JPS5959202A - Fractionating method - Google Patents

Fractionating method

Info

Publication number
JPS5959202A
JPS5959202A JP17062082A JP17062082A JPS5959202A JP S5959202 A JPS5959202 A JP S5959202A JP 17062082 A JP17062082 A JP 17062082A JP 17062082 A JP17062082 A JP 17062082A JP S5959202 A JPS5959202 A JP S5959202A
Authority
JP
Japan
Prior art keywords
rectification
column
height
components
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17062082A
Other languages
Japanese (ja)
Other versions
JPH0521601B2 (en
Inventor
Akira Amamiya
雨宮 章
Mutsuhiko Takeda
睦彦 武田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP17062082A priority Critical patent/JPS5959202A/en
Publication of JPS5959202A publication Critical patent/JPS5959202A/en
Publication of JPH0521601B2 publication Critical patent/JPH0521601B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)

Abstract

PURPOSE:To increase the removal efficiency of gaseous components, by using a fractionating column consisting of a rectification plates section and a packing column section. CONSTITUTION:Rectification plates such as bubble-cap trays valve trays, perforated plates or the like are used. As a packing material, Raschig rings, Lessing rings, saddles or the like are used. Which of the two types of the column should the upper is optionally decided and fractionation may be performed batchwise or continuously. The height of the packing part is 5-50% of the sum of the height of the plate column part and the height of the packing column part. Especially, high purity trioxane is separated and recovered from a mixture containing trioxane as the main component having high b.p. components, benzene as the main component having low b.p. components and formaldehyde as a dissolved gas component.

Description

【発明の詳細な説明】 本発明をま高沸成分、低沸成分ならびに溶存ガス成分を
含む原料の精留により、高沸成分を分°  離回収する
方法に関する。一般に高沸成分と低沸成分とを分離する
には精留法が用いられろ。
DETAILED DESCRIPTION OF THE INVENTION The present invention also relates to a method for separating and recovering high-boiling components by rectifying a raw material containing high-boiling components, low-boiling components, and dissolved gas components. Generally, a rectification method is used to separate high-boiling components and low-boiling components.

精留法に用いられる精留塔として、大別して棚に式のも
のと充填式のものとがある。一般にニー的に大規模に実
施するには棚段式精留塔が有利に用いられている。
The rectification columns used in the rectification method can be roughly divided into shelf type and packed type. In general, plate rectification columns are advantageously used for large-scale implementation.

さて、高沸成分ならびに低沸成分に加えて、原料中に溶
存ガス成分が含まれる場合、事情はやや複雑(こなる。
Now, when the raw material contains dissolved gas components in addition to high-boiling components and low-boiling components, the situation becomes somewhat complicated.

工業的にこのような系は意外1こ多く、ポルムアミド−
メタノ−/レー7ンモニア系、N、N−ジメチルポルム
アミド−メタノール−ジメチルアミン系およびトリオキ
ザノーベンゼンーホルムアルデヒド系など枚挙にいとま
がない。このような系で高沸成分を目的物としで分離回
収する場合、棚段式精留塔を用いる精留では、目的物中
に予想外に多くのガス成分がコンタミネートして、望ま
しくない品質のものしか得られない場合がある。沸点か
ら考えればガス成分の沸点は低沸成分の沸点よりはるか
に低いにもかかわらず、また精留効果により低沸成分が
高沸成分から十分に除去されているにもかかわらず、目
的の高沸成分からガス成分が除去できない場合がある。
Industrially, there are surprisingly many such systems, such as porumamide.
There are too many to list, including the methano/reimmonium system, the N,N-dimethylpolamide-methanol-dimethylamine system, and the trioxanobenzene-formaldehyde system. When high-boiling components are separated and recovered as a target product in such a system, rectification using a plate rectification column results in unexpectedly large amounts of gas components contaminating the target product, resulting in undesirable quality. There are cases where you can only get one. Even though the boiling point of the gas component is much lower than the boiling point of the low-boiling component in terms of boiling point, and even though the low-boiling component is sufficiently removed from the high-boiling component by the rectification effect, the desired high-boiling component cannot be achieved. Gas components may not be removed from boiling components.

たとえばトリオキサン(高沸成分)−ベンゼン(低沸成
分)−ホルムアルデヒド(ガス成分)系がそれである。
For example, trioxane (high boiling component)-benzene (low boiling component)-formaldehyde (gas component) system is one such system.

本発明者らはこのような系の精留において、棚段式精留
塔の一部を充填式にすると−くべき右とにガス成分の除
去効率が飛躍的に増大することを見出して本発明を完成
した。
The present inventors discovered that in the rectification of such a system, if a part of the plate rectification column is made into a packed type, the removal efficiency of gas components increases dramatically. Completed the invention.

本発明は、脱気、抽出等別途の手段を用いることなく精
留のみによtノ、かつ棚段式精留塔の工業的有利さを生
かしつつ、上記のような系で高純度の高沸成分を分離回
収する方法である。
The present invention utilizes only rectification without using separate means such as degassing or extraction, and utilizes the industrial advantages of a plate rectification column, while achieving high purity in the above system. This is a method of separating and recovering boiling components.

すなわち本発明は、高沸成分、低沸成分および溶存ガス
成分を各々1種以上含有する混合物を蒸留により、高沸
成分と、低沸成分および溶存ガス成分とに分離するに際
し、棚段式部分と充填式部分とからなる精留塔を用いる
ことを特徴とする精留方法である。
That is, the present invention provides a tray-type section for separating a mixture containing one or more of each of high-boiling components, low-boiling components, and dissolved gas components into high-boiling components, low-boiling components, and dissolved gas components by distillation. This is a rectification method characterized by using a rectification column consisting of a packed section and a rectification column.

精留塔の径および全体の高さならびに棚段式部分の高さ
および段数に特に制限はなく、原料および精留目的に合
致して選択される。棚段の形式および充填物の種類にも
特に制限はない。
There are no particular restrictions on the diameter and overall height of the rectification column, as well as the height and number of plates of the plated portion, and are selected in accordance with the raw material and the purpose of rectification. There are no particular restrictions on the format of the shelves or the type of filling.

通常用いられる棚段の形式として泡鐘段、バルフトレイ
および多孔板等がある。充填物としてラシヒリング、レ
シンブリング、<、ら型、ステンドブン・バンキング、
ディクソン環、マクブホン・バンキング等多種多様なも
のがある。精留運転の様式は回分式または連続式のいず
れでもよい。大規模な工業的実施には一般に連続式が採
用されることが多い。圧力、温度、i流比等の精留運転
条件は原料および精留目的により適宜選択される。
Commonly used types of shelves include bubble bells, bulk trays, and perforated plates. Fillings include Raschig ring, Reshin ring, <, R-shaped, stained banking,
There are many different types such as Dixon Ring and McBuhon Banking. The mode of rectification operation may be either batch type or continuous type. Continuous systems are generally adopted for large-scale industrial implementation. Rectification operating conditions such as pressure, temperature, i-flow ratio, etc. are appropriately selected depending on the raw material and the purpose of rectification.

本発明の効果が十分に発揮されるような精留塔の充填式
部分の高さは原料および精留目的により異なるが、一般
に棚段式部分の高さとの和の596以上てあり、通常1
0〜5096で十分である。50%以上1こなると設計
、建設、運転性等での棚段式の有利さが少なくなる。
The height of the packed section of the rectification column to fully exhibit the effects of the present invention varies depending on the raw material and the purpose of rectification, but is generally 596 or more of the sum of the height of the tray section, and is usually 1.
0 to 5096 is sufficient. When the ratio exceeds 50%, the advantage of the tiered type in terms of design, construction, operability, etc. decreases.

さて、高沸成分からのガス成分の除去に困難を来す系は
、一般にガス成分と高汐−成分との親和性がガス成分2
低沸成分との親和性より強いような系である。このよう
な系でカス成分が十分に除去された高純度の高沸成分を
分離回収するには、一般に精留塔の充填式部分が塔の下
手に位置することが好ましく、連続式では原料供給口よ
り下部に位置することが好ましい。このような場合、棚
段式部分と充填式部分の組合せは、棚段式部分の下に充
填式部分を組合す方式または充填式部分の上下に棚段式
部分を組合す方式のいずれでもよい。
Now, in systems where it is difficult to remove gas components from high-boiling components, the affinity between the gas component and the high-water component is generally lower than the gas component 2.
It is a system that has a stronger affinity with low-boiling components. In order to separate and recover high-purity high-boiling components from which the residue components have been sufficiently removed in such a system, it is generally preferable that the packed section of the rectification column is located at the bottom of the column; It is preferably located below the mouth. In such a case, the combination of the tiered part and the filling part may be either a combination of the filling part below the tiered part or a tiered part above and below the filling part. .

本発明により高純度の高沸成分が得られる系は前述のよ
うに多数考えられる。たとえばトリオキサン、ベンゼン
およびホルムアルデヒドを含む原料より、ホルムアルデ
ヒドの含有量が十分に低い高純度のトリオキサンを分離
回収することができる。このよりな実施例を以下に挙げ
て説明する。
As mentioned above, there are many possible systems from which high-purity high-boiling components can be obtained according to the present invention. For example, highly purified trioxane with a sufficiently low formaldehyde content can be separated and recovered from raw materials containing trioxane, benzene, and formaldehyde. Further examples of this will be described below.

実施例1、比較例1 塔径50配の精留塔を用いて回分式精留運転を行なった
。棚段式の部分は段間隔50n+Mの多孔板を備えたい
わゆるオルダーショウ塔である。
Example 1, Comparative Example 1 A batch rectification operation was performed using a rectification column with a column diameter of 50 mm. The terraced part is a so-called Oldershaw tower with perforated plates with a stage spacing of 50n+M.

充填式の部分には径6wn×長さ6關のステンレス製ラ
シヒリングを1石充填した高さ5DDmmの充填塔を用
いた。塔底には容!2.13のフラスコを接続して蒸発
缶とした。蒸発缶にトリオキサン 74.8重量%、ベ
ンゼン 25.0重量%、ホルムアルデヒド 0.16
重量%および微量のメタノール等の低沸成分を含む原料
を仕込んだ。塔がオルダーショウ塔と充填塔との組合せ
の場合と、オルダーショウ塔のみの場合とについて、そ
れぞれ同原料で常圧、還流比5にて運転し塔頂よりベン
ゼンおよびホルムアルデヒド 発缶より回収した。加熱開始後45分で蒸発缶内温度が
116°Cに達した時の結果を表1に示しプこ。
For the filling type part, a packed tower with a height of 5 DD mm and filled with one stainless steel Raschig ring with a diameter of 6 wn and a length of 6 rings was used. Yong at the bottom of the tower! 2.13 flasks were connected to form an evaporator. In the evaporator, trioxane 74.8% by weight, benzene 25.0% by weight, formaldehyde 0.16%
Raw materials containing % by weight and trace amounts of low boiling components such as methanol were charged. When the tower was a combination of an Oldershaw tower and a packed tower, and when it was only an Oldershaw tower, the same raw materials were operated at normal pressure and a reflux ratio of 5, and benzene and formaldehyde were recovered from the top of the tower. Table 1 shows the results when the temperature inside the evaporator reached 116°C 45 minutes after the start of heating.

トリオキサン中のホルムアルデヒドは亜硫酸塩付加法で
定量した。以下の実施例および比較例でも同様である。
Formaldehyde in trioxane was determined using the sulfite addition method. The same applies to the following Examples and Comparative Examples.

実施例2〜5、比較例2〜5 実施例1または比較例1と同様の精留塔に原料供給口を
設け、連続式精留運転を常圧、還流比2で行なった。充
填式の部分には6rrml×7FDのマクマホン・パノ
ギ/グを充填した充填塔を用いた。トリオキサ729−
5”llA%、ベンゼン 70。0重量%、ホルムアル
デヒド 0、45重量%および微量のメタノール等の低
沸成分を含む原料を供給速度5’0 0 g/hr で
連続的に原料供給口より供給し、ベンゼンおよびホルム
アルデヒドを含む留出液を塔頂より取出した。運転開始
後16時間で蒸発缶の液呈が2−eニ達シた。以後蒸発
缶よりトリオキサンを缶出液として14 7 g/hr
の速度で連続的に回収した。運転開始24時間後の安定
した状態での結果を表2に示した。
Examples 2 to 5, Comparative Examples 2 to 5 A raw material supply port was provided in the same rectification column as in Example 1 or Comparative Example 1, and continuous rectification operation was performed at normal pressure and a reflux ratio of 2. A packed column filled with 6rrml x 7FD of McMahon Panogi/g was used for the packed part. Trioxa 729-
Raw materials containing low-boiling components such as 5"llA%, benzene 70.0% by weight, formaldehyde 0.45% by weight, and a trace amount of methanol were continuously fed from the raw material supply port at a feeding rate of 5'00 g/hr. A distillate containing benzene and formaldehyde was taken out from the top of the column. 16 hours after the start of operation, the liquid concentration in the evaporator reached 2-e. Thereafter, trioxane was taken out from the evaporator as a bottom liquid at a rate of 147 g/ hr
was collected continuously at a speed of Table 2 shows the results under stable conditions 24 hours after the start of operation.

表2 ― ITable 2 ―I

Claims (1)

【特許請求の範囲】 (1)  高沸成分、低沸成分および溶存ガス成分を各
々1種以上含有する混合物を蒸留により、高沸成分と、
低沸成分および溶存ガス成分とに分離するに際し、棚段
式部分と充填式部分とからなる精留塔を用いるとkを特
徴とする精留方法 (2)充填式部分の高さが、棚段式部分の高さと充填式
部分の高さとの和の5%〜50%の範囲にある精留塔を
用いる特許請求の範囲第1項記載の精留方法 (6)充填式部分の高さが、棚段式部分の高さと充填式
部分の高さとの和の10%〜60%の範囲にある精留塔
を用いる特許請求の範囲第1項記載の精留方法 (4)充填式部分が塔の下半に位置する精留塔を用いる
特許請求の範囲第1項記載の精留方法(5)充填式部分
が塔の原料供給口より下部に位置する連続式精留塔を用
いる特許請求の範囲第1項記載の精留方法。 (61原料が、高沸成分の主成分としてトリオキサンを
含み、低沸成分の主成分としてベンゼンを含み、かつ溶
存ガス成分としてホルムアルデヒドを含む特許請求の範
囲第1項記載の精留方法。
[Claims] (1) A mixture containing one or more of each of a high boiling component, a low boiling component, and a dissolved gas component is distilled to remove the high boiling component,
When separating into low-boiling components and dissolved gas components, a rectification column consisting of a tray section and a packed section is used. (2) A rectification method characterized by k. Rectification method according to claim 1 using a rectification column having a height of 5% to 50% of the sum of the height of the plated section and the height of the packed section (6) Height of the packed section Rectification method according to claim 1 (4) using a rectification column in which the height of the tray type part is in the range of 10% to 60% of the sum of the height of the packed type part (4) the packed type part Rectification method according to claim 1 (5) using a rectification column in which the column is located in the lower half of the column A rectification method according to claim 1. (61) The rectification method according to claim 1, wherein the raw material contains trioxane as a main component of high-boiling components, benzene as a main component of low-boiling components, and formaldehyde as a dissolved gas component.
JP17062082A 1982-09-29 1982-09-29 Fractionating method Granted JPS5959202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17062082A JPS5959202A (en) 1982-09-29 1982-09-29 Fractionating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17062082A JPS5959202A (en) 1982-09-29 1982-09-29 Fractionating method

Publications (2)

Publication Number Publication Date
JPS5959202A true JPS5959202A (en) 1984-04-05
JPH0521601B2 JPH0521601B2 (en) 1993-03-25

Family

ID=15908242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17062082A Granted JPS5959202A (en) 1982-09-29 1982-09-29 Fractionating method

Country Status (1)

Country Link
JP (1) JPS5959202A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56155601A (en) * 1980-05-07 1981-12-01 Hitachi Ltd Distilling column

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56155601A (en) * 1980-05-07 1981-12-01 Hitachi Ltd Distilling column

Also Published As

Publication number Publication date
JPH0521601B2 (en) 1993-03-25

Similar Documents

Publication Publication Date Title
CA2300083C (en) Propylene oxide purification
EP0435162A2 (en) Process for the selective dehydrohalogenation of an admixture of alkylhalides
US20140350308A1 (en) Process For Purifying a Stream Comprising 1,4-Butanediol
JP2007515277A (en) Method for separating trioxane from a trioxane / formaldehyde / water mixture
EP0031097A1 (en) Method for distilling ethyl alcohol
EP3362432B1 (en) Process for purification of methyl methacrylate
KR101278759B1 (en) Method for producing phthalic anhydride that conforms to specifications
US6833057B1 (en) Pure ethylene oxide distillation process
US4882430A (en) Recovery of caprolactam from caprolactam distillation low boilers or high boilers or mixtures thereof
EP3793985B1 (en) Process for preparing dioxolane
JPS5959202A (en) Fractionating method
US3591463A (en) Separation of chloroform and/or ethyl acetate and/or methylethyl ketone from vinyl acetate by extractive distillation
US3391063A (en) Plural distillation for purifying propylene oxide contaminated with methyl formate
EP2637998B1 (en) Process for refining crude acetyls mixture
EP3793986B1 (en) Process for preparing dioxolane
EP0037856A1 (en) Enhanced distillation of cyclohexanol from phenol with additional cyclohexanone feed
US5705039A (en) Process for purifying a 2,6-dialkylphenol
CN1030909C (en) Acetone removal process
GB1499066A (en) Process for isolating anthraquinone
KR20150115659A (en) Method of purificaiton for vinyl acetic acid using dividing wall column
JPH05230015A (en) Purification of caprolactam
JPH06336455A (en) Purification of ethyl acetate
JPH07206716A (en) Method of refining ring formal
US5456805A (en) Purification process for cyclic formals
US3031515A (en) Process for purifying isoprenes