JPH0521601B2 - - Google Patents

Info

Publication number
JPH0521601B2
JPH0521601B2 JP57170620A JP17062082A JPH0521601B2 JP H0521601 B2 JPH0521601 B2 JP H0521601B2 JP 57170620 A JP57170620 A JP 57170620A JP 17062082 A JP17062082 A JP 17062082A JP H0521601 B2 JPH0521601 B2 JP H0521601B2
Authority
JP
Japan
Prior art keywords
rectification
column
boiling components
packed
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57170620A
Other languages
Japanese (ja)
Other versions
JPS5959202A (en
Inventor
Akira Amamya
Mutsuhiko Takeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Gas Chemical Co Inc
Original Assignee
Mitsubishi Gas Chemical Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Gas Chemical Co Inc filed Critical Mitsubishi Gas Chemical Co Inc
Priority to JP17062082A priority Critical patent/JPS5959202A/en
Publication of JPS5959202A publication Critical patent/JPS5959202A/en
Publication of JPH0521601B2 publication Critical patent/JPH0521601B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は、高沸成分、低沸成分、並びに、溶存
ガスを含む原料を精留することにより、高沸成分
を分離・精製して回収する方法に関する。 〔従来の技術〕 一般に、高沸成分と低沸成分とを分離するに
は、精留法が用いられる。精留法に用いられる精
留塔として、大別して棚段式のものと充填式のも
のとがある。通常一般に、工業的に大規模に実施
する場合には、運転の安定性からみて棚段式精留
塔が有利である。 〔発明が解決しようとする問題点〕 工業的実施においては、高沸成分、並びに、低
沸成分に加えて、更に、原料中に溶存ガス成分が
含まれる系、例えば、ホルムアルデヒド−メタノ
ール−アンモニア系、N,N−ジメチルホルムア
ルデヒド−メタノール−ジメチルアミン系やトリ
オキサン−ベンゼン−ホルムアルデヒド系などが
意外に多い。 溶存ガス成分が含まれている原料から高沸成分
を、棚段式精留塔を用いる精留法で分離回収操作
を行うと、予想外に多量のガス成分が高沸成分中
に溶存・コンタミネートして、所望の品質の目的
物を得ることができない、換言すれば、望ましく
ない品質のものしか得られないと言う意外な現象
が発生することがある。純粋な当該物質の沸点か
ら考えれば、混在するガス成分の沸点は、低沸成
分の沸点よりもはるかに低いにも関わらず、目的
とする高沸成分からガス成分を除去することがで
きない、と言うことが起こるのである。即ち、こ
の様な現象は、特に、上記の系、例えば、トリオ
キサン(高沸成分;沸点114.5℃/757mmHg)−
ベンゼン(低沸成分;沸点80.1℃/760mmHg)−
ホルムアルデヒド(ガス成分;沸点−19.3℃/
760mmHg)系において経験することが多い。従
つて、通常一般には、必要に応じて、高沸成分か
らガス成分を除去するために、更に、脱気工程、
或いは、抽出工程を設けている。 〔問題点を解決するための手段〕 本発明者らは、このような高沸成分、低沸成
分、並びに、溶存ガスを含む原料の精留により高
沸成分を分離回収する際、棚段式精留塔の一部を
充填式にすると、驚くべきことにガス成分の除去
効率が飛躍的に増大することを見出して本発明を
完成させるに至つた。つまり、本発明は、脱気、
抽出等の別途の手段を用いることなく、精留のみ
により、かつ棚段式精留塔の工業的有利さを生か
しつつ、上記のような系で高純度の高沸成分を分
離回収する方法である。 即ち、本発明は、高沸成分、低沸成分、およ
び、溶存ガス成分を各々1種類以上含有する混合
物を蒸留により、高沸成分と低沸成分及び溶存ガ
ス成分とに分離するに際し、棚段式精留塔の一部
を充填式にした精留塔を用いることを特徴とする
精留方法である。 精留塔の径、および、全体の高さ、並びに、棚
段式部分の高さ、および、段数には、特に制限は
なく、原料、及び、精留操作の目的に応じて適宜
に選択・設計される。また、棚段の形式及び充填
物の種類にも、特に制限はない。通常一般に用い
られる棚段の形式として、泡鐘棚、バルブトレ
イ、多孔板などがある。充填物として、ラシヒリ
ング、レシングリング、くら型、ステツドマン・
パツキング、デイクソン環、マクマホン・パツキ
ング等など、多種多様なものがある。 精留操作、即ち、精留塔の運転の様式は、回分
式、または、連続式の何れでもよいが、大規模な
工業的実施に於いては、連続式とするのが好まし
い。 本発明を実施するとき、精留塔の詳細設計、お
よび、圧力、温度、還流比等の精留運転条件は、
精留操作の目的に応じて、原料〔供給液〕を構成
する化合物の物性値や実測値などの基礎データを
基にした化学工学的な検討結果、および、パイロ
ツトプラントによる実証実験の結果を基にして最
適化検討を行つて決定される。 〔発明の効果〕 本発明の効果が十分に発揮されるような精留塔
の充填層部分の高さは、原料、及び、精留操作の
目的により異なるが、一般に、棚段式部分の高さ
との和、換言すれば、総塔高さの5%以上であ
り、通常10〜30%で十分である。充填層部分の高
さの割合が50%以上になると、蒸留操作の安定
性、即ち、運転性が低下して棚段蒸留塔の一部に
充填層部分を配置した本発明の効果が薄れ、ま
た、装置の設計、建築における経済性の点で不利
となり、棚段式蒸留塔の有利さが少なくなる。 本発明の効果が顕著に現れる系(高沸成分から
のガス成分の除去に困難を来す系)は、一般に、
ガス成分と高沸成分との親和性が、ガス成分と低
沸成分との親和性よりも強い系である。このよう
な系で、ガス成分が十分に除去された高純度の高
沸成分を分離回収するためには、精留塔の充填式
部分が、塔の下半に位置することが好ましく、連
続式では、原料供給口〔段〕よりも下部に位置す
るのが好ましい。このとき、棚段式部分と充填式
部分との位置関係は、棚段式部分の下に充填式部
分を設置する。なお、所望により、棚段式部分の
中間に充填式部分を挿入する、換言すれば、充填
式部分の上、および、下に棚段式部分を設置して
も良い。通常一般には、棚段式部分の下に充填式
部分を設置する、換言すれば、充填層の上に棚段
層を設置することによつて、十分にその目的を達
成することが出来る。 本発明により高純度の高沸成分が得られる系
は、前述のように多く、例えば、トリオキサン、
ベンゼン、および、ホルムアルデヒドを含む原料
〔供給液〕より、ホルムアルデヒドの含有量が十
分に少ない高純度のトリオキサンを分離回収する
ことが出来る。 以下、本発明について実施例、および、比較例
を示して、その効果と実施態様を具体的に説明す
るが、以下の例は、具体的に説明するためのもの
であつて、本発明の実施態様やはつめいの範囲を
限定するものとしては意図されていない。 実施例 1 塔径50mmの棚段式蒸留塔の下に充填蒸留塔を直
列に接続した精留塔を用いて回分式精留運転を行
つた。 棚段式の部分は、段間隔50mmの多孔板を備え
た、所謂、オルダーシヨウ塔である。充填式の部
分には、直径6mm×長さ6mmのステンレス製ラシ
ヒリング[1リツトル]を充填した高さ500mmの
充填塔を用いた。塔底には、容量2リツトルのフ
ラスコを接続して蒸発缶とした。 蒸発缶に、トリオキサン74.8重量%、ベンゼン
25.0重量%、ホルムアルデヒド0.16重量%、及
び、微量のメタノールなどの低沸成分を含む原料
を仕込んだ。 常法に従つて、常圧、還流比3にて運転し、塔
頂よりベンゼン、及び、ホルムアルデヒドを含む
留出液を取り出し、蒸発缶よりトリオキサンを回
収した。加熱開始後45分で蒸発缶内温度が116℃
に達した。蒸発缶より、分析試料として缶液〔ト
リオキサン〕を採集し、亜硫酸塩付加法でトリオ
キサン中のホルムアルデヒド量を定量した。分析
結果を表1に示した。 比較例 1 実施例1で使用した棚段式蒸留塔、即ち、塔径
50mm、段間隔50mmの多孔板を備えたオルダーシヨ
ウ塔のみを用いて回分式精留運転を行つた。 蒸発缶に、実施例1で使用したトリオキサン
74.8重量%、ベンゼン25.0重量%、ホルムアルデ
ヒド0.16重量%、及び、微量のメタノールなどの
低沸成分を含む原料を仕込んだ。 実施例1と同様に処理して、表1に示す結果を
得た。
[Industrial Application Field] The present invention relates to a method for separating, purifying, and recovering high-boiling components by rectifying a raw material containing high-boiling components, low-boiling components, and dissolved gases. [Prior Art] Generally, a rectification method is used to separate high-boiling components and low-boiling components. The rectification columns used in the rectification method can be roughly divided into tray type and packed type. In general, when it is carried out industrially on a large scale, a plate rectification column is advantageous in terms of operational stability. [Problems to be solved by the invention] In industrial implementation, in addition to high-boiling components and low-boiling components, systems containing dissolved gas components in the raw materials, such as formaldehyde-methanol-ammonia systems, are used. , N,N-dimethylformaldehyde-methanol-dimethylamine type and trioxane-benzene-formaldehyde type are surprisingly common. When high-boiling components are separated and recovered from raw materials containing dissolved gas components using a rectification method using a plate rectification column, an unexpectedly large amount of gas components dissolves and contaminates the high-boiling components. An unexpected phenomenon may occur in which it is not possible to obtain an object of desired quality, or in other words, only an object of undesirable quality is obtained. Considering the boiling point of the pure substance in question, the boiling point of the mixed gas component is much lower than the boiling point of the low-boiling component, but the gas component cannot be removed from the target high-boiling component. What you say happens. That is, such a phenomenon is particularly likely to occur in the above-mentioned systems, such as trioxane (high-boiling component; boiling point: 114.5°C/757mmHg).
Benzene (low boiling component; boiling point 80.1℃/760mmHg) -
Formaldehyde (gas component; boiling point -19.3℃/
760mmHg) system. Therefore, in general, in order to remove gas components from high-boiling components, a degassing step is usually performed, if necessary.
Alternatively, an extraction process is provided. [Means for Solving the Problems] The present inventors have developed a tray-type method for separating and recovering such high-boiling components, low-boiling components, and high-boiling components by rectification of raw materials containing dissolved gases. Surprisingly, the present inventors have discovered that the removal efficiency of gas components can be dramatically increased when a part of the rectification column is of a packed type, leading to the completion of the present invention. In other words, the present invention provides deaeration,
This is a method for separating and recovering high-purity high-boiling components in the above-mentioned system, using only rectification without using any other means such as extraction, and while taking advantage of the industrial advantages of the plate rectification column. be. That is, the present invention provides a method for separating a mixture containing one or more types of high-boiling components, low-boiling components, and dissolved gas components into high-boiling components, low-boiling components, and dissolved gas components by distillation. This is a rectification method characterized by using a rectification column in which a part of the rectification column is a packed type rectification column. There are no particular restrictions on the diameter and overall height of the rectification column, the height of the tray-type section, and the number of plates, and they can be selected as appropriate depending on the raw material and the purpose of the rectification operation. Designed. Furthermore, there are no particular restrictions on the type of shelf or the type of filling material. Commonly used types of shelves include bubble bell shelves, valve trays, and perforated plates. As a filling, Raschig ring, Lessing ring, saddle mold, Stedman, etc.
There are many different types, such as Patzking, Dickson Tamaki, McMahon Patzking, etc. The rectification operation, ie, the mode of operation of the rectification column, may be either batchwise or continuous, but in large-scale industrial implementation, continuous mode is preferred. When carrying out the present invention, the detailed design of the rectification column and rectification operating conditions such as pressure, temperature, reflux ratio, etc.
Depending on the purpose of the rectification operation, chemical engineering studies based on basic data such as physical property values and actual measured values of the compounds that make up the raw material (feed liquid), as well as the results of demonstration experiments using pilot plants, are used. It is determined by performing an optimization study. [Effects of the Invention] The height of the packed bed portion of the rectification column at which the effects of the present invention can be fully exhibited varies depending on the raw material and the purpose of the rectification operation, but in general, the height of the tray-type portion In other words, it is 5% or more of the total tower height, and usually 10 to 30% is sufficient. When the height ratio of the packed bed portion exceeds 50%, the stability of the distillation operation, that is, the operability, decreases, and the effect of the present invention, in which the packed bed portion is disposed in a part of the tray distillation column, diminishes. In addition, it is disadvantageous in terms of economic efficiency in equipment design and construction, and the advantage of the plate distillation column is reduced. Systems in which the effects of the present invention are noticeable (systems in which it is difficult to remove gas components from high-boiling components) generally include:
This is a system in which the affinity between the gas component and the high-boiling component is stronger than the affinity between the gas component and the low-boiling component. In such a system, in order to separate and recover high-purity high-boiling components from which gas components have been sufficiently removed, it is preferable that the packed section of the rectification column is located in the lower half of the column, and the continuous section is In this case, it is preferable to locate it below the raw material supply port [stage]. At this time, the positional relationship between the tiered part and the filling part is such that the filling part is installed below the tiered part. In addition, if desired, a filling type part may be inserted in the middle of the shelf type part, or in other words, the shelf type part may be installed above and below the filling type part. Generally, the purpose can be sufficiently achieved by installing a packed part below the tiered part, or in other words, by installing a tiered layer above the packed layer. As mentioned above, there are many systems from which high-purity high-boiling components can be obtained according to the present invention, such as trioxane,
High purity trioxane with a sufficiently low formaldehyde content can be separated and recovered from a raw material (supply liquid) containing benzene and formaldehyde. Hereinafter, the effects and embodiments of the present invention will be specifically explained by showing Examples and Comparative Examples. They are not intended to limit the scope of the embodiments or specifications. Example 1 A batch rectification operation was carried out using a rectification column in which a packed distillation column was connected in series under a plate-type distillation column with a column diameter of 50 mm. The tiered part is a so-called older tower equipped with perforated plates with a tier interval of 50 mm. A packed column with a height of 500 mm filled with stainless steel Raschig rings [1 liter] with a diameter of 6 mm and a length of 6 mm was used for the filling type part. A flask with a capacity of 2 liters was connected to the bottom of the column to form an evaporator. In the evaporator, trioxane 74.8% by weight, benzene
Raw materials containing 25.0% by weight of formaldehyde, 0.16% by weight of formaldehyde, and a trace amount of low-boiling components such as methanol were charged. According to a conventional method, the reactor was operated at normal pressure and a reflux ratio of 3, and a distillate containing benzene and formaldehyde was taken out from the top of the column, and trioxane was recovered from the evaporator. The temperature inside the evaporator reached 116℃ 45 minutes after heating started.
reached. The solution [trioxane] was collected from the evaporator as an analysis sample, and the amount of formaldehyde in the trioxane was determined by the sulfite addition method. The analysis results are shown in Table 1. Comparative Example 1 The plate distillation column used in Example 1, that is, the column diameter
A batch rectification operation was carried out using only an Olders column equipped with perforated plates of 50 mm and stage spacing of 50 mm. Trioxane used in Example 1 was added to the evaporator.
Raw materials containing 74.8% by weight, 25.0% by weight of benzene, 0.16% by weight of formaldehyde, and a trace amount of low-boiling components such as methanol were charged. It was treated in the same manner as in Example 1, and the results shown in Table 1 were obtained.

【表】 実施例 2〜5 実施例1で使用した精留塔と同じ精留塔に原料
供給口を設けた連続式精留装置を使用して、連続
蒸留実験を行つた。なお、充填層部分には、6mm
×7mmのマクマホン・パツキングを充填した充填
塔を用いた。 常法に従つて、常圧、還流比2にて、原料供給
口よりトリオキサン29.5重量%、ベンゼン70.0重
量%、ホルムアルデヒド0.45重量%、および、微
量のメタノールなどの低沸成分を含む原料を連続
的に、供給速度500g/hrで供給し、塔頂よりベ
ンゼン、及び、ホルムアルデヒドを含む留出液を
取り出しながら連続蒸留操作を続けた。 運転開始後16時間の後に、蒸発缶中の液量が2
リツトルになつたので缶出液の連続的な抜取りを
開始し、缶出液としてトリオキサンを得た。缶出
液の平均抜取速度は、147g/hrであつた。 運転開始後24時間の後に、蒸留系が安定した状
態になつていることを確認して缶出液流れから分
析試料を採集し、実施例1と同様にしてトリオキ
サン中のホルムアルデヒド量を定量して、表2に
示す結果を得た。 比較例 2〜3 比較例1で使用した精留塔と同じ精留塔に原料
供給口を設けた連続式精留装置を使用して、実施
例2と同様にして連続蒸留実験を行ない、実施例
2と同様に処理して、表2に示す結果を得た。
[Table] Examples 2 to 5 Continuous distillation experiments were conducted using a continuous rectification apparatus in which a raw material supply port was provided in the same rectification column as that used in Example 1. In addition, the filling layer part has a 6mm
A packed column filled with ×7 mm McMahon packing was used. According to a conventional method, raw materials containing 29.5% by weight of trioxane, 70.0% by weight of benzene, 0.45% by weight of formaldehyde, and trace amounts of low-boiling components such as methanol are continuously fed from the raw material supply port at normal pressure and a reflux ratio of 2. The distillate was fed at a feed rate of 500 g/hr, and the continuous distillation operation was continued while a distillate containing benzene and formaldehyde was taken out from the top of the column. After 16 hours of operation, the liquid level in the evaporator reaches 2.
Since the amount was reduced to a little, continuous extraction of the bottom liquid was started, and trioxane was obtained as the bottom liquid. The average withdrawal rate of bottoms liquid was 147 g/hr. 24 hours after the start of operation, it was confirmed that the distillation system was in a stable state, an analysis sample was collected from the bottoms flow, and the amount of formaldehyde in trioxane was determined in the same manner as in Example 1. , the results shown in Table 2 were obtained. Comparative Examples 2 to 3 Continuous distillation experiments were conducted in the same manner as in Example 2 using a continuous rectification apparatus in which a raw material supply port was provided in the same rectification column as that used in Comparative Example 1. It was treated in the same manner as in Example 2, and the results shown in Table 2 were obtained.

【表】【table】

【表】【table】

Claims (1)

【特許請求の範囲】 1 高沸成分、低沸成分および溶存ガス成分を
各々1種類以上含有する混合物を蒸留により、高
沸成分と、低沸成分および溶存ガス成分とに分離
するに際し、棚段式部分と充填式部分とからなる
精留塔を用いることを特徴とする精留方法。 2 充填式部分の高さが、棚段式部分の高さと充
填式部分の高さとの和の5%〜50%の範囲にある
精留塔を用いる特許請求の範囲第1項記載の精留
方法。 3 充填式部分の高さが、棚段式部分の高さと充
填式部分の高さとの和の10%〜30%の範囲にある
精留塔を用いる特許請求の範囲第1項記載の精留
方法。 4 充填式部分が塔の下半に位置する精留塔を用
いる特許請求範囲の第1項記載の精留方法。 5 充填式部分が塔の原料供給口より下部に位置
する連続式精留塔を用いる特許請求の範囲第1項
記載の精留方法。 6 原料が、高沸成分の主成分としてトリオキサ
ンを含み、低沸成分の主成分としてベンゼンを含
み、かつ溶存ガス成分としてホルムアルデヒドを
含む特許請求の範囲第1項記載の精留方法。
[Scope of Claims] 1. When separating a mixture containing one or more of each of high-boiling components, low-boiling components, and dissolved gas components into high-boiling components, low-boiling components, and dissolved gas components by distillation, A rectification method characterized by using a rectification column consisting of a type part and a packed type part. 2. The rectification according to claim 1 using a rectification column in which the height of the packed section is in the range of 5% to 50% of the sum of the height of the tray section and the height of the packed section. Method. 3. The rectification according to claim 1 using a rectification column in which the height of the packed section is in the range of 10% to 30% of the sum of the height of the tray section and the height of the packed section. Method. 4. The rectification method according to claim 1, which uses a rectification column in which the packed portion is located in the lower half of the column. 5. The rectification method according to claim 1, which uses a continuous rectification column in which the packed section is located below the raw material supply port of the column. 6. The rectification method according to claim 1, wherein the raw material contains trioxane as a main component of high-boiling components, benzene as a main component of low-boiling components, and formaldehyde as a dissolved gas component.
JP17062082A 1982-09-29 1982-09-29 Fractionating method Granted JPS5959202A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17062082A JPS5959202A (en) 1982-09-29 1982-09-29 Fractionating method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17062082A JPS5959202A (en) 1982-09-29 1982-09-29 Fractionating method

Publications (2)

Publication Number Publication Date
JPS5959202A JPS5959202A (en) 1984-04-05
JPH0521601B2 true JPH0521601B2 (en) 1993-03-25

Family

ID=15908242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17062082A Granted JPS5959202A (en) 1982-09-29 1982-09-29 Fractionating method

Country Status (1)

Country Link
JP (1) JPS5959202A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56155601A (en) * 1980-05-07 1981-12-01 Hitachi Ltd Distilling column

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56155601A (en) * 1980-05-07 1981-12-01 Hitachi Ltd Distilling column

Also Published As

Publication number Publication date
JPS5959202A (en) 1984-04-05

Similar Documents

Publication Publication Date Title
CN100522916C (en) Removal of permanganate reducing compounds from methanol carbonylation process stream
JP4658945B2 (en) Separation method of a mixture containing ethyleneamines by distillation
US4008131A (en) Purification of acetic acid
KR101546464B1 (en) Process for continuous recovering (meth)acrylic acid and apparatus for the process
KR20160105370A (en) Process for producing methyl methacrylate
JP3202150B2 (en) Acetic acid purification method
CN107709279A (en) The manufacture method of acetic acid
EP0693957A4 (en) A multiple stage suspended reactive stripping process and apparatus
JP2018517558A (en) Distillation equipment
CN114105937B (en) Trioxymethylene reaction method and production method thereof
EP0044409A1 (en) Process for purifying methyl methacrylate
US3691021A (en) Process for purification of vinyl acetate by extractive distillation
US5821384A (en) Process for generating vinyl carboxylate esters
EP3362432B1 (en) Process for purification of methyl methacrylate
US6921830B2 (en) Method for purifying an organic solvent for the purposes of absorption of maleic acid anhydride
KR101616553B1 (en) Process for continuous recovering (meth)acrylic acid and apparatus for the process
JPH0521601B2 (en)
US3591463A (en) Separation of chloroform and/or ethyl acetate and/or methylethyl ketone from vinyl acetate by extractive distillation
US5705039A (en) Process for purifying a 2,6-dialkylphenol
JP2506021B2 (en) Purification method of caprolactam
JP2004323526A (en) Purification of high-purity triethylenediamine (teda) by distillation
JPS63205101A (en) Separation of dimethyl carbonate
US9914684B2 (en) Feed sources for allyl alcohol production processes
JPS6236022B2 (en)
CN217472733U (en) Trioxymethylene's response device and production system thereof