JPS5959837A - Controlling method of heating furnace - Google Patents
Controlling method of heating furnaceInfo
- Publication number
- JPS5959837A JPS5959837A JP16921082A JP16921082A JPS5959837A JP S5959837 A JPS5959837 A JP S5959837A JP 16921082 A JP16921082 A JP 16921082A JP 16921082 A JP16921082 A JP 16921082A JP S5959837 A JPS5959837 A JP S5959837A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- furnace
- heated
- temp
- rolling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D11/00—Process control or regulation for heat treatments
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Control Of Heat Treatment Processes (AREA)
Abstract
Description
【発明の詳細な説明】 本発明は加熱炉における制御方法に関するものである。[Detailed description of the invention] The present invention relates to a control method in a heating furnace.
従来の制御方法は被加熱材の1」標抽出温徳と炉内4域
の炉温及び在炉時間より簡易式により推定した抽出温度
との差による制御方法又は予め決定した昇温パターンに
従って制御する方法(ヒー1へパターン制御)とに代表
さ扛る。Conventional control methods are based on the difference between the extracted temperature of the material to be heated and the extraction temperature estimated by a simple formula from the furnace temperatures of the four zones inside the furnace and the furnace time, or according to a predetermined temperature increase pattern. This method is typified by the method (pattern control to Hee 1).
上記の前者方法による問題点は被加熱材抽出時の焼き上
がり状態及び炉内各位首での温度と厚み方向及び長手力
向夫々の温度分布が不明な点である。The problem with the above-mentioned former method is that the baked state when the material to be heated is extracted, the temperature at each neck in the furnace, and the temperature distribution in the thickness direction and longitudinal force direction are unknown.
これは簡易式により、被加熱材の温度を抽出時の品質保
証用と炉温制御及び被加熱材の炉内移動速度制御用との
両方使用しているためであり、更に被加熱材の抽出温度
実績値の算出精度も簡易式であるため良くない。This is because the temperature of the heated material is used for both quality assurance during extraction, furnace temperature control, and movement speed control of the heated material in the furnace using a simple formula, and also for extraction of the heated material. The calculation accuracy of the temperature actual value is also not good because it is a simple formula.
一ヒ記の後者方法のピー1−パターン制御方法では、予
め決定された昇温パターンに従って炉内各位置での目標
温度との差により制御するため連続式加熱炉に続く圧延
コニ程への生産性阻善及び被加熱材圧延ピッチの安定性
を欠く問題がある。In the P1-pattern control method of the latter method mentioned above, production in the rolling process following the continuous heating furnace is controlled by the difference from the target temperature at each position in the furnace according to a predetermined temperature increase pattern. There are problems in that the rolling pitch of the heated material is poor and the rolling pitch of the heated material is unstable.
又、第1図の昇温パターン制御例に示ず様に、被加熱材
の昇温途中で圧延工程の1〜ラブル等により在炉時間が
延長されると、それまでの昇温パターン制御が無意味と
なるばかりか、被加熱材昇温に必要な燃料ロスも大であ
る。Furthermore, as shown in the example of temperature increase pattern control in Fig. 1, if the furnace time is extended due to trouble in the rolling process during the temperature rise of the material to be heated, the temperature increase pattern control up to that point is Not only is this pointless, but the fuel loss required to raise the temperature of the heated material is also large.
水元明番“よこのような従来における問題を解決するこ
とを目的としたものであり、ぞの特徴の一つは、炉内の
被加熱材について、厚み方向及び長手力向夫々を複数に
区分し、所定周期で各区分イσに現在位置における温度
を算出し、その都度この各区分温度の平均温度又は最低
温度と目標抽出温度との差に基いで残り在炉域の炉温及
び又は移!Il続度を逐次制御する加熱炉の制御方法に
ある。Mizumoto Akiban "The aim is to solve the conventional problems such as lateral. One of the features of this is that the material to be heated in the furnace can be heated in multiple directions, both in the thickness direction and in the longitudinal direction. The temperature at the current position is calculated for each division σ at a predetermined period, and the furnace temperature and/or The present invention provides a heating furnace control method for sequentially controlling the degree of transition.
本発明において、前記各被加熱材の目標抽出温度は当該
被加熱材厚み方向及び長手方向の各区分温度の平均温度
又は最低温度の圧延」二必要最小限温度と冶金的熱処理
上必要最小限温度のいずれか高い温度である。又、被加
熱材の品質を保証する実績温度はスキッドマーク、被加
熱材の炉内配置。In the present invention, the target extraction temperature of each heated material is the average temperature of each section temperature in the thickness direction and longitudinal direction of the heated material, or the minimum temperature required for rolling at the lowest temperature, and the minimum temperature necessary for metallurgical heat treatment. Whichever is higher temperature. In addition, the actual temperature that guarantees the quality of the heated material is skid marks and the placement of the heated material in the furnace.
バーナ配置位置等による偏熱パターン・を把握するため
、被加熱材の少なくとも厚み方向及び長手方向の各区分
温度を炉内移動途中、所定の名位置で逐次81Wするも
のである。In order to understand the uneven heat pattern due to the burner arrangement position, etc., the temperature of each section of the material to be heated in at least the thickness direction and the longitudinal direction is sequentially heated to 81 W at a predetermined position during movement in the furnace.
又、該実績温度の算出の都度、残り在炉域における昇温
量を加えた抽出時平均温度又は最低温度の予測はあらか
じめ用意した複数個の簡易式の内から前記実績温度の平
均温度又は最低温度をパラメータとして選出し、この式
に基いて炉温制御及び被加熱材移動速度制御を行うもの
である。このため被加熱材の品質を保証する抽出実績温
度は厚み方向及び長手方向の各区分全部に対して保証す
る点、及び炉温及び移動速度の制御士】抽出端に近づく
につれて精度を向上させ、且つ短時間の計算処理を可能
にし、 Wl算機容量の大幅な低減を実現■しめた点が
本発明の効果である。In addition, each time the actual temperature is calculated, the average temperature or minimum temperature at the time of extraction including the amount of temperature increase in the remaining furnace area is predicted by calculating the average temperature or the minimum temperature of the actual temperature from among a plurality of simple formulas prepared in advance. Temperature is selected as a parameter, and furnace temperature control and heated material movement speed control are performed based on this equation. For this reason, the actual extraction temperature that guarantees the quality of the heated material is guaranteed for all sections in the thickness direction and longitudinal direction, and the accuracy is improved as the temperature and movement speed of the furnace temperature and moving speed are increased. Another advantage of the present invention is that it enables calculation processing in a short time and achieves a significant reduction in Wl computer capacity.
次に本発明の2つ目の特徴とするところは、炉内の被加
熱材について、厚み方向及び長手力向夫々を複数に区分
し、所定周期で各区分毎に現在位置における温度を算出
し、その都度この各区分温度の平均温度又は最低温度と
当該被加熱材抽出前の熟熱開始時点目標温度1点との差
を求める一方、目標抽出温度との差も求め、これらの4
差の大きい方に基いて残り在炉域の炉温及び又は移動速
度を制御し、該平均温度又は最低温度が該熟熱開始時点
及び開始目標温度の両方に達した以降は該平均温度又は
最低温度と前記目標抽出温度との差に基いて残り在炉域
の炉温及び移動速度を逐次制御する加熱炉の制御方法で
ある。Next, the second feature of the present invention is that the material to be heated in the furnace is divided into a plurality of sections in the thickness direction and longitudinal force direction, and the temperature at the current position is calculated for each section at a predetermined period. In each case, find the difference between the average temperature or minimum temperature of each classification temperature and one point target temperature at the start of ripening before extraction of the material to be heated, and also find the difference from the target extraction temperature, and calculate these 4.
The furnace temperature and/or moving speed of the remaining furnace area is controlled based on the larger difference, and after the average temperature or minimum temperature reaches both the ripening start point and the start target temperature, the average temperature or minimum temperature is This heating furnace control method sequentially controls the furnace temperature and moving speed of the remaining furnace area based on the difference between the temperature and the target extraction temperature.
ここでの特徴は、被加熱材が冶金的熱処理対象材の場合
に前記同様の抽出時平均温度又は最低温度をF 1ll
llすると同時に熟熱開始時点の温度1点についでも該
平均温度又は最低温度を簡易式により千411シ、これ
らの各11標値との差のうち大きい差に基いて制御をす
るものである。但し、熟熱開始時点温度1点の予測は、
当該被加熱材の逐次算出する該実績平均温度又は最低温
度が該熟熱開始時点及び開始目標温度の両方を満足した
以後については行なわれない。このため熟熱(即ち、特
殊元素の固溶、析出又はこJしらの維持に必要な熱処理
あるいは材料的偏熱軽減のための熟熱処理等)を必要と
する被加熱材の品質を保証する抽出実績温度は厚み方向
及び長手方向の各区分全部に及んで、確実に保証する点
、及び制御も抽出端に近づくにつれてより精度を向」ニ
させ且つ短時間のilI算処理をiiJ能にし電算機使
用容爪を大幅に低減せしめた点、又従来のピー1−パタ
ーン制御に比べ連続式加熱炉に続く圧延上程への生産性
及び安定性を全く1;1を害しない点が本発明の効果で
ある。The feature here is that when the material to be heated is a material to be subjected to metallurgical heat treatment, the average temperature or minimum temperature during extraction is
At the same time, the average temperature or minimum temperature at one point at the start of ripening is controlled by a simple formula based on the larger difference from each of these 11 standard values. However, the prediction of the temperature at the start of aging is as follows:
After the actual average temperature or minimum temperature of the material to be heated, which is calculated sequentially, satisfies both the ripening start point and the target start temperature, the heating is not performed. For this reason, extraction guarantees the quality of heated materials that require ripening (i.e., solid solution of special elements, precipitation, or heat treatment necessary to maintain this property, or ripening heat treatment to reduce material uneven heat, etc.). The actual temperature is ensured in all sections in the thickness direction and longitudinal direction, and the control is also more accurate as it approaches the extraction end, and a computer is used to perform short-time calculation processing. The advantages of the present invention are that the number of jaws used is significantly reduced, and that the productivity and stability of the rolling process following the continuous heating furnace are not impaired at all compared to the conventional P1-pattern control. It is.
以十本発明の実施例を図面を参照して説明する。Hereinafter, ten embodiments of the present invention will be described with reference to the drawings.
友旅−νW
第2図は本発明の制御を実施する装置慴成を示ずブロッ
ク図である。図中の記号をまず説明すると、
Aは被加熱材の加熱炉装入信号発生装置、Bは被加熱材
の圧延条件(圧延スケジュール)設定部、
Cは被加熱材の加熱条件設定部、
1〕は被加熱材の炉内位置演算部、
IΣは炉内湿度等の炉況データスキャン部、Fは本制御
を構成する炉内の被加熱材毎及び時系列炉況等の制御デ
ータ群、
Gは被加熱材の抽出信号発生装置、
■1は被加熱材の抽出信号発生装置、
■は炉内各被加熱材の各位置での実績温度演算部、
Jは被加熱材の残り在炉時間演算部、
■(は被加熱材の抽出時温度及び熟熱開始時点の温度を
ヂエックし、所定の熟熱域の炉温度設定及び移動速度制
御の演算部。Friend Journey - νW FIG. 2 is a block diagram without showing the structure of a device implementing the control of the present invention. To first explain the symbols in the figure, A is a heating furnace charging signal generator for the heated material, B is a rolling condition (rolling schedule) setting section for the heated material, C is a heating condition setting section for the heated material, 1 ] is a calculation unit for the position of the heated material in the furnace, IΣ is a furnace condition data scanning unit such as humidity in the furnace, F is a group of control data such as each heated material in the furnace and the time-series furnace condition, which constitutes this control, G is the extraction signal generator for the heated material, ■1 is the extraction signal generator for the heated material, ■ is the actual temperature calculation unit at each position of each heated material in the furnace, and J is the remaining temperature of the heated material in the furnace. A time calculation unit (1) is a calculation unit that checks the temperature of the material to be heated at the time of extraction and the temperature at the start of ripening, sets the furnace temperature in a predetermined ripening range, and controls the movement speed.
■、は被加熱4,4の炉内移動速度制御′!A直。■, Controls the moving speed of heated objects 4 and 4 in the furnace'! A direct.
Mは被加熱1]の炉内搬送設備、及び被加熱材の抽出昨
設備、
1\1は炉温設定制御装置、
0は炉温調節設備、
1は被加熱t)i装入信号、
2は設定部13を経由した被加熱材装入信号、3は、設
定部Bで計算及び設定した圧延条件データ群の移動、
4は設定部Cで演算及び設定し、た加熱条件データ部の
移動、
5は設定部りで計算及び設定した加熱条件データ群の移
動、
6は炉況データスキャン部1Σでスキャンされた炉温等
のデータ移動、
7は被加熱材の炉内各位置での実績温度演算部Iの処理
を行なうためのデータ移動、
8は演算部Jが各被加熱材の残り在炉時間をR1算する
ためのデータ移動、
9は演算部■くが使用するデータ移動、lOは演算部■
(で設定した被加熱Hの炉内移動速度のデータ移動、
!1は装置iT、 Gから発生された抽出タイミング信
号、
12は信号源■1から発生された定期的夕・rミング信
号、
13は演算部■を経由した信号11及び信号114は演
算部Jを経由した信号11.信号12゜及び信号15.
15は演算部■くを経由した信号11.信号12の演算
部Jへの繰返し信号、
16は演算部lくの演算が終rし制御装置l、に知ら仕
るタイミング信号、
1゛7は制御装置1.が実際炉の被加熱材搬送及び抽出
設備Mを駆動する信号、
18は演算部lくの演算が終了し、制御装置Nに知ら[
゛るタイミング゛(fi号、
19は制御装@Nが実際炉温を調節するa1装股@Oを
駆動する信号、
を夫々に示ず。M is the furnace conveyance equipment for the heated material 1] and the extraction equipment for the heated material, 1\1 is the furnace temperature setting control device, 0 is the furnace temperature adjustment equipment, 1 is the heated material t)i charging signal, 2 3 is the movement of the rolling condition data group calculated and set by the setting part B. 4 is the movement of the heating condition data part calculated and set by the setting part C. , 5 is the transfer of the heating condition data group calculated and set by the setting section, 6 is the transfer of data such as furnace temperature scanned by the furnace condition data scanning section 1Σ, and 7 is the actual results of the heated material at each position in the furnace. 8 is data movement for the calculation part J to calculate the remaining furnace time R1 of each material to be heated; 9 is data movement used by the calculation part I; lO is the calculation section■
(Data movement of the moving speed of the heated object H in the furnace set in !1 is the extraction timing signal generated from the device iT, G, 12 is the periodic evening/rming signal generated from the signal source ■1, 13 Signal 11 and signal 114 are signals 11 and 15 that have passed through calculation unit J. 15 is signal 11 and signal 12 that have passed through calculation unit J. signals, 16 is a timing signal that notifies the control device 1 when the calculation of the calculation unit 1 is completed; 1 and 7 are signals by which the control device 1 actually drives the heated material conveyance and extraction equipment M of the furnace; 18 indicates that the calculation of the calculation unit 1 has been completed and the control device N is informed [
The timing of the change (FI, 19 is the signal by which the control unit @N drives the a1 unit @O that actually adjusts the furnace temperature) is not shown.
なお、前記信号13〜19は全て信号発生装置Gと信号
源IIとより発生される信号11と信号■2よりタイミ
ングが決定される。The timing of all of the signals 13 to 19 is determined by the signal 11 and the signal 2 generated by the signal generator G and the signal source II.
次に第2図の各構成部主要機能を説明すると。Next, the main functions of each component in FIG. 2 will be explained.
圧延条件設定部13は、被加熱材(被圧延材)の圧延ス
ゲジュール及び圧延所要タイムを演算する部分であり、
第3図の概念図に示ず如く加熱炉Fcθに続く圧延工程
の圧延スケジュールを演算する。The rolling condition setting unit 13 is a part that calculates the rolling schedule and rolling time of the heated material (rolled material),
As shown in the conceptual diagram of FIG. 3, a rolling schedule for the rolling process following the heating furnace Fcθ is calculated.
圧延工程の粗ゾーンVSBのR1〜1(4では各圧延機
の圧延パス回数、各位置での厚み、移動速度、圧延スピ
ード、デスケリング選択を決定し、粗圧延ピッチを決定
する。又、仕」1ゾーンIr t〜F7では被加熱材(
被圧延材HS )の圧延スピードパターン、各圧延機の
負荷配分及び仕上前面での必要アイドルタイムを決定し
、仕−]二圧延ピッチを決定する。コイラーゾーンDC
では、巻取機の動作時間及び被加熱材の冷却時間を決定
し、コイラーピッチを決定する。In R1 to R1 (4) of the rough zone VSB of the rolling process, the number of rolling passes of each rolling mill, the thickness at each position, the moving speed, the rolling speed, and the descaling selection are determined, and the rough rolling pitch is determined. In zone 1 Ir t~F7, the material to be heated (
The rolling speed pattern of the material to be rolled (HS), the load distribution of each rolling mill, and the required idle time at the finishing front are determined, and the rolling pitch is determined. coiler zone dc
Now, the operating time of the winder and the cooling time of the heated material are determined, and the coiler pitch is determined.
これらの圧延条件は被加熱材の加熱条件を決定する設定
部Cが圧延ライン温度降下を算出する際、及び演算部、
Jが残り在炉時間を1itlt’Xする際に使用する。These rolling conditions are used when the setting section C, which determines the heating conditions for the material to be heated, calculates the rolling line temperature drop, and when the calculation section,
J is used when the remaining furnace time is 1itlt'X.
なお、この圧延条件設定部13が使用するロジックは実
圧延を行なう際の各設定演算モデルと同一のロジックを
使用し、予測精度をアップするとともに、圧延工程への
被加熱材焼き上がり状態をフィードフォワード及び、組
接面温度RT 、L、(J: 、−L:後面温度FT7
よりの温度学習(加熱制御へのフィードバック)を容易
にした。Note that the logic used by this rolling condition setting section 13 is the same logic as each setting calculation model when performing actual rolling, which improves prediction accuracy and feeds the baked state of the heated material to the rolling process. Forward and mating surface temperature RT, L, (J: , -L: Rear surface temperature FT7
This makes temperature learning (feedback to heating control) easier.
閥加熱t1の加熱条件設定部Cは、被加熱材つまり圧延
成品要求に従った成品ザ・rズ及び仕1〕後面の温度と
前記設定部[3の圧延スゲジュールに(iCっ〔圧延う
rン−にの温度降F爪(第4図のC21(’:3)ど被
加熱材のn′(′容篩熱値を求め、目標抽出温度の平均
値又は最低温度を求めるものである。The heating condition setting section C of the heating condition t1 sets the temperature of the material to be heated, that is, the finished product in accordance with the requirements for the rolled product, This is to determine the sieving heat value of the material to be heated, and determine the average value or minimum temperature of the target extraction temperature.
又、冶金的熱処理を必要とする被加熱材しこついては熱
処理−に必要な温度として目標抽出温度の最低;都度を
第・1図中の(二5に゛〔求め、両方の高い温度を11
漂抽出温度の最低温度、第4図中のCBとずろ。In addition, for materials to be heated that require metallurgical heat treatment, the lowest target extraction temperature;
The lowest temperature for drift extraction, CB and Zu in Figure 4.
・方、−1−−i!+!被加熱財の許容偏熱範囲(スキ
ンドマーク等)が狭いとき又は冶金的熱処理−Lで熟熱
が要求されるものに−)いては抽出前の熟熱開始点目標
温度と抽出までの時間をも設定する。・How, -1--i! +! When the allowable heat deviation range of the product to be heated is narrow (skinned marks, etc.) or when ripening is required in metallurgical heat treatment (L), the target temperature for the starting point of ripening before extraction and the time until extraction. Also set.
なJン第4図は第2図の設定部Cの処理フローを図示し
たものである。なお、上記冶金的熱処理を必要とする被
加熱材とは、A l −K tfi、N b入り鋼等の
特殊元素を固溶させるもの、又は析出させるもの、及び
鋼片中の介入物不要成分を拡散するもの等がある。FIG. 4 illustrates the processing flow of the setting section C in FIG. 2. The materials to be heated that require the above-mentioned metallurgical heat treatment include those in which special elements are dissolved or precipitated, such as Al-Ktfi and Nb-containing steel, and components in steel slabs that do not require intervention. There are things that spread it.
第2図中の実績温度演算部Iは、制御データ群Fを用い
て炉内の各被加熱材の炉内階位置までの温度を厚み方向
及び長手方向の複数区分温度の現在値をJ1算するもの
である。ここで用いる謂算式は2次元差分解モデルによ
り、信桂11又は信叶12により起動が繰り返さJしる
時間内の昇温温度を時分割的に81算するものである。The actual temperature calculation unit I in Fig. 2 uses the control data group F to calculate the current value of the temperature of each heated material in the furnace up to the furnace floor position in the thickness direction and the longitudinal direction. It is something to do. The so-called calculation formula used here is to time-divisionally calculate the temperature increase within the time period during which activation is repeated by the Shinkatsu 11 or the Shinkan 12 using a two-dimensional differential decomposition model.
第5図に示すものは、上記実績温度演算部Iの1例であ
り、被加熱材の厚み方向を5区分及び長手方向を5区分
し、各区分(5×5 )点の温度を求めでいる。又、同
図に示す区分がlr、c図中の伊東側、四面側)に存在
するのは炉内の炉幅方向の湯度分布を考えたためである
。What is shown in Fig. 5 is an example of the above-mentioned actual temperature calculation section I, which divides the heated material into 5 sections in the thickness direction and 5 sections in the longitudinal direction, and calculates the temperature at each section (5 x 5) points. There is. Also, the reason why the divisions shown in the same figure exist on the Ito side and the four side sides in figures lr and c is because we considered the hot water temperature distribution in the furnace width direction inside the furnace.
第6図に示すものは上記2次元モデルにより、被加熱材
温度をバ1算する際に用いる。炉内1j囲気温度は第6
図中の+ l+Z、2Hz、3117.およびS2各I
Fの−L下に設置された炉内温度検出器より測定された
値より炉内温度分布曲線で推定した炉内各位置温度を使
用する。The one shown in FIG. 6 is used when calculating the temperature of the heated material using the above two-dimensional model. Furnace 1j surrounding air temperature is 6th
+l+Z, 2Hz, 3117. in the figure. and S2 each I
The temperature at each position in the furnace estimated from the furnace temperature distribution curve from the value measured by the furnace temperature detector installed below -L of F is used.
なお1本例は厚み長手方向の2次元モデルであるが、被
加熱材の幅方向を計算する場合は被加熱材の前後に存在
する被加熱材との間隔を考1ff、した3次元モデルを
使用する等が考えらJしる。Note that this example is a two-dimensional model in the longitudinal direction of the thickness, but when calculating the width direction of the heated material, a three-dimensional model that takes into account the distance between the heated materials that exist before and after the heated material is used. I can't even think of using it.
第2図中の残り在炉時間演算部Jは、被加熱材の各位置
での実績温度演算部Iよりの信号13で起動さIしたタ
イミングでは制御データfll’、 Fにある各被加熱
材より下流に位置する被加熱材の圧延時間をffl¥f
、(7、各被加熱材の残り在炉時間とする。The remaining furnace time calculating section J in FIG. The rolling time of the heated material located further downstream ffl¥f
, (7. Remaining furnace time of each material to be heated.
又、炉温設定及び被加熱材移動速度制御の演算部により
の信号15で起動されたタイミングでは、−]二記同様
、各被加熱材よりド流に位置する被加熱14の圧延時間
と更に演算部1くが移動速度制御−に決定する加熱ネッ
ク化を加算し、残り在炉時間とする。In addition, at the timing activated by the signal 15 from the calculation unit for furnace temperature setting and heated material movement speed control, -] As in the second point, the rolling time of the heated material 14 located downstream from each heated material is further increased. The calculation unit 1 adds the determined heating neck to the moving speed control and determines the remaining furnace time.
第7図は第2図の演算部jの機能を一例として示したも
ので第7図中の例えば被加熱材(以下月利という)■の
1回目(」二記信号13で起動されたとき)の残り在炉
時間は下流材!1■〜■の圧延時間を積算する。FIG. 7 shows an example of the function of the calculation unit j in FIG. 2. For example, in FIG. ) remaining furnace time is downstream material! 1. Accumulate the rolling times from ■ to ■.
又、材料■の2回目(上記信号15で起動されたとき)
の残り在炉時間は下流材料■〜■の圧延時間と下流各材
料間の加熱ネック代Cス!〜に5との積算値となる。Also, the second time of material ■ (when activated by the above signal 15)
The remaining furnace time is the rolling time of the downstream materials ■~■ and the heating neck cost Cs between each downstream material! It becomes the integrated value of ~ and 5.
なお、」二記「加熱ネック化」とは、次の演算部にの機
能内で説明する。Note that "Heating neck formation" in Section 2 will be explained in the following function of the calculation section.
第2図の炉温設定及び被加熱材の移動速度制御の演算部
には、前述の実績温度演算部1より求められた炉内各被
加熱材の炉内各位置での81算実績温度(平均温度及び
最低温度)と前述残り在炉時間から、在炉時間内内に抽
出目標温度に達するか、複数の簡易式を用いて推定する
。The calculating section for furnace temperature setting and moving speed control of heated materials shown in FIG. From the above-mentioned remaining furnace time (average temperature and minimum temperature) and the remaining furnace time, it is estimated using a plurality of simple formulas whether the extraction target temperature will be reached within the furnace time.
この;1;L算部は前述の演算部Jと同様2回演算を行
ない、1回1.4 (信号13よりJを経て起動された
とさ)は残り在炉時間内に抽出目標温度に達しない時に
は、被加熱材の残り在炉時間で不足する時間を求めて当
該被加熱材より下流に位置する被加熱材の圧延時間を均
等に延長する。これは[加熱ネック化Jとして被加熱材
の炉内移動速度制御に使用する。This;1;L calculation section performs calculation twice in the same way as the above-mentioned calculation section J, and once 1.4 (started from signal 13 via J), the extraction target temperature is reached within the remaining furnace time. If not, the time remaining in the furnace of the heated material is determined and the rolling time of the heated materials located downstream of the heated material is equally extended. This is used as a heating neck to control the moving speed of the heated material in the furnace.
2回目(信号15よりJを経て起動されたとき)は前述
演算部Jで1加熱ネック代」を考慮した在炉時間内で丁
度抽出目標温度に達する様な炉温設定を選択する。従っ
て1回目の演算は被加熱本4の移動速度制御値を決定し
、2回目は炉温の設定値を決定するものである。但し、
前記の炉温設定値が−(−記被加熱材のn)り実績温度
を下限わるときは被加熱(、Aの剖″算実績温度又は直
近温度になるように、被加熱材が存在する加熱帯又はそ
の加熱帯に影響をりえる他の加熱帯の炉温を設定する。The second time (when activated from signal 15 via J), the calculation section J selects a furnace temperature setting that will exactly reach the extraction target temperature within the furnace operating time, taking into account "1 heating neck allowance". Therefore, the first calculation determines the moving speed control value of the heated book 4, and the second calculation determines the set value of the furnace temperature. however,
If the furnace temperature set value is below the lower limit of the actual temperature by -(n of the material to be heated), the material to be heated is such that it reaches the calculated actual temperature of A or the most recent temperature. Set the furnace temperature of the heating zone or other heating zones that can influence the heating zone.
第(i li’lは、前)・ト第2図の演算部1,1り
の関係をし1にU 1%’式したものであり、第8図中
の2次元差分解モデルとは、演算部1を示し、同図中の
重回帰モデルとは演算部にを示している。今、被加熱材
fl (以下材料という)■を例に説明すると、材料(
亘)が現在炉内2 tT Zに位置する温度は2次元差
分解モデルにて、厚み方向、長手方向の複数点の温度を
実績値′”としてnIgする。The relationship between the calculation units 1 and 1 in Figure 2 is expressed as U1%' in Figure 8. , the calculation unit 1 is shown, and the multiple regression model in the figure indicates the calculation unit. Now, to explain the heated material fl (hereinafter referred to as material) ■ as an example, the material (
The temperature at which Wataru (Wataru) is currently located at 2 tTZ in the furnace is calculated using a two-dimensional difference resolution model, using the temperatures at multiple points in the thickness direction and longitudinal direction as actual values.
次に現在実績計算温度をパラメータとした重回帰モデル
にて残り在炉中に昇温される温度を計算し。Next, a multiple regression model using the current actual calculated temperature as a parameter is used to calculate the temperature that will rise during the remaining furnace operation.
1」標抽出温度に達するかをチェックする。1) Check whether the standard extraction temperature is reached.
但し、目標抽出温度が、材料肉各区分の最低温度である
ときは、現在実績温度士)各区分の最低温度をパラメー
タとし1重回帰式も最低温度を推定する式を複数個の式
の内より選択する。However, if the target extraction temperature is the lowest temperature for each category of raw meat, use the minimum temperature of each category as a parameter and the single regression formula or the formula for estimating the lowest temperature among multiple formulas. Choose from more.
更にIJ判が炉内の21−I Zか311ZかSZのど
の位1i[に存在するかによっても式の選択を考え、抽
出端に近づくに従って計算精度が向上する様になってい
る。Furthermore, the formula is selected depending on how far the IJ size exists in 21-IZ, 311Z, or SZ in the furnace, and the calculation accuracy improves as it approaches the extraction end.
なお、被加熱材が熟熱を要する月利については、熟熱開
始点の目標温度についても」−記と同様につ行なう。但
し、この場合は残り在炉時間より熟熱時間を除いた時間
が在炉時間となる。In addition, for monthly yields in which the material to be heated requires ripening, the target temperature of the ripening starting point is carried out in the same manner as described in ``-''. However, in this case, the time remaining in the furnace minus the ripening time is the time in the furnace.
又、材料が熟熱開始点を通過後は熟熱開始点から抽出ま
での時間をチェックし材料の移動速度を制御することと
なり、更に熟熱開始点及び熱熱時間を満足した時点以後
は、上記目標抽出温度のみのチェック及び制御となる。In addition, after the material passes the ripening start point, the time from the ripening start point to extraction is checked and the movement speed of the material is controlled. Furthermore, after the ripening start point and the heating time are satisfied, Only the target extraction temperature mentioned above is checked and controlled.
第8図の例をもとに更に詳細に説明すると、現時点の材
料位置が材料■であるとすると材料は2 Hzに17在
するため、2 HZ用の重回帰式を用いて抽出温度を推
定する。To explain in more detail based on the example in Figure 8, if the current material position is material ■, there are 17 materials at 2 Hz, so the extraction temperature is estimated using a multiple regression equation for 2 Hz. do.
1”p xt、=’L”sz−(1−5xp [−(
rj、sx ・ <−Q、nTsz/ (1″sz
−’rsg )>+rAs2・eTs/ h 4−c4
sa ) ] ) A1、”sE =
’1”3z・[’l−εxp[(4+(、unTsz
/ (1’3Z i”3a) >」−62・eTg /
h 十内。) ] ) −−−−−−−13’、1
”:+ e =T2 y、・[+−εxp [(g21
・<J’−nT2z/ (T2z ”I’2 E) >
−1−拭22・θ’、1.’2 /1tIt 十び、
23 ) ] ) −−−−−C8T2e :
2σU1鄭)解モデルで求めた月利の現在温度h:被
加熱材のJTIみ
]εxl; :被加熱材の抽出温度推定値に記?it数
値は1’axL;で求める抽出温度が平均温度か最低温
度かにより値を変えて別の重回帰式としている。1"p xt, ='L"sz-(1-5xp [-(
rj, sx ・<-Q, nTsz/ (1″sz
-'rsg )>+rAs2・eTs/h 4-c4
sa ) ] ) A1,”sE=
'1''3z・['l−εxp[(4+(, unTsz
/ (1'3Z i"3a) >"-62・eTg /
h Juuchi. ) ] ) -----------13', 1
”:+ e =T2 y, ・[+−εxp [(g21
・<J'-nT2z/ (T2z ``I'2 E)>
-1-wipe 22・θ', 1. '2 /1tIt tenbi,
23 ) ] ) ------C8T2e:
2σU1 Zheng) The current temperature of the monthly profit obtained using the solution model h: JTI of the heated material] εxl; : Recorded in the estimated extraction temperature of the heated material? The value of it is changed depending on whether the extraction temperature determined by 1'axL; is the average temperature or the minimum temperature, and a different multiple regression equation is used.
従って計算式の型は同じである。又、T7aは1」標抽
出温度が平均温度のときは平均値、目標抽出温度が最低
温度のときは最低温度となる。Therefore, the types of calculation formulas are the same. Further, T7a is 1''. When the target extraction temperature is the average temperature, it is the average value, and when the target extraction temperature is the lowest temperature, it is the minimum temperature.
次に材料が材料■に位置するときは3H2の重回帰式を
用いて抽出温度を推定する。Next, when the material is located in material (2), the extraction temperature is estimated using a 3H2 multiple regression equation.
Tct=Tsz・ [1−とXP [−(c4gl ・
<、fLnTsz/ (T3 z−’rsg ) )+
d、s2 ・aTs/ b +o(Sa ) ] )
D]、’sH=Tsz・[1−とXP
[−(17’u 1 ’ GnTa Z/ (”J、
”3 Z i−”a e ) >+内2・θ’J’3/
hl−ん3)]) −−−−−7−−E’I”3 g
: 2次元差分解モデルで求めた月利の現在温度’I’
a xt、= ”l’sz・(1−どxp[−(c%、
s! ・ Qnl’sz/ (Tsz−TgB )>
十ty<s2・aTs/b +dys3)コ) −−
−−−−−−−−F゛1゛相:2次元X弓)Mモデルで
求めた月利の児在渇度以−1−の様に、材イ゛1が炉内
を進むに従って重回帰式は変形して使用する様になっ”
Cいる。但し、各武具に式の型は同じであり、計算は式
の常数を選択するのみで、別の回帰式となる様工夫さA
している。Tct=Tsz・[1- and XP [-(c4gl・
<, fLnTsz/ (T3 z-'rsg) )+
d, s2 ・aTs/ b + o(Sa ) ] )
D],'sH=Tsz・[1- and XP
[-(17'u 1' GnTa Z/ ("J,
"3 Z i-" a e ) >+2・θ'J'3/
hl-n3)]) ------7--E'I"3 g
: Current temperature of monthly interest rate 'I' calculated by two-dimensional difference model
a xt, = ”l'sz・(1-doxp[-(c%,
s!・Qnl'sz/ (Tsz-TgB)>
1ty<s2・aTs/b +dys3)ko) --
−−−−−−−−F゛1゛phase: 2-dimensional The regression equation is now used in a modified form.”
There is C. However, the type of equation is the same for each weapon, and the calculation is done by simply selecting the constant of the equation, which is a different regression equation.
are doing.
」−1記式の回帰式精度は2次元差分解式に比べて21
−(Zの重回帰式小=6℃、3 tT Zの重回帰式で
の=3“”c、szの重回帰式で小=1°Cの精度を得
る事が出来た。The regression equation accuracy of the ``-1 notation is 21 compared to the two-dimensional difference equation.
-(Multiple regression equation for Z small = 6°C, 3 tT The multiple regression equation for Z = 3""c, the multiple regression equation for sz was able to obtain an accuracy of small = 1°C.
又材料が熟熱時間及び熟熱開始時点の温度をチェックす
る必要がある場合にも上記式を使用するが、この1合は
材t1の残り在炉時間のパラメータを実残り在炉時間よ
り熟熱時間を除く等の工夫が必要でIIIる。The above formula is also used when it is necessary to check the maturation time and temperature at the start of maturation of the material. It is necessary to take measures such as eliminating heat time.
第2図中の被加熱材の移動速度制御装置1、は。The movement speed control device 1 for the heated material in FIG.
加熱炉の被加熱材搬送装置(ウオーキングビーム)の駆
動をコントロールする機能及び被加熱材の炉抽出t%
(エキス1へラフター)の制御装置(第1図中のM)を
制御するものであり、これは、被加熱Hの圧延ビッヂ(
第2図に示す各圧延工程間の移動時間)のチェックと、
第1図中の演算部Kが4算した炉内名寄の炉温設定に従
って炉温を設定する機能(セラ1−・アップコン1ごロ
ール)をもつものである。Function to control the drive of the heated material conveying device (walking beam) of the heating furnace and furnace extraction t% of the heated material
(Rafter to Extract 1) control device (M in Figure 1), which controls the rolling bit (of H to be heated) (
Checking the moving time between each rolling process shown in Figure 2),
The arithmetic unit K in FIG. 1 has a function of setting the furnace temperature in accordance with the furnace temperature setting in the furnace interior calculated by 4 (cellar 1 and upcon 1 roll).
方l用
本発明により、被加熱材の品質を保証する実績温度は厚
み方向及び長手方向の各区づ)全部について保証し、又
、熟熱(即ち特殊元素の固溶析出)又はこれらの維持に
必要とする被加熱材の品質も各区づ〕全部について確実
に保証する事が11能となった。According to the present invention, the actual temperature that guarantees the quality of the material to be heated is guaranteed for all sections (thickness direction and longitudinal direction), and also for maturation heat (i.e. solid solution precipitation of special elements) or maintenance of these. It has become possible to guarantee the quality of the necessary materials to be heated in all categories.
更に制御も抽出端に近づくにつれて精度を向」二さ仕、
且つ短時間のn1算処理を可能にし、51算機使Jll
’ff Fil 6 ノ・ 中旧−0(、;ハJI
L1. めl゛ )、す、ノ、ル げfn ′ jF
())I゛11パターン制御べ連続式加熱炉に続く圧延
工程への生産性及び安定性を全く阻害しない点を実現し
、加熱炉の省エネルギーを実施した事が最大の効果であ
る。Furthermore, the control also improves accuracy as it approaches the extraction end.
It also enables n1 arithmetic processing in a short period of time, allowing 51 arithmetic operations.
'ff Fil 6 no.
L1. mel゛),su,no,ru gefn ′ jF
()) The biggest effect is that the I゛11 pattern control does not impede the productivity and stability of the rolling process following the continuous heating furnace at all, and saves energy in the heating furnace.
第9図および第10図に示すグラフは従来技術(全て簡
易式による制御)との比較をした制御結果を示すもので
あるが、いずれも精度の高い制御がfTなわれ“Cいる
事を示している。The graphs shown in Figures 9 and 10 show the control results compared with the conventional technology (all controls using simple formulas), and both show that highly accurate control is achieved by fT. ing.
第1図は、従来の昇温パターン制御例を示すグラフであ
る。
第2図は本発明を1つの態様で実施する制御装置構成を
示すブロック図、第3図は加熱圧延ラインと第2図の圧
延条件設定部Bの制御内容の関連を1呪略で示すブロッ
ク図、第4図は第2図の加熱条件設定部Cの処理フロー
を示すブロック図、第5図は第2図の実績温度演算部■
での演算上の。
被加熱材厚み方向及び長手方向の区分例を示す平面図、
第6図は加熱炉における温度検出器の配置と炉内各位置
での炉内雰囲気温度算出との関係を示すノUツク図、第
7図および第8図は第2図に示゛1fiij算部1.J
およびIくの演算に関連する、被加熱材料それぞれの位
置と演算値および演算タイミングとの関係を示すブロッ
ク図である。
第9図は粗仕上温度と抽出温度の関係を示すグラフ、第
10図は抽出温度と温度偏差との関係を示すグラフであ
る。
Δ:被加熱月の加熱炉装入信号発生装置13:被加熱材
の圧延条件(圧延スケジュール)設定部
C:被加熱材の加熱条件設定部
■、):被加熱材の炉内位置演算部
E::内温度等の炉況データスキャン部F:本発明の制
御を構成する炉内の被加熱材毎及び時系列炉況等の制御
データ群
G:被加熱材の抽出信号発生装置
lI:被加熱材の抽出信号発生装置
■:炉炉内各別加熱材各位置での実績温度演算部J::
加熱材の残り在炉特開演算部
lり:被加熱材の抽出時温度及び熟熱開始時点の温度を
チェックし、所定の熟熱域の炉温度設定及び移動速度制
御の演算部
■、:被加熱材の炉内移動速度制御装置M::加熱材の
炉内搬送設備、及び被加熱材の抽出機設備
N:炉温設定制御装置
O:炉温調節設備
l:被加熱材装入信号
2:設定部Bを経由した被加熱材装入信号3:設定部I
3で4算及び設定した圧延条件データ群の移動
4:設定部Cで演算及び設定した加熱条件データ部の移
動
5:設定部りで81算及び設定した加熱条件データ群の
移動
6:炉況テータスキャン部)Σでスキャンされた炉温等
のデータ移動
7:被加熱材の炉内各位置での実績温度演算部Iの処理
を行なうためのデータ移動
8:演算部Jが各被加熱材の残り在炉時間を削算するだ
めのデータ移動
9:演算部■(が使用するデータ移動
lO二演算部にで設定した被加熱材の炉内移動速度のデ
ータ移動
]l:装置Gから発生された抽出タイミング信号12:
信号源■]から発生された定期的タイミング信号
13:演算部■を経由した信号11及び信号1214:
演算部Jを経由した信号11.信号12゜及び信号15
15:演算部I(を経由した信号11.信号12の演算
部Jへの繰返し信号
16:演算部■くの演算が終了し制御装置りに知らせる
タイミング信号
17:制御装置1.が実際炉の被加熱材搬送及び抽出設
備Mを駆動する信号
18:演算部■(の演算が終了し、制御装置Nに知らせ
るタイミング信号
19:制御装置Nが実際炉温を調節する4装設備Oを駆
動する信号
特許出願人 新1」本製鐵株式会社FIG. 1 is a graph showing an example of conventional temperature increase pattern control. FIG. 2 is a block diagram showing the configuration of a control device that implements the present invention in one embodiment, and FIG. 3 is a block diagram showing the relationship between the hot rolling line and the control contents of the rolling condition setting section B in FIG. 2 in one spell. 4 is a block diagram showing the processing flow of the heating condition setting section C in FIG. 2, and FIG. 5 is a block diagram showing the processing flow of the heating condition setting section C in FIG. 2.
on arithmetic. A plan view showing an example of dividing the heated material in the thickness direction and longitudinal direction,
Figure 6 is a schematic diagram showing the relationship between the arrangement of temperature detectors in the heating furnace and the calculation of the furnace atmosphere temperature at each position in the furnace, and Figures 7 and 8 are shown in Figure 2. Part 1. J
FIG. 3 is a block diagram showing the relationship between the position of each heated material, the calculated value, and the calculation timing related to the calculations of FIG. FIG. 9 is a graph showing the relationship between rough finishing temperature and extraction temperature, and FIG. 10 is a graph showing the relationship between extraction temperature and temperature deviation. Δ: Heating furnace charging signal generator for heating month 13: Rolling condition (rolling schedule) setting unit for heated material C: Heating condition setting unit for heated material ■, ): In-furnace position calculation unit for heated material E: Furnace condition data such as internal temperature scanning unit F: Control data group for each heated material in the furnace and time-series furnace condition, etc. that constitutes the control of the present invention G: Extraction signal generator for heated material II: Heated material extraction signal generator ■: Actual temperature calculation unit for each heated material at each position in the furnace J::
Unexamined calculation unit for heating material remaining in the furnace: Checks the temperature of the material to be heated at the time of extraction and the temperature at the start of aging, and sets the furnace temperature in the predetermined aging range and controls the movement speed. Furnace movement speed control device for heated materials M: In-furnace conveyance equipment for heating materials and extractor equipment for heated materials N: Furnace temperature setting control device O: Furnace temperature adjustment equipment L: Heated material charging signal 2: Heated material charging signal via setting section B 3: Setting section I
3 to 4 calculation and movement of the set rolling condition data group 4: Movement of the heating condition data part calculated and set in setting section C 5: 81 calculation in setting section and movement of the set heating condition data group 6: Furnace condition Data scanning unit) Data movement such as the furnace temperature scanned by Σ 7: Actual temperature at each position in the furnace of the heated material Data movement for processing by the calculating unit I 8: Calculating unit J scans each heated material Data movement to reduce the remaining furnace time 9: Calculation unit ■ (Data movement used by lO2 Data movement of the moving speed of the heated material in the furnace set in the calculation unit) l: Generated from device G Extraction timing signal 12:
Periodic timing signal 13 generated from signal source ■]: Signal 11 and signal 1214 via calculation unit ■:
Signal 11 via calculation section J. Signal 12° and signal 15 15: Signal 11 via calculation unit I (repetition signal 12 of signal 12 to calculation unit J) 16: Timing signal that notifies the control device when the calculation of calculation unit I is completed 17: Control device 1. Signal 18 for driving the material to be heated and extraction equipment M in the actual furnace: Timing signal 19 for notifying the control device N when the calculation of the calculation section (■) has finished; 4 for the control device N to adjust the actual furnace temperature. Signal patent applicant for driving equipment O “New 1” Honstetsu Co., Ltd.
Claims (2)
夫々を複数に区分し、所定周期で各区分毎に現在位置に
おける温度を算出し、その都度この各区分温度の平均温
度又は最低湿度と目標抽出温度との差に基いて残り在炉
域の炉温及び又は移動速度を逐次制御することを特徴と
する加熱炉の制御方法。(1) The material to be heated in the furnace is divided into multiple sections in the thickness direction and longitudinal force direction, and the temperature at the current position is calculated for each section at a predetermined period, and each time the average temperature or minimum temperature of each section temperature is calculated. A heating furnace control method characterized by sequentially controlling the furnace temperature and/or moving speed of the remaining furnace area based on the difference between humidity and target extraction temperature.
夫々を複数に区分し、所定周期で各区分毎に現在位置に
おける温度を算出し、その都度この各区分温度の平均温
度又は最低温度と当該被加熱材抽出前の熟熱開始時点の
目標温度との差を求める−・方、目標抽出温度との差も
求め、これらの4差の大きい方に基いて残り在炉域の炉
温及び移動速度を制御し、該平均温度又は最低温度が該
熟熱開始時点及び開始目標温度の両方に達した以降は該
平均温度又は最低温度と前記目標抽出温度との差に基い
て残り在炉域の炉温及び又は移動速度を逐次制御するこ
とを特徴とする加熱炉の制御方法。(2) The material to be heated in the furnace is divided into multiple sections in the thickness direction and longitudinal force direction, and the temperature at the current position is calculated for each section at a predetermined period, and each time the average temperature or minimum temperature of each section temperature is calculated. Find the difference between the temperature and the target temperature at the start of ripening before extraction of the material to be heated. Also find the difference from the target extraction temperature, and calculate the remaining furnace area based on the larger of these four differences. The temperature and movement speed are controlled, and after the average temperature or minimum temperature reaches both the ripening start point and the start target temperature, the remaining temperature is determined based on the difference between the average temperature or minimum temperature and the target extraction temperature. A method for controlling a heating furnace, characterized by sequentially controlling the furnace temperature and/or moving speed of a furnace zone.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16921082A JPS5959837A (en) | 1982-09-27 | 1982-09-27 | Controlling method of heating furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16921082A JPS5959837A (en) | 1982-09-27 | 1982-09-27 | Controlling method of heating furnace |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5959837A true JPS5959837A (en) | 1984-04-05 |
JPH037726B2 JPH037726B2 (en) | 1991-02-04 |
Family
ID=15882238
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16921082A Granted JPS5959837A (en) | 1982-09-27 | 1982-09-27 | Controlling method of heating furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5959837A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012237029A (en) * | 2011-05-10 | 2012-12-06 | Nippon Steel Corp | Method for heating cast slab |
JP2012237028A (en) * | 2011-05-10 | 2012-12-06 | Nippon Steel Corp | Method for heating cast slab |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55100929A (en) * | 1979-01-24 | 1980-08-01 | Nippon Steel Corp | Temperature control for continuous heating furnace |
-
1982
- 1982-09-27 JP JP16921082A patent/JPS5959837A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55100929A (en) * | 1979-01-24 | 1980-08-01 | Nippon Steel Corp | Temperature control for continuous heating furnace |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012237029A (en) * | 2011-05-10 | 2012-12-06 | Nippon Steel Corp | Method for heating cast slab |
JP2012237028A (en) * | 2011-05-10 | 2012-12-06 | Nippon Steel Corp | Method for heating cast slab |
Also Published As
Publication number | Publication date |
---|---|
JPH037726B2 (en) | 1991-02-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4606529A (en) | Furnace controls | |
JPS60174833A (en) | Cooling method of hot steel sheet | |
KR890003645B1 (en) | Method of controlling an edging opening in a rolling mill | |
JPS5959837A (en) | Controlling method of heating furnace | |
JP6863532B1 (en) | Serpentine control method for hot-rolled steel strips, meandering control device and hot-rolling equipment | |
JP6428932B2 (en) | Leading end plate width controller | |
JP2007050413A (en) | Method and apparatus for controlling steel sheet width | |
JPH0871616A (en) | Device for rolling seamless tube and method for controlling rolling | |
JPS61253112A (en) | Control method for cooling steel plate | |
NL8103206A (en) | METHOD FOR CONTINUOUS CASTING OF STEEL. | |
CN113646101B (en) | Adjustment of a roll stand | |
JPH0613126B2 (en) | Advanced rate control method in strip rolling | |
JP2607016B2 (en) | Hot rolled steel sheet manufacturing method | |
JPH076001B2 (en) | Furnace temperature setting device for continuous heating furnace | |
JPH09285810A (en) | Method for manufacturing h-steel with satisfactory shape | |
JPH0687011A (en) | Method for rolling thick plate | |
JP2719215B2 (en) | Edge drop control method for sheet rolling | |
JPH0759722B2 (en) | Induction heating control method during subsequent induction heating of a slab previously gas-heated | |
JP2538785B2 (en) | Work crown control method | |
SU584917A1 (en) | Method of controlling the rate of delivery of billets from heating furnaces | |
JPH06154806A (en) | Flying thickness changing rolling method for hot rolled strip | |
GB2129165A (en) | Controlling kilns | |
KR100451823B1 (en) | Slow Cooling Method For Hot Rolled Wire Rod | |
JPH07214129A (en) | Device for controlling tension in rolling mill | |
JPS594912A (en) | Method and device for automatically controlling sheet thickness in continuous mill |