した固有粘度が0.25〜080、好ましくは
0.60〜050を有する程度の高分子h)である。 PPSにブレンドする他のポリマーの固有粘度は、0.
50以上であることが望ましい。 紡出した中空繊維の外径は30μm〜5mInが望まし
い。 外径や中壁率は、用途目的によって設定できる。但し、
外径が6〔]μm未*’iの中空(茫維や、5mmを越
える中空槽i(1:の成形は、中空紳維Ill金、紡糸
湯度等を調節しても、実際」二むづかしい。 に述の如く成形しまた未延伸中空(Al1紐は、次に、
延伸倍率1)R,=1〔]〜・66、温度T、=20〜
(1”tA−50)’Cにて延伸する。この工程は、次
工程の熱処理により、ラメラを千4)に発達さぜる配向
結、(−1化に必兜な、未延11匠A甜1の分子鎧の配
向を向−ヒすることにk)る。先のIfAl!紡糸にお
(・て、ドラフト率を次Pr!、に」−昇し、ていくと
、あるドラフト率Dfmaxで断糸が生−A゛る。高ト
ラフI・紡糸、即らLl、75Df+ηax(r]f 
< 11.971)fm’qxのJ合には、この段階で
の延伸工程(非晶※i〔仲)を省略17てもよい(I)
 R,=1.0はこの省略をA゛′!味ずろ)。しか1
−125 < I)f < 0.75 Dfmaxの場
合には、延伸倍≧% 1. [1< 13R,<ろろ、
温度T、:20〜(Tgj 30 )”Cにて延伸する
ことが必要である。ここで、延伸倍率とは、延伸Mff
の原長に対する延伸後の長さの倍率をいう。DR,>3
.3の場合には、非晶延伸による分子ユ11の配向度が
上昇し過ぎてしまい、微多孔の生成は困7.!11にな
る。 延伸温度T1は20<1’、≦(Tg−+−50)℃、
好ましくは(Tg−20)<T、≦(T’g4−10 
)”(、、:である。T、<20”Cの場合は、未延伸
中空繊維が白化l〜てボイドが激しく発生し、次工程で
の熱処[1によるラメラの発達が阻害される。他方、T
、 > (Tgj30 ) ”Cの場合は、流動延伸気
味になり、目的とする非晶分子鎖の配向度が上列l〜な
い。延伸の実施態様は、一対の回転ロール間で、供給ロ
ールを熱ロールにして、ドライブロールの周速を供給ロ
ールの周速よりも速くイることにより行ないうる。供給
ロールの周速は50m/分以−に、通常は150 rn
/分前後の高速にできるので、本発明の微多孔中空繊維
の生産性は極めて高い。この点は本発明の特長の1つで
ある。 ィ欠に、配向上結晶イしにより、ラメラを発、達させる
ために、5;自ノ1ζ度IW、=0.5〜15、浩^度
T、= (Tg−1−20)  〜(Tg−1−180
,、)”Cにて熱処理する。ここで緊張度とは、熱処理
前の原長に対1−る、熱処1.jp中の熱処理装置に把
持されている間の長さの倍率でキ)る。従って、DR2
=0.9とは10%の収縮を施すことであり、I)R,
=1.1とは10%の伸長を施すことである。緊張度は
、好まし7くは0、9 < L)112< 1.1であ
る。D R,< 0.5の鳴合は、発達したラメラの配
IFj功→ンダムになったり、球晶が発生するので、次
工程での結晶延伸で微多孔の形成が不ロ]能になる。ま
た、DR7> 1.5の場合は、ラメラが発達しにくく
なる。 熱処理rJlj−’l’J’J、、Ne的には、(Tg
−1−110)<=2 <(1’g+16(1)”Cに
することが好ましい。熱処理の方法としては、初めに(
1’g+2o)℃近傍の温度に導入して、次イーし7:
湿ハ1を上昇させて、最終的に(Tgj110 )〜(
Tgj160)”Cにて処理しても、jl)るいは(T
gj20)〜(1°g+180)℃の範囲内で一定温度
で処理しても、又は(Tgj20)〜(Tgj180)
”Cの範囲内で、数段階に分げ゛C1次第に昇温し2て
もよい。T、<(Tg+2υ)℃の場合は、実質的にラ
メラの発達はない。他方、T、>(Tgj180)℃の
場合は、ラメラ示ランダムになることと、結晶化速度が
遅くなるという欠点が生ずる。 熱処理時間は2〜60分、好ましくは5〜61]分であ
る。 熱処す1!の実un DJ4 jtY<としCは、一対
のロール間で、供給ロールと引取ロールの周速を保線(
することにより、緊張度を設定し、一対のロール間に熱
風t」、遠赤外線lJ等の熱浴の中に挿入1−て処理す
ることが好まし℃・。 十ilF熱処理により比較的配向したラメラを発達させ
た中r−pisは、次K、延(’p 倍率D R3””
 1.05〜2.8.14 U ”s =10〜(Tg
j10)”Cにて、冷延伸気味に延伸する。この延(叫
」、結晶延伸であり、この工程により微多孔が生成を始
める。先の、41j5処理条件と、本]−程の延伸条件
の川み合わせにより、微多孔の仕り“イメはほぼ決定さ
れる。延伸倍率とは91〔沖前の片長に対する、延伸後
の長さの倍率をいう。 ラメラを変形さぜる結晶延伸が本発明の基本思想である
ので、冷延伸シtすにのi+j;ρ11のために、延伸
温度は、15≦T。 り(’I’g −30)”cか好ましい。これは、通常
の繊維やフィルムの延伸とは異7.C−:)た特徴的な
ことである。l)g、=1.Q5〜1.5の場合は、生
成する微多9Lの平均孔径が0006〜0.06ztm
になり、DRs = 1.5〜2.0では0.06〜0
.6 ttmにブ、Cす、■月t、 = 2.0−2.
8では[J、 6〜3μmの平均孔径になる。勿論、1
或妙)、(孔径の11月1と調整には、全上程の条件の
微妙な調整が必要であることは当然である。DR3<1
.05の1ぢ胎は、実′ν1的に1へ多孔を形成するこ
とはできない。 1)R,>2.8のIJ橘(、R2、中空繊維のマクロ
なボイドによる構造の破壊が生じて微多孔の形成ができ
ない。’I’、<10℃σ−)場合は、結晶延伸が困佇
になり、他方T、> (T g −F 10 ) ”(
−の場合は微多孔の形成がむづかしく・。 続号・て、上記の延伸により微多孔の形成された中空線
(fUを延伸倍率DR4= 1. (1〜2.5、r!
1*−1tlf +114−(T g 4−10 ) 
〜(Tg+180)℃にて熱延伸気叶−に延伸する。1
111記σ)(−月111倍率DR5で延伸形成された
微多孔の平均孔径が小さし・場合、即ち、0.003〜
0.0/Sμmのときは、続く本工程での延伸を省略(
即ちDR4= 1.0 )しても、微多孔の形成にほと
んど支障はないが、孔径が0.06μInを越えると、
本二り程の熱延伸を施すことにより、微多孔の形成を、
より円滑に行なうことができる。但し、本工程の延イ唱
主、余り大きな倍率ではなく、■)瓜=1.0〜25、
好ましくは1.1 < 1)R4<1.5である。DR
4>2.5になると、延伸率DR,による先の延伸でせ
っかく形成した微多孔が変形して消失してし7まう。好
ましい延伸温度は(Tg−1−20)≦T4≦(Tg−
1−80)℃でホ)る。Tイ<(Tg+10)℃のノ↓
う合は、微多孔の円滑な形成に効果がt・よどんどなく
、他方、T4>(Tg+180)℃の1iう自は、イ(
夕多孔が変形して消失する。 かくして、形成t7た微多孔を、最後に、緊張度I)馬
=0、7〜1.6、温度’I’!l = (’I’ g
 −t−11[] )〜(Tg−4−180)℃にて熱
1.’、I定のための熱処4J11を施す。緊張度とは
、先の工程での熱処理ど同1子に、熱処坤前の片長に刻
する、熱処理中の熱処理装置の把持の長さの倍率である
。好ましくは、緊張バIR,が0.9≦I)R,≦11
、処(型温度1゛、が(Tg+150)≦′1゛、≦(
Tg+17 o )”に 、時間は5秒〜5分である。 木二「稈の熱固定処理をMliさないと、形成された微
多孔(41り債が経時的V:、′A−化し′C1孔径が
次第に小さくなり、孔形状が変化することと、耐熱寸法
安定性が態いとい5問題が生ずる。 熱固定を施さない場合、例えば、150°Cの空気浴に
ろ0分間放置したときの熱収縮率が25〜65%である
のに対し、熱固定処理後の熱収縮率は2〜4%に犬[I
Jに低下L2、咋つ孔形状及び孔径は、はとんどもとの
状態を保持する。 これ故従来の膜累月による半乾式又は湿式紡糸による微
多孔中空繊維と比較すると抜/lFの耐熱性、耐熱=J
法安54:li/、1を有することは明らかである。 以−Lの方法により製造した微多孔中空綿°維は、その
外表面から内表面に至る膜層内で、周囲から独立の微孔
はほとんどなく、大部分が外表面から内表面へ通じてい
る連通孔になっていることが、繊維の断面の電子顕微鏡
写真の観察から確βgされる。 本発明の微多孔中空繊維の断面を観察すると、微多什の
孔径と微多孔の分布密度は、外表面から内表面にかけて
、はとんど粗密がな(はぼ均質である。それ故従来の半
乾式ないし湿式紡糸による中空fJ&1)がいわゆるス
キン層とコ“r層からなる、1)1密を有する不均質構
造であるのとは対照的である。本発明の中空il維の微
多孔の数は、孔径と空孔率にもよるが粋維ダ(表面にお
いて107〜10”Aゴ程度であることが、電顕写真の
糾d1的観察により数えられる。また、本発明の製造条
件の縮み合わせと選定により、得られる中空糸の平均孔
径は0006〜6μmの範囲をとりうる。平均孔径は、
用途、目的に応じ゛〔適宜、膜用できる。平均孔径は中
空わ川[の外衣面の走査型電子顕微鏡写真又は、透過型
111子5]r1微鏡によるレプリカ写真から、100
飼の孔を測定して31′均し/、−〇 中空霞維の11η多孔が夕I表面から内表面に連通して
いるために、非多孔のpps中穿紳維の密度がほぼ1.
555〜t 360 gAψ♂(20℃)であるのに対
し、本発明中空繊維の具用密度は0.16〜1.221
7arpとかなり低い。この場合の見掛密度は、微多孔
中空繊維の一定量を採取して重量を秤量し、20℃の大
気圧下で試料を水銀に浸漬して試料の体積を測定し、中
空率を測定して、微多孔を含めた脇の体積を求めれば得
られる。見掛密度と真密度から求められる空孔率(=1
00X見掛密度/真密度)は15〜85%である。 本発明の中空繊維の外径は65μm−5tnrxの範囲
をとりうる。外径及び内径は、光学3−(1微鏡又は走
査型電顕の断面写真から、20個の中空繊維の外径及び
内径を測定して平均した。中空繊維用口金としてスリッ
ト型ノズルを使用した場合、得られる中空繊維の断面は
完全な真円ではないが、はぼ円型であり、外径、内径の
測定は容易である。本発明の中空繊維は、製造条件の組
合わせと選定により、中空率を8〜85%の範囲にとる
ことができる。中空率は、顕微鏡により銃創的に測定し
た平均外径5oと平均内径DIから、中空率=(Dt/
Do)”X100(%)として計算した。隔膜分離に使
用して、圧力を50〜1001KgAd程度印加する場
合は、中空率を8〜40%、1〜5kg/lvl程度の
ように、低圧力の印加の場合は、中空率を70〜85%
にすることができる。 中空繊維の外径と内径の間の膜厚は、用途に応じて決定
される外径及び中を率の設定から決まる値である。中空
繊維を隔膜分離に使用して、圧力を印加する場合、中空
繊維が変形破壊する圧力Pは、中空繊維の外径bO、ヤ
ング率E、膜厚t、ポアソン比Vとの間に次の関係が成
立すると一般に考えられている。 (1−v” )IN ppsの場合、Vキ【】、3、E中500に9.An”
として、上式を用途役割に用いている。中空繊維の外径
が細い65μmの場合の膜厚は印加圧力の如何を問わず
実用上、最低5μm(中空率50%)が必要である。他
方、外径の太い3Jの場合のII鉤Vは150μm(中
空率80%)が実用上必要である。 本発明の微多孔中空繊維は、特に耐熱性、耐薬品性にす
ぐれている。空気中、例えば200°0に6ケ月放置し
た後の引張強度保持率は50%以上であり、抜群の耐熱
性を示す。従来の市販累月の半乾式又は/υ式紡糸によ
る中空締紐は常用で80゛C以上は無理であったが、本
発明によりそれが可能になった。また、はとんど全゛C
の有機薬品、アンモニア水、苛性ソーダ水溶液等のアル
カリ水溶液、塩1駿、50%濃度以下の硫酸、60%i
:l!度以「の硝酸、フッ酸等の無機薬品には、室温で
は全く侵されl八・。 本発明の微多孔中空繊維は、それをモジュールに多数本
組み込んで、限外fj過、精密l−J過の隔膜分離に使
用できる。 特に、耐熱性、耐薬品性にすぐれているので、自動車・
家1に1.cどの′ilc着塗装、化成品、パルプ、染
料排水からの有価物の回収と水の111利用、メッキ、
酸洗、表面処理排水からの金属、無機塩の回収と水の再
利用等の工場排水処理、また医薬・発酵工業における蛋
白質・酵素・糖分などの分離・精製、電子工業における
超純水の製造、食品工業における#縮・塩水除去・清澄
e過等の製造プロセスの合理化、また、塗料・塗装・染
料工場での溶剤回収や、食品・石油化学・化成品に業で
の有機溶剤処理等に特性を発揮できる。 更に、本発明の微多孔中空繊維を分離膜の支持体として
便い、ポリザルポン、芳香族ポリアミド等の比較的耐熱
性のよいポリマーの溶液中に、本発明の中空繊維を浸漬
し、取出して乾燥・溶媒除去して、これらポリマーの0
.1〜1、5 ttmのllf′に厚の緻密なスキン層
を、本発明の中空繊維の表面に形成させた相合l1(1
【を作成すれば、逆浸透分離にも使用できる。今後柵1
、この様な複合膜により透過量と排除率の向上が業界の
課題釦なっているが、耐熱・耐薬品性にすぐれ、高生産
性からくる価格の安価な支持膜が要望されており、本発
明の微多孔中空繊維は、かかる要望に応えられるもので
ある。 また、本発明で使用するポリマーは、PPSを主成分と
するものであるが、PPSは主鎖中の硫黄に不対電子を
もっている。これを利用して化学的に修飾したり、錯体
的に利用することができる。例えば、酵素を微多孔中空
繊維に固定化して酵素固定膜としてバイオリアクターに
使用するような、高機能化隔膜にすることができる。ま
た、AsF5、SbF、、■7、H,SO2、SOS等
の電子受容体や、Ll、K、ナトリウムナフタレン、N
 (C4Ha )・ClO4等の電子供与体を、本発明
の微多孔中空繊維にドープすると、微多孔構造による膜
面積の飛跡的向上による効果と、ベンゼン環と硫黄が主
鎖に存在することから、電気伝導度が10− ’mh 
o/1xb(25℃)以上にも向上することを利用して
、貴金属1重全屈の回収、′電気透析;1東′市解質水
溶液、あるいは′電解質と非1+t、解質から成る清液
から特定物りを分離する選択透過膜、極性、非極性の混
合ガス系からの特定ガスの分離、また、電気抵抗や起?
tj力の変化を利用する用途;例えば、湿度センサー、
ガスセンザー等に利用できる。 また、連通した微多孔の中空繊維であることから、衣類
として、汗を繊維外表面から吸着して、中空糸内部に移
送し、中空糸内部から汗を蒸発させるので、短繊維に切
断して織んだ織物は吸汗衣料や医療用の包帯としても利
用できる。t15に、耐熱性がすぐれているので、消防
服や、熱作業現場での作業服に適する。また、中空繊維
であるので断熱性があり、且つ耐熱性がよ〜・ので、断
熱材として利用できる。更に、微多孔中空繊維であるの
でオイルの吸着保持力が大きく、海ト、水−にでのオイ
ル流出事故の際のオイルフェンスとして利用できる。 以上に詳述した如く、本発明の微多孔中空繊維は特に、
耐熱性と耐薬品性がすぐれ、且つ、硫黄原子に不対電子
と有する、という特長に加え、溶融紡糸・熱処理・延伸
という生産性の高い製造法によるので価格も安価になる
ので、従来の用途分野に加え、更にこれまでになかった
新規な用途分野を拓くものである。勿論、本発明の微多
孔中空fjl!維の用途は、上記の例示に制約されるも
のではない。 以下に本発明について実施例を示すが、本発明はこれに
よって制約されるものではな(・。 実施例1〜16及び比較例1〜16 高化式フローテスターを使用し、口金11111Nm 
X 101#IL。 温度305℃、せん断速度2008ec−’にて測定し
た溶融粘度が7500ボイズ、差動熱Ni、il’ (
N S C)で61り定(試利惜15 mg、昇温速度
10℃/分)したガラス転移温度Tgが90.7℃のポ
リ(p−フェニレンスルフィド)(pps)の粉末を原
料とした。このPPSを6o℃、1br1続いて150
’C13)1rp+で熱風乾燥後、スクリュー直径3Q
r++m$の溶融押出紡糸機を用いて、中空繊維用口金
(4片スリット型口金、口金外径5mm$、フィラメン
ト数12)を通し、吐出17[[/分口金温度310℃
に固定して、引増速度を変えることによりドラフト率D
fを沖鍾変えて中空繊維を紡出した。ここで、ドラフト
率Dfは中空繊維の紡糸引取速度Vm(tm1分)とポ
リマーの吐出線速度Vo  (tm1分)との比Df 
= Vm/Voである。吐出線速度Voは次の量を測定
して求めた。 Vo=Q/Sfρ、ここで Q:ポリマー吐出騨(g/分) Sニスリット型口金の断面積(attp )ρ:溶融ポ
リマー密度(g/1xn3)得られた中空繊維を一組の
ロール間で延伸倍率DR,と供給ロール温度(11℃)
を種々変えて延伸した。DR,は延伸前の原長に対する
延伸後の長さの倍率をいう(延伸I)。 次に、−組のロール間に電熱ヒーター浴(温度T、’C
)を置き、ロール間で緊張度DR,を、ヒーター浴で温
度T、を種々変えて熱処理した。緊張度IJR,は熱処
理前の原長に対する、ロールによる熱処理操作後の長さ
の倍率をいう。次に、−組のロール間で延伸倍率DR,
と、供給ローA((J7を度T3℃)を種々変えて延伸
したC延伸■)。引続いて一組のロール間で延伸倍率D
R4と、供給ロール温度(14℃)を種々変えて延伸し
た(延伸it )。但し、200”Cを越える温度で加
熱したいときは一組のロール間に電熱ヒーター浴を置い
てヒーター浴の温度を14℃に設定して延伸した。引続
き最後に、−組のロール間に電熱ヒーター浴(温度T、
 ”C)を置き、ロール間で緊張度DR,を、ヒーター
浴で温度T、を種々変えて熱固定した。 得られた中空繊維は、先に詳述した中空繊維の断面の光
学顕微鏡(II4真から統計的に繊維外径(ODμm)
と内径(ID/jnl)を求め、中空率は(ID10D
)’ X 100 (%)として求めた。微多孔の平均
孔径は先に詳述したように、走査型電子顕微鏡写真から
統nl的に求めた。但し、平均孔径が0.01ftm以
下の用台は、透過型電子顕微鏡写真(カーボンレプリカ
法)から統BI的に求めた。 成形条件と、微多孔中空繊維の外径、中壁率、平均孔径
を表−1に示1゜比較例1はドラフト率が低すぎて引取
率ri14であ−った。実施例1.2の如く、比較的ド
ラフト率が低い用台は、非晶配向をさせるために延伸(
I)が必要であるが、実施例6〜16、比較例3〜16
のようにドラフト率が比較的高い場合は、延伸(I)を
省略(DR,:1.0)できる。比較例2はドラフト率
が高く断糸が生じた場合である。比較例3の如く、熱処
理時の弛緩が大き過ぎると、熱処理中に球晶が発生し、
次の延伸(11)が不可能になる。 熱処理時の温度が余りに低い場合は、後の条件を如何に
操作しても微多孔が生成されないが(比較例4)、T2
温度は微多孔径を大きく変える(実施例6〜8)。余り
熱処理温度T2が高いと、次の延伸(II)が不riJ
能になる(比較例5)。熱処理時の緊張度が大き過ぎる
と微多孔が生成しない(比較例6)。低温延伸(1■)
を省略して、高温延伸(Ill >のみ行なっても微多
孔は生成しない(比較例7)。 延伸(II )の延伸倍率DR,は微多孔の孔径に大き
く彩管する(実施例9〜12)。しかしDR,が余りに
大きいと断糸が生じて延伸不可能となる(比較例8)。 延伸(II )の温度Tsが余りに低いか、高いときは
延伸不可能になったり、微多孔が生成しない(比較例9
.10)。実施例14の如く、高温延伸(Ill )を
省略(DR4=to)しても微多孔中空繊維が得られる
が、延伸(Ill )を入れることは(DI(4>1.
o)、大きな孔をあけるときは不可欠である。しかし、
延伸(ill)の延伸倍率DR1を大きく入れることは
できない(比較例11)。延伸(+11 )の温度T4
を余り高くすると微多孔が生成しない(比較例12)。 熱固定の際、弛緩が大き過ぎたり(比較1.!’+11
3 )、逆に緊張が太き過ぎると(比較例14)、微多
孔が生成しない。熱固定温度T、が低く過ぎると熱Xj
法法定定性悪い(比較例15)。逆にT、が高過ぎると
1(り多孔が生成しない。 実Mli例1〜16は、いづれも本発明の方法により成
形した微多孔中空縁9イtである。これらを100℃の
50%硫酸、50%苛性ソーダ水溶液、50℃のフェノ
ール、トルエン、酢酸、エチレングリコール等の薬品に
浸漬して封をし、6ケ月保存した後、取出して水洗乾燥
し、引張強力保持率(浸漬後の強力/浸漬前の強力X1
[][J%)を測定した。 いづれも保持率は50〜75%であり、極めCすぐれた
力学的特性、耐熱性及び耐薬品性を有していた。 ノ
[28 for 30% raw material
A range of 5 to 310°C is suitable. The reason for this is that, as will be explained later, it is necessary to perform heat treatment to develop lamellae in the post-process, and in the present invention, it is desirable to have a higher molecular orientation state. This is because it is desirable that the amorphous orientation of the unstretched hollow edge +146 is also higher. As mentioned above, in the production method of the present invention, spinning is carried out at a slightly low temperature, but the melting temperature of the polymer during discharge from the spinneret is
Viscosity is 500-10,000 voids, preferably 3,0
00 to 5,000 poise. In order to provide such solubility i, 41: viscosity and stringiness, the polymer must have a certain number of molecules f-. In the case of PP5 100% raw material, molecule h1 is 205 in α-chloronaphthalene solution.
The polymer h) has an intrinsic viscosity of 0.25 to 0.80, preferably 0.60 to 0.50, measured at °C. Other polymers blended with PPS have an intrinsic viscosity of 0.
It is desirable that it is 50 or more. The outer diameter of the spun hollow fibers is preferably 30 μm to 5 mIn. The outer diameter and inner wall ratio can be set depending on the purpose of use. however,
Molding of hollow fibers with an outer diameter of less than 6 [μm] or hollow fibers with an outer diameter of less than 5 mm is actually difficult even if the spinning temperature is adjusted. Difficult. Next, the unstretched hollow (Al1 string) was formed as described in
Stretching ratio 1) R, = 1[]~・66, temperature T, =20~
Stretch at (1"tA-50)'C. This step involves the heat treatment in the next step, which develops the lamella into 14) oriented and In order to direct the orientation of the molecular armor of A-1, we increase the draft rate to the next IfAl! Yarn breakage occurs at Dfmax.High trough I/spinning, that is, Ll, 75Df+ηax(r]f
< 11.971) In the J case of fm'qx, the stretching step (amorphous *i [middle)] at this stage may be omitted17 (I)
R, = 1.0 represents this omission as A゛′! Ajizuro). Only 1
-125 < I) If f < 0.75 Dfmax, stretching ratio ≧% 1. [1< 13R, <Roro,
It is necessary to stretch at a temperature T: 20 to (Tgj 30)"C. Here, the stretching ratio is the stretching Mff
The ratio of the length after stretching to the original length. DR, >3
.. In case 3, the degree of orientation of the molecules 11 due to amorphous stretching increases too much, making it difficult to form micropores. ! Becomes 11. Stretching temperature T1 is 20<1', ≦(Tg-+-50)°C,
Preferably (Tg-20)<T, ≦(T'g4-10
)"(,,:. If T<20"C, the undrawn hollow fibers will whiten and voids will occur violently, and the development of lamellae due to heat treatment [1] in the next step will be inhibited. .On the other hand, T
, >(Tgj30)" In the case of "C, fluid stretching tends to occur, and the desired degree of orientation of amorphous molecular chains is not achieved. This can be done by using a hot roll and increasing the circumferential speed of the drive roll faster than the circumferential speed of the supply roll.The circumferential speed of the supply roll is 50 m/min or more, usually 150 rn.
The productivity of the microporous hollow fibers of the present invention is extremely high because it can be carried out at high speeds of around 1/min. This point is one of the features of the present invention. In addition, in order to develop and achieve lamellae by orientation-enhancing crystallization, 5; self 1ζ degree IW, = 0.5 ~ 15, breadth degree T, = (Tg - 1 - 20) ~ ( Tg-1-180
,,)" C.Here, the tension is the ratio of the length of the key while it is held in the heat treatment equipment during heat treatment 1.jp to the original length before heat treatment. ).Therefore, DR2
= 0.9 means applying 10% contraction, I) R,
=1.1 means that 10% elongation is applied. The tension is preferably 7 or 0, 9 < L) 112 < 1.1. If D R, < 0.5, the alignment of the developed lamellae becomes random, or spherulites are generated, making it impossible to form micropores in the crystal stretching in the next step. . Furthermore, when DR7>1.5, lamellae are difficult to develop. In terms of heat treatment rJlj−'l'J'J,, Ne, (Tg
-1-110)<=2<(1'g+16(1)"C. As a heat treatment method, first (
7:
By increasing the humidity H1, finally (Tgj110) ~ (
Tgj160)" Even if processed with C, jl) or (T
Even if treated at a constant temperature within the range of gj20) to (1 ° g + 180) °C, or (Tgj20) to (Tgj180)
Within the range of ``C'', the temperature may be divided into several stages and the temperature may be gradually raised to ``C1''.If T<(Tg+2υ)℃, there is virtually no lamella development.On the other hand, if )°C, the drawbacks are that the lamella becomes random and the crystallization rate is slow.The heat treatment time is 2 to 60 minutes, preferably 5 to 61 minutes. DJ4 jtY<C maintains the peripheral speed of the supply roll and take-up roll between the pair of rolls (
It is preferable to set the tension and insert the film between a pair of rolls into a hot bath such as hot air or far infrared rays at 1°C. The medium r-pis, which has developed relatively oriented lamellae by 10 ilF heat treatment, has the following K, elongation ('p magnification D R3''
1.05~2.8.14 U”s = 10~(Tg
j10) Stretch with a slight cold stretching at "C". This stretching is crystal stretching, and micropores begin to be generated by this process. The shape and image of the microporous is almost determined by the combination of the two.The stretching ratio is the ratio of the length after stretching to the length of the front half of 91. Since this is the basic idea of the invention, the drawing temperature is preferably 15≦T. 7.C-:) This is a characteristic feature that is different from film stretching. l) g, = 1. In the case of Q5 to 1.5, the average pore diameter of the generated microporous 9L is 0006 to 0.06ztm
and 0.06 to 0 for DRs = 1.5 to 2.0.
.. 6 ttm, C, ■month t, = 2.0-2.
8 [J, resulting in an average pore size of 6-3 μm. Of course, 1
(It is natural that the adjustment of the hole diameter requires delicate adjustment of the conditions of the entire process. DR3<1
.. The 05 larva cannot actually form a pore to 1. 1) IJ Tachibana with R, > 2.8 (, R2, microporous formation cannot be formed due to structural destruction due to macro voids in the hollow fibers. 'I', < 10°C σ-), crystal stretching becomes difficult, and on the other hand, T, > (T g −F 10 ) ”(
- In the case of -, it is difficult to form micropores. Sequel to the above drawing, the hollow wire (fU) with microporous formed therein is drawn at a drawing ratio DR4=1. (1 to 2.5, r!
1*-1tlf +114-(T g 4-10 )
Stretch at ~(Tg+180)°C until hot stretching. 1
111 σ) (-111 When the average pore diameter of the micropores formed by stretching at a magnification of DR5 is small, that is, from 0.003 to
When it is 0.0/Sμm, the stretching in the following main process is omitted (
That is, even if DR4 = 1.0), there is almost no problem in the formation of micropores, but if the pore diameter exceeds 0.06μIn,
The formation of microporous can be achieved by applying hot stretching to a degree similar to that of Honji.
This can be done more smoothly. However, the magnification of this process is not too large, ■) Melon = 1.0 ~ 25,
Preferably 1.1<1) R4<1.5. D.R.
When 4>2.5, the micropores formed by the previous stretching at the stretching ratio DR are deformed and disappear. The preferred stretching temperature is (Tg-1-20)≦T4≦(Tg-
Heat at 1-80)℃. T<(Tg+10)°C↓
The effect on the smooth formation of micropores is not constant; on the other hand, when T4>(Tg+180)℃, the
The Yuta hole deforms and disappears. Thus, the micropores formed t7, finally, tension I) = 0, 7-1.6, temperature 'I'! l = ('I' g
-t-11[] ) ~ (Tg-4-180)C at 1. ', Heat treatment 4J11 is performed for I constant. The degree of tension is the magnification of the grip length of the heat treatment device during heat treatment, which is cut into one length before heat treatment on the same piece of heat treatment in the previous step. Preferably, the tension value IR, is 0.9≦I)R,≦11
, where (mold temperature 1゛, (Tg+150)≦'1゛,≦(
Tg+17o)'', the time is 5 seconds to 5 minutes.Kiji ``If the culm is not heat-set, the formed micropores (41) will change over time to ``A-''. The C1 pore diameter gradually becomes smaller, the pore shape changes, and the heat-resistant dimensional stability is unstable, causing problems.5 If heat fixation is not performed, for example, when left in an air bath at 150°C for 0 minutes, While the heat shrinkage rate is 25-65%, the heat shrinkage rate after heat setting is 2-4%.
When J is lowered to L2, the shape and diameter of the hole remain almost the same as before. Therefore, compared to microporous hollow fibers produced by semi-dry or wet spinning using conventional membrane rolling, the heat resistance is 1/1F, heat resistance = J
It is clear that Hoan 54:li/, 1. The microporous hollow cotton fiber produced by the method described below has almost no micropores that are independent from the surroundings within the membrane layer extending from the outer surface to the inner surface, and most of the micropores communicate from the outer surface to the inner surface. It is confirmed from observation of an electron micrograph of a cross section of the fiber that the fiber is a communicating hole βg. When observing the cross section of the microporous hollow fiber of the present invention, the diameter of the micropores and the distribution density of the micropores are almost uniform from the outer surface to the inner surface. This is in contrast to the hollow fibers produced by semi-dry or wet spinning, which have a heterogeneous structure consisting of a so-called skin layer and a co-layer (1) having a 1-density. The number of fibers depends on the pore diameter and porosity, but it can be counted by microscopic observation of electron micrographs that the size of the fibers is about 10 to 10 inches on the surface. Depending on the shrinkage and selection, the average pore diameter of the hollow fibers obtained can range from 0006 to 6 μm.
Depending on the use and purpose, it can be used as a membrane. The average pore diameter was determined from a scanning electron micrograph of the outer surface of Hollow River [or a replica photograph taken with a transmission type 111 child 5] r1 microscope.
The density of the non-porous pps medium perforated fibers was approximately 1.0% because the 11η pores of the hollow fibers were connected from the surface to the inner surface.
555 to 360 gAψ♂ (20°C), whereas the material density of the hollow fiber of the present invention is 0.16 to 1.221
7arp is quite low. The apparent density in this case is determined by sampling a certain amount of microporous hollow fibers, weighing them, immersing the sample in mercury at 20°C under atmospheric pressure, measuring the volume of the sample, and measuring the hollowness ratio. This can be obtained by calculating the side volume including the micropores. Porosity determined from apparent density and true density (=1
00X apparent density/true density) is 15 to 85%. The outer diameter of the hollow fibers of the present invention can range from 65 μm to 5 tnrx. The outer diameter and inner diameter were averaged by measuring the outer diameter and inner diameter of 20 hollow fibers from a cross-sectional photograph taken with an optical microscope or scanning electron microscope. A slit-type nozzle was used as the hollow fiber nozzle. In this case, the cross section of the hollow fiber obtained is not a perfect circle, but it is almost circular, and the outer diameter and inner diameter can be easily measured.The hollow fiber of the present invention can be obtained by combining manufacturing conditions and selecting Accordingly, the hollowness ratio can be set in the range of 8 to 85%.The hollowness ratio is calculated from the average outer diameter 5o and the average inner diameter DI measured by gunshot wounds using a microscope, and the hollowness ratio = (Dt/
Do)"X100 (%). When using for diaphragm separation and applying a pressure of about 50 to 1001 KgAd, a low pressure such as a hollow ratio of 8 to 40% and a pressure of about 1 to 5 kg/lvl is used. For application, the hollow rate should be 70-85%
It can be done. The film thickness between the outer diameter and inner diameter of the hollow fiber is a value determined from the outer diameter and inner diameter settings determined depending on the application. When using hollow fibers for diaphragm separation and applying pressure, the pressure P at which the hollow fibers deform and break is expressed as follows between the hollow fibers' outer diameter bO, Young's modulus E, membrane thickness t, and Poisson's ratio V. It is generally believed that a relationship exists. (1-v”) IN pps, V Ki [], 3, 500 in E 9. An”
As, the above formula is used for the usage role. When the outer diameter of the hollow fiber is 65 μm, the film thickness needs to be at least 5 μm (50% hollow ratio) in practice, regardless of the applied pressure. On the other hand, in the case of a large outer diameter of 3J, the II hook V is practically required to be 150 μm (hollowness ratio 80%). The microporous hollow fiber of the present invention has particularly excellent heat resistance and chemical resistance. The tensile strength retention rate after being left in air, for example, at 200°C for 6 months, is 50% or more, showing outstanding heat resistance. Conventional commercially available semi-dry or /υ type hollow laces are usually used and cannot exceed 80°C, but the present invention has made it possible. Also, almost all C
organic chemicals, aqueous ammonia, aqueous alkaline solutions such as aqueous caustic soda, 1 ton of salt, sulfuric acid with a concentration of 50% or less, 60% i
:l! At room temperature, the microporous hollow fibers of the present invention are completely attacked by inorganic chemicals such as nitric acid and hydrofluoric acid. It can be used for diaphragm separation of J-filtration.It has excellent heat resistance and chemical resistance, so it is suitable for automobiles and
1 in house 1. c'ilc coating, chemical products, pulp, dye recovery of valuables from wastewater and 111 use of water, plating,
Pickling, surface treatment Factory wastewater treatment such as recovery of metals and inorganic salts from wastewater and water reuse, separation and purification of proteins, enzymes, sugars, etc. in the pharmaceutical and fermentation industries, and production of ultrapure water in the electronics industry. , rationalization of manufacturing processes such as #condensation, brine removal, and clarification e-filtration in the food industry, as well as solvent recovery in paint, coating, and dye factories, and organic solvent treatment in food, petrochemical, and chemical products industries. Can demonstrate its characteristics. Furthermore, the microporous hollow fibers of the present invention are used as a support for a separation membrane, and the hollow fibers of the present invention are immersed in a solution of a relatively heat-resistant polymer such as polysarpone or aromatic polyamide, taken out, and dried.・Remove the solvent to remove 0 of these polymers.
.. Compatibility l1 (1
[If created, it can also be used for reverse osmosis separation. Future fence 1
Increasing the permeation rate and rejection rate using such composite membranes is a key issue in the industry, but there is a need for an inexpensive support membrane with excellent heat and chemical resistance and high productivity. The microporous hollow fiber of the invention can meet such demands. Further, the polymer used in the present invention has PPS as a main component, and PPS has an unpaired electron in the sulfur in the main chain. Using this, it can be chemically modified or used as a complex. For example, enzymes can be immobilized on microporous hollow fibers to form highly functional membranes such as those used in bioreactors as enzyme-immobilized membranes. In addition, electron acceptors such as AsF5, SbF, 7, H, SO2, SOS, Ll, K, sodium naphthalene, N
When an electron donor such as (C4Ha).ClO4 is doped into the microporous hollow fiber of the present invention, the effect of a dramatic increase in membrane area due to the microporous structure and the presence of benzene rings and sulfur in the main chain, Electrical conductivity is 10-'mh
O/1xb (25°C) or higher can be used to recover precious metals in single-fold total flexure, 'electrodialysis'; Selective permeation membranes that separate specific substances from liquids, separation of specific gases from polar and non-polar mixed gas systems, and electrical resistance and resistance membranes.
Applications that utilize changes in tj force; e.g., humidity sensors,
Can be used for gas sensors, etc. In addition, since it is a hollow fiber with continuous microporous holes, it can be used as clothing by adsorbing sweat from the outer surface of the fiber, transferring it to the inside of the hollow fiber, and evaporating sweat from inside the hollow fiber, so it can be cut into short fibers. Woven fabrics can also be used as sweat-absorbing clothing and medical bandages. Since it has excellent heat resistance, it is suitable for firefighting uniforms and work clothes for hot work sites. In addition, since it is a hollow fiber, it has heat insulating properties and has good heat resistance, so it can be used as a heat insulating material. Furthermore, since it is a microporous hollow fiber, it has a large ability to absorb and retain oil, and can be used as an oil fence in the event of an oil spill accident at sea or in the water. As detailed above, the microporous hollow fiber of the present invention particularly has the following features:
In addition to its excellent heat resistance and chemical resistance, and the fact that the sulfur atom has an unpaired electron, it is also inexpensive because it uses a highly productive manufacturing method of melt spinning, heat treatment, and stretching, making it suitable for conventional applications. In addition to this field, it will also open up new fields of application that have never existed before. Of course, the microporous hollow fjl of the present invention! The use of fibers is not limited to the above examples. Examples of the present invention are shown below, but the present invention is not limited thereto.
X 101#IL. The melt viscosity measured at a temperature of 305°C and a shear rate of 2008 ec-' was 7500 voise, and the differential heat Ni, il' (
The raw material was poly(p-phenylene sulfide) (pps) powder with a glass transition temperature Tg of 90.7°C, which was determined at 61°C (trial yield: 15 mg, heating rate: 10°C/min) at NSC). . This PPS was heated to 6o℃, 1br1 and then 150℃.
'C13) After hot air drying at 1rp+, screw diameter 3Q
Using a $r++m melt extrusion spinning machine, the fibers were passed through a hollow fiber spinneret (four-piece slit type spinneret, outer diameter of the spinneret 5 mm $, number of filaments 12), and discharged at 17 [[/min] at a spinneret temperature of 310°C.
By fixing it to D and changing the drawing speed, the draft rate D
A hollow fiber was spun by changing f. Here, the draft rate Df is the ratio Df of the hollow fiber spinning take-off speed Vm (tm1 min) and the polymer discharge linear velocity Vo (tm1 min)
= Vm/Vo. The discharge linear velocity Vo was determined by measuring the following amount. Vo=Q/Sfρ, where Q: Polymer discharge hole (g/min) S cross-sectional area of slit type die (attp) ρ: Molten polymer density (g/1xn3) The obtained hollow fiber is passed between a set of rolls. Stretching ratio DR and supply roll temperature (11℃)
It was stretched with various changes. DR refers to the ratio of the length after stretching to the original length before stretching (stretching I). Next, an electric heater bath (temperature T, 'C
) and heat-treated by varying the tension DR between rolls and the temperature T in a heater bath. The tension IJR refers to the ratio of the length after heat treatment using rolls to the original length before heat treatment. Next, the stretching ratio DR,
and supply row A (C stretching (■) in which J7 was stretched at various degrees T3° C.). Subsequently, the stretching ratio D is applied between a set of rolls.
Stretching was carried out at various R4 and supply roll temperatures (14° C.) (stretching it). However, when heating at a temperature exceeding 200"C was desired, an electric heater bath was placed between one set of rolls and the temperature of the heater bath was set at 14°C for stretching.Finally, an electric heater was placed between the -set of rolls. Heater bath (temperature T,
"C) was placed and heat-set by varying the tension DR between rolls and the temperature T in a heater bath. The obtained hollow fibers were examined using an optical microscope (II4 True to statistical fiber outer diameter (ODμm)
and the inner diameter (ID/jnl), and the hollowness ratio is (ID10D
)' x 100 (%). As detailed above, the average pore diameter of the micropores was systematically determined from scanning electron micrographs. However, the base having an average pore diameter of 0.01 ftm or less was determined from transmission electron micrographs (carbon replica method) using a standard BI method. The molding conditions, the outer diameter, inner wall ratio, and average pore diameter of the microporous hollow fibers are shown in Table 1.1° Comparative Example 1 had a draft rate so low that the take-up rate ri was 14. As in Example 1.2, a table with a relatively low draft rate is used for stretching (
I) is required, but Examples 6 to 16 and Comparative Examples 3 to 16
When the draft rate is relatively high, as in the case of, the stretching (I) can be omitted (DR,: 1.0). Comparative Example 2 is a case where the draft rate was high and yarn breakage occurred. As in Comparative Example 3, if the relaxation during heat treatment is too large, spherulites will occur during heat treatment,
The next stretching (11) becomes impossible. If the temperature during heat treatment is too low, micropores will not be generated no matter how you manipulate the subsequent conditions (Comparative Example 4), but T2
Temperature greatly changes the micropore size (Examples 6-8). If the heat treatment temperature T2 is too high, the next stretching (II) will be difficult.
(Comparative Example 5). If the degree of tension during heat treatment is too high, micropores are not generated (Comparative Example 6). Low temperature stretching (1■)
Even if only high-temperature stretching (Ill > is performed without ).However, if DR is too large, yarn breakage occurs and stretching becomes impossible (Comparative Example 8).If the temperature Ts of stretching (II) is too low or too high, stretching becomes impossible or microporous Not generated (Comparative Example 9
.. 10). As in Example 14, microporous hollow fibers can be obtained even if the high temperature stretching (Ill) is omitted (DR4=to), but adding the stretching (Ill) (DI(4>1.
o), essential when drilling large holes. but,
It is not possible to set a large draw ratio DR1 for drawing (ill) (Comparative Example 11). Stretching (+11) temperature T4
If the value is too high, micropores are not generated (Comparative Example 12). During heat fixation, the relaxation was too large (Comparison 1.!'+11
3) On the other hand, if the tension is too thick (Comparative Example 14), no micropores are generated. If the heat fixation temperature T is too low, the heat Xj
Poor legal qualification (Comparative Example 15). On the other hand, if T is too high, 1 (no pores are formed). Actual Mli Examples 1 to 16 are all 9 pieces of microporous hollow edges molded by the method of the present invention. Immersed in chemicals such as sulfuric acid, 50% caustic soda aqueous solution, phenol, toluene, acetic acid, ethylene glycol, etc. at 50°C, sealed, and stored for 6 months, taken out, washed with water and dried. /Strong strength before soaking
[ ] [J%) was measured. All had retention rates of 50 to 75%, and had extremely excellent mechanical properties, heat resistance, and chemical resistance. of

Claims (1)

【特許請求の範囲】 L  65 小1「(%旬」二カポリ(p−フェニレン
スルフィド)からなる微多孔中空樟λイ(−であって、
繊維横断面積比による中空率が8〜85%であり、その
外表面から内表面へ通じる陣涌孔の微多孔を多斂有し、
微多孔の平均孔径が[1,003/1m〜ろ1imであ
る、ことを71?r徴とする微多孔中?繊#4f。 2、 65 tlj −%以」二カポリ(p−フェニレ
ンスルフィト)からなる原PI樹脂を、ドラフト率25
以上で中空繊維紡糸口金を通l−で溶紳紡糸して中空繊
維を形成し、該中空れ1廟1.をG11仲1t″1率I
月へ−1,+J〜ろ6、温1更1’、=20〜(Tg+
30)℃(1’gはポリマーのガラス転移温IL℃’)
にて延伸し、次い(2、緊’−1,(1(l ]−) 
I+2−IJ、 5〜15、温度T、=(Tg+20 
)〜(1g+180)℃にて熱処理した後、該中空線<
11を延伸倍率DR,=1.05〜28、温度’l”、
 = I O〜(Tg+10)”Cにて延伸し、引続い
て延伸倍率1) R4= 1. [1〜25、温IQ:
T4=(Tg+10)〜(Tg−zso℃)にて延伸し
、最後に、緊張度1)R,=0.7〜1,3、温度’1
’、=:(Tg+110)〜(1g+180)”Cにて
熱1司ボすることにより、中空#6゛<+t(lに微多
孔を形成させることを特徴とずろ、微多孔4+空俤維の
製造法。
[Scope of Claims] L 65 Small 1 "(% Shun)" Microporous hollow camphor λi (-) consisting of dikapoly(p-phenylene sulfide),
The hollow ratio according to the fiber cross-sectional area ratio is 8 to 85%, and it has many microporous holes that communicate from the outer surface to the inner surface.
The average pore diameter of the micropores is [1,003/1 m to 1 mm]. Microporous with r sign? Fiber #4f. 2. The raw PI resin consisting of 65 tlj -% or more dikapoly(p-phenylene sulfite) was heated to a draft rate of 25
The hollow fiber spinneret is used to spin the hollow fibers at 1 to form a hollow fiber. G11 Naka 1t''1 rate I
To the moon -1, +J~ro6, warm 1 more 1', =20~(Tg+
30)℃ (1'g is the glass transition temperature IL℃' of the polymer)
and then (2, tension'-1, (1(l]-)
I+2-IJ, 5-15, temperature T, = (Tg+20
)~(1g+180)℃ After heat treatment, the hollow wire<
11, stretching ratio DR, = 1.05 to 28, temperature 'l'',
= IO ~ (Tg + 10)''C, and then stretched at a stretching ratio of 1) R4 = 1. [1 to 25, warm IQ:
Stretching at T4 = (Tg + 10) ~ (Tg - zso °C), and finally, tension 1) R, = 0.7 ~ 1,3, temperature '1
', =: (Tg+110) ~ (1g+180)'' By heating 1 at C, micropores are formed in the hollow #6゛<+t(l). Manufacturing method.
JP16844682A 1982-09-29 1982-09-29 Microporous hollow fiber and its manufacture Granted JPS5959917A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16844682A JPS5959917A (en) 1982-09-29 1982-09-29 Microporous hollow fiber and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16844682A JPS5959917A (en) 1982-09-29 1982-09-29 Microporous hollow fiber and its manufacture

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP61029995A Division JPS6215323A (en) 1986-02-14 1986-02-14 Production of microporous hollow fiber

Publications (2)

Publication Number Publication Date
JPS5959917A true JPS5959917A (en) 1984-04-05
JPH028047B2 JPH028047B2 (en) 1990-02-22

Family

ID=15868259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16844682A Granted JPS5959917A (en) 1982-09-29 1982-09-29 Microporous hollow fiber and its manufacture

Country Status (1)

Country Link
JP (1) JPS5959917A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS616390A (en) * 1984-05-01 1986-01-13 ジエイダブリユ−アイ・リミテツド Cloth for dryer having yarn strand prepared from melt extrudable polyphenylene sulfide
US5202023A (en) * 1991-12-20 1993-04-13 The Dow Chemical Company Flexible hollow fiber fluid separation module
EP3395858A1 (en) 2014-03-18 2018-10-31 Toray Industries, Inc. Polyphenylene sulfide porous body and production method thereof, polyphenylene sulfide-thermoplastic resin block copolymer and production method thereof
WO2020026958A1 (en) * 2018-07-30 2020-02-06 東レ株式会社 Separation membrane and method for producing separation membrane

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS616390A (en) * 1984-05-01 1986-01-13 ジエイダブリユ−アイ・リミテツド Cloth for dryer having yarn strand prepared from melt extrudable polyphenylene sulfide
JPH0583678B2 (en) * 1984-05-01 1993-11-29 Jei Daburyu Ai Ltd
US5202023A (en) * 1991-12-20 1993-04-13 The Dow Chemical Company Flexible hollow fiber fluid separation module
EP3395858A1 (en) 2014-03-18 2018-10-31 Toray Industries, Inc. Polyphenylene sulfide porous body and production method thereof, polyphenylene sulfide-thermoplastic resin block copolymer and production method thereof
WO2020026958A1 (en) * 2018-07-30 2020-02-06 東レ株式会社 Separation membrane and method for producing separation membrane

Also Published As

Publication number Publication date
JPH028047B2 (en) 1990-02-22

Similar Documents

Publication Publication Date Title
JP5339677B2 (en) Vinylidene fluoride resin hollow fiber porous filtration membrane and production method thereof
AU2002338039B2 (en) Hollow fiber film and method for production thereof
TW408201B (en) Wet spinning process for aramid polymer containing salts
JPS6335726B2 (en)
KR101589746B1 (en) Hollow fiber membrane and method for manufacturing the same
JPS60162805A (en) High-tenacity polyvinyl alcohol based ultrafine fiber and production thereof
JPH02144132A (en) Porous polyolefin film
JP2007313491A (en) Low stain resistance vinylidene fluoride family resin porosity water treatment membrane and its manufacturing method
JP4269576B2 (en) Method for producing microporous membrane
JPS5959917A (en) Microporous hollow fiber and its manufacture
US5057218A (en) Porous membrane and production process thereof
JPS63182413A (en) Polyphenylene sulfone fiber and production thereof
JPS6215323A (en) Production of microporous hollow fiber
JPS60248202A (en) Hollow fiber membrane and its preparation
JPH044028A (en) Porous membrane and production thereof
JPS6044404B2 (en) Fiber with microporous surface and its manufacturing method
JPH0160053B2 (en)
JPH08252441A (en) Polypropylene hollow yarn membrane and its production
KR20110079153A (en) Manufaturing method of hallow fiber membrane for water treatment and hallow fiber membrane thereby
JPS63126911A (en) Ultrafine fiber of tetrafluoroethylene resin and production thereof
JPS63175115A (en) Hollow yarn having void of finger-shaped structure and production thereof
KR100444127B1 (en) Manufacturing method of separation film of polyolefine type hollow yarn having excellent tensile strength and elasticity
JPH11106535A (en) Polyolefin porous membrane and its manufacture and battery separator therefrom
JPS62238812A (en) Production of polyvinyl alcohol fiber having high strength and elastic modulus
JP2010137196A (en) Method for manufacturing porous hollow-fiber membrane