JPS5958504A - Origin offset adjusting method for arthrosis type robot - Google Patents

Origin offset adjusting method for arthrosis type robot

Info

Publication number
JPS5958504A
JPS5958504A JP17045182A JP17045182A JPS5958504A JP S5958504 A JPS5958504 A JP S5958504A JP 17045182 A JP17045182 A JP 17045182A JP 17045182 A JP17045182 A JP 17045182A JP S5958504 A JPS5958504 A JP S5958504A
Authority
JP
Japan
Prior art keywords
robot
offset
origin
angle
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP17045182A
Other languages
Japanese (ja)
Other versions
JPS6362001B2 (en
Inventor
Akio Shindo
明男 進藤
Yoshiro Sasano
笹野 良郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP17045182A priority Critical patent/JPS5958504A/en
Publication of JPS5958504A publication Critical patent/JPS5958504A/en
Publication of JPS6362001B2 publication Critical patent/JPS6362001B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/42Recording and playback systems, i.e. in which the programme is recorded from a cycle of operations, e.g. the cycle of operations being manually controlled, after which this record is played back on the same machine

Abstract

PURPOSE:To find an origin offset easily and automatically by operating and teaching a robot so that a meter installed at the tip end of the robot indicates the same value at four optional different points in respective measurement planes. CONSTITUTION:A micrometer is attached to the tip end of the robot to measure (n-1) mutually different planes (n; degree of freedom of robot). Further, measurements are taken at four properly distant points in respective planes. Then, all of angles obtained by an angle detector at respective attitudes are stored in a storage device 10 and substituted in an equation and a calculating device 11 calculates an angle offset. The calculated angle offset is corrected by a correcting device 11 and a track taught to the robot is realized by an executing device 15.

Description

【発明の詳細な説明】 産業上の利用分野 (jD発明は、関節形ロボットの原点オフセットを自動
的に調整する方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The invention relates to a method for automatically adjusting the origin offset of an articulated robot.

従来例の構成とその問題点 従来よりロボットの位置決め制御にはFTP制御が用い
られている。したがって、ロボットの原点ずれは位置の
再現性の問題になる。しかし、ロボット個々でばらつい
ていたとしても、各々で再現性が安定していればよい。
Conventional Structure and Problems Conventionally, FTP control has been used for robot positioning control. Therefore, the deviation of the robot's origin poses a problem in position reproducibility. However, even if the reproducibility varies among individual robots, it is sufficient that the reproducibility is stable for each robot.

次に、FTP *U御で点と点の間をいかに制御するか
ということが問題になる。この制御法が補間である。補
間を計算機で行う場合、ロボットの位置精度は次の2つ
の要因、■機械的偏位の計測、■計算機の計算精度、で
定まる。■の要因を解消することは困難ではない。しか
し、■の要因を解消することは次の2つの要因で従来困
難であった。
The next problem is how to control points between points using FTP *U control. This control method is interpolation. When interpolation is performed by a computer, the robot's positional accuracy is determined by the following two factors: (1) Mechanical deviation measurement, and (2) Calculation accuracy of the computer. It is not difficult to eliminate the factor (■). However, it has traditionally been difficult to eliminate the factor (2) due to the following two factors.

■ 回転中心および曲げ中心が機緘上外から正確に判ら
ない。
■ The center of rotation and center of bending cannot be accurately determined from the top and outside of the machine.

@ 微少角度検出が通常の計器では出来ない。@ It is not possible to detect minute angles with ordinary instruments.

これらの問題点があるため、何らかの補助手段で集めた
データから、何らかの補助手段で機械的偏位を求める必
要がある。
Because of these problems, it is necessary to use some auxiliary means to determine the mechanical deflection from data collected by some auxiliary means.

発明の目的 この発明は、簡単かつ自動的に原点オフセットを求める
ことができ、従来のように注意深く各軸の原点を合せる
という時間の無駄を省くことのできる関節形ロボットの
原点オフセット調整方法を提供することである。
Purpose of the Invention The present invention provides a method for adjusting the origin offset of an articulated robot, which allows the origin offset to be easily and automatically determined and eliminates the wasted time of carefully aligning the origin of each axis as in the conventional method. It is to be.

発明の構成 この発明は、n個(nは正の整数)の自由度を有する関
節形ロボットの原点オフセット調整方法であって、互い
に異なる(n−1)個の平面を測定平面とし、各々の測
定平面の任意の異なる4点に前記ロボットの先端に設置
したマイクロメータをこの測定平面に対し略垂直となる
姿勢で描で、これら4点における前記マイクロメータの
指示値が同じ値となるように前記ロボットを動作させて
教示し、前記ロボットに固定された挫標系によって決着
る先端座標の誤差式 〔δE 〕p角度オフセットが及ばずロボット先端位置
の誤差 〔P〕;角度オフセットとロボット先端位置の誤差で決
せる定数のマトリクス から、原点オフセラトラ求め、調整する方法である。
Structure of the Invention The present invention is a method for adjusting the origin offset of an articulated robot having n degrees of freedom (n is a positive integer), in which (n-1) different planes are used as measurement planes, and each Draw the micrometer installed at the tip of the robot at four arbitrary different points on the measurement plane in a posture that is approximately perpendicular to the measurement plane, so that the indicated values of the micrometer at these four points are the same value. The robot is operated and taught, and the error formula of the tip coordinate determined by the set point system fixed to the robot [δE] The error of the robot tip position due to p angle offset [P]; Angle offset and robot tip position This method calculates and adjusts the origin offset from a matrix of constants determined by the error of .

実施例の説明 オフセットは、■角度のオフセット、■長さのオフセッ
ト、に分けることができる。先端軌跡に影響する長さの
オフセットは誤差の量が角度のオフセットに比して小さ
いゆえ、主として角度のオフセットを求めればよいこと
になる。
DESCRIPTION OF EMBODIMENTS Offsets can be divided into (1) angular offsets and (2) length offsets. Since the amount of error in the length offset that affects the tip trajectory is smaller than that in the angular offset, it is sufficient to mainly find the angular offset.

ここで、任意の関節角度θ工を基準にとると、すなわち
関節角度0□の角度オフセットδθ□=Oとすると、角
度オフセットの自由度は1つへることになる。
Here, if an arbitrary joint angle θ is taken as a reference, that is, if the angle offset δθ□=O for a joint angle 0□, then the degree of freedom for the angle offset will be reduced by one.

いま、オフセットを考慮したn自由度のロボット先端を
Eとし、それをデカルト系で表わし、ティラー展開する
。角度オフセットの基準をθ0.2次以上の項は微少量
なので無視するとすれば、ロボット先端の位置誤差と角
度オフセットの関係につき1次の連立方程式 [JE);角度オフセットが及ぼすロボット先端位置誤
差ベクトル 〔Q 〕;角度θ、を基準角度とした時の角度オフセッ
トと先端位置誤差の関係を表 わすマトリクス [F]式の形式で角度オフセットベクトルが表わせれば
、角度オフセットベクトルは容易に求まる。
Now, let E be the tip of the robot with n degrees of freedom considering the offset, express it in a Cartesian system, and perform tiller expansion. Assuming that the terms of θ0.2nd order and above are extremely small and therefore ignored as the basis for the angular offset, the relationship between the position error of the robot tip and the angular offset is expressed as a linear simultaneous equation [JE]; the robot tip position error vector caused by the angular offset. [Q]: If the angular offset vector can be expressed in the form of a matrix [F] formula that expresses the relationship between the angular offset and the tip position error when the angle θ is used as the reference angle, the angular offset vector can be easily determined.

次に1)式の[Q]に相当する係数マトリクスの求め方
を述べる。
Next, we will describe how to obtain the coefficient matrix corresponding to [Q] in equation 1).

ロボットの先端Eにマイクロメータを取付け、互いに異
なる(n−1)個の平面を測定する。nはロボットの自
由度である。また、その各平面上で適当に離れた4点を
測定する。その4点はマイクロメータを測定平面に対し
ほぼ直角方向に当て、マイクロメータの指示を同じ位置
として第2図の制御装置に教える。この制御装置につい
ては後に説明する。
A micrometer is attached to the tip E of the robot, and (n-1) different planes are measured. n is the robot's degree of freedom. Furthermore, measurements are taken at four appropriately spaced points on each plane. At these four points, the micrometer is applied in a direction substantially perpendicular to the measurement plane, and the micrometer's indication is transmitted to the control device shown in FIG. 2 as the same position. This control device will be explained later.

第1図は測定平面教示操作を示す。図において、1は台
となる定盤、2は直角状の定盤、3はマイクロメータ、
4はロボットの先端である。
FIG. 1 shows the measurement plane teaching operation. In the figure, 1 is a surface plate, 2 is a right-angled surface plate, 3 is a micrometer,
4 is the tip of the robot.

1測定子面の4点をA1. A2. A3 、 A4と
し、a。
1 The four points on the measuring head surface are A1. A2. A3, A4, a.

b、cを a ” A2  A1 b−A3−Al c=A4−A1 とする。ただし、記号上の矢印はベクトルを意味する。b, c a   A2 A1 b-A3-Al c=A4-A1 shall be. However, the arrow above the symbol means a vector.

測定点から得られるベクトルa、b、cはオフセットを
含んでいるため a = a+Δa b=b+Δb C−C+ΔC と書ける。ただし、71 、 El、τ′は角度検出装
置から得られるベクトル、Δa 、Δb 、ΔCはオフ
セットのためずれたベクトルである。
Since the vectors a, b, and c obtained from the measurement points include offsets, they can be written as a=a+Δa b=b+Δb CC+ΔC. However, 71, El, and τ' are vectors obtained from the angle detection device, and Δa, Δb, and ΔC are vectors shifted due to offsets.

ここで、A1.A2.A3は同一平面上にあり、2次以
上の項は微少量であるから省略するという条件から、 0=(マ′×官り・T′+(Δマ′×盲′)・’:’ 
+(?’XΔ豆′)・7′+(a’Xb’ン ・ Δ 
C・・・・・・・・   ■      −という関係
式が得られる。
Here, A1. A2. From the condition that A3 is on the same plane and the terms of quadratic and higher order are minute and therefore omitted, 0 = (Ma'
+(?'XΔ bean')・7'+(a'Xb'n・Δ
C...... ■ The relational expression - is obtained.

測定平面は(n−1)あるので、■式に各測定平面の一
データを入れ、角度オフセットδθ3.・、δθ□で整
理すると、 である。
Since there are (n-1) measurement planes, one data of each measurement plane is entered into equation (2), and the angle offset δθ3. When rearranged by ・, δθ□, it becomes .

ここで、 q−1,・・、(n−1)+ q−+、 、 qT、 、 q−+、   ;測厘平面
qに対するベクトル 〔−(qTt x q百′)・Q−)、 〕、各測定平
面のヌカ2B重状 〔K〕、角度オフセントと各測定平面のヌカ23重積の
関係マトリクス ■式よシ で角度オフセットを求めることが可能となる。
Here, q-1,..., (n-1)+ q-+, , qT, , q-+, ; Vector for measuring plane q [-(qTt x q10')・Q-), ] , the relationship matrix between the Nuka 2B multiplicity [K] of each measurement plane, the angle offset and the Nuka 23 multiplication of each measurement plane.It is possible to obtain the angle offset using the equation (2).

第2図は制御装置を示す。5はロボット本体、6はロボ
ットヲ制御するための装置、7はロボットに要望する姿
勢をとらせるための教示装置、8はロボット先端の絶対
座標位置をデカルト系等の系で表示する装置である。
FIG. 2 shows the control device. 5 is a robot body, 6 is a device for controlling the robot, 7 is a teaching device for making the robot take a desired posture, and 8 is a device for displaying the absolute coordinate position of the tip of the robot in a system such as a Cartesian system.

第3図はこの夾施例の処理の流れを示したものである。FIG. 3 shows the flow of processing in this case.

9は角度オフセラトラ求めるのに必要な姿勢を測定平面
上4×(ロボットの自由度n−1)だけ教示する教示装
置、10はその時の各々の姿勢で、角度検出装置から得
られる角度を全て記憶する記憶装置、11は記憶装置l
Oで記憶した角度を0式に代入して角度オフセノトヲ算
出する算出装置である。ここまでの処理でロボットの軌
道制御に必要な角度オフセットは求められる。
9 is a teaching device that teaches the posture required to find the angle off-seratra by 4 x (degrees of freedom of the robot n-1) on the measurement plane; 10 is each posture at that time, and stores all the angles obtained from the angle detection device. 11 is a storage device l
This is a calculation device that calculates the angle offset by substituting the angle stored in 0 into the 0 equation. Through the processing up to this point, the angular offset required for robot trajectory control is determined.

したがって、次にロボットに動かせたい軌跡を教示して
やればよい。12はロボットの先端を動かせたい軌跡上
の教示点にもっていく教示装置、13は軌跡上の教示点
に対する関節角度を角度検出装置から得て記憶する記憶
装置、14は算出装置11で算出した角度オフセット分
を記憶装置13で得られた関節角度に加えたりあるいC
1減じたりして補正する補正装置、15は補正した角度
を制御装置に入れ、ロボットに教示した軌跡を実現させ
る実行装置である。
Therefore, all you have to do next is teach the robot the trajectory you want it to move. 12 is a teaching device that brings the tip of the robot to a teaching point on the trajectory that you want to move, 13 is a storage device that obtains and stores the joint angle with respect to the teaching point on the trajectory from the angle detection device, and 14 is the angle calculated by the calculation device 11. Add the offset to the joint angle obtained in the storage device 13, or
A correction device 15 is an execution device that inputs the corrected angle into a control device and causes the robot to realize the trajectory taught.

ここで注意することは、装置9〜12の処理はロボット
始動時に行うのであって、ロボットに軌道を教示させる
毎に原点オフセンIf計算する必要はない。
It should be noted here that the processing of devices 9 to 12 is performed when the robot is started, and there is no need to calculate the origin offset If every time the robot is taught a trajectory.

発明の効果 以上のようにこの発明によると、極めて簡単にかつ自動
的に原点オフセノトヲ求めることができ、従来困難とさ
れてきた原点オフセットの問題が解消される。さらにま
た、従来のように注意深く各軸の原点を合せるという時
間の無駄が省かれ、かつ判断の良い軌跡制御ができると
いう効果がある。
Effects of the Invention As described above, according to the present invention, the origin offset can be found extremely easily and automatically, and the problem of origin offset, which has been considered difficult in the past, can be solved. Furthermore, there is an effect that the time wasted in carefully aligning the origin of each axis as in the conventional method is eliminated, and trajectory control can be performed with good judgment.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例における測定平面教示操作
を示す斜視図、第2図はその制御装置の概略説明図、第
3図は同じくその原点オフセットの処理の流れを示す説
明図である。 1・・・台となる定盤、2・・・直角の定盤、3・・マ
イクロメータ、4・・・ロボットの先端、5・・ロボッ
トの本体、6・・制御装置、7・・・教示装置、8・・
・表示装置、9・・・教示装置、10・・・記憶装置、
11・・・角度オフセット算出装置、12・・教示装置
、13・記憶装置、14・・・補正装置、15・・・実
行装置第2図 第3図
FIG. 1 is a perspective view showing the measurement plane teaching operation in an embodiment of the present invention, FIG. 2 is a schematic explanatory diagram of the control device, and FIG. 3 is an explanatory diagram showing the flow of the origin offset processing. . 1... Surface plate serving as a stand, 2... Right-angled surface plate, 3... Micrometer, 4... Tip of robot, 5... Main body of robot, 6... Control device, 7... Teaching device, 8...
-Display device, 9...teaching device, 10...storage device,
DESCRIPTION OF SYMBOLS 11... Angle offset calculating device, 12... Teaching device, 13... Storage device, 14... Correction device, 15... Execution device Fig. 2, Fig. 3

Claims (1)

【特許請求の範囲】 n個(nは正の整数ンの自由度を有する関節形ロボット
の原点オフナツト調整方法であって、互いに異なる(n
−1)個の平面を測定平面とし、各々の測定平面の任意
の異なる4点に前記ロボットの先端に設置したマイクロ
メータをこの測定平面に対し略垂直となる姿勢で当て、
これら4点における前記マイクロメータの指示値が同じ
値となるように前記ロボットを教示し、前記ロボットに
固定された座標系によって決まる先端座標の誤差式〔δ
E〕;角度オフセットが及ぼすロボット先端位置の誤差
ベクトル 〔P〕;角度オフセットとロボット先端位置の誤差で決
まる定数のマトリクス から、原点オフセット請求め、調整することを特徴とす
る関節形ロボットの原点オフセット調整方法。
[Scope of Claims] A method for adjusting the origin off-nut of an articulated robot having n (n is a positive integer) degrees of freedom, which are different from each other (n
-1) A micrometer installed at the tip of the robot is applied to four arbitrary different points on each measurement plane in an attitude substantially perpendicular to the measurement plane,
The robot is taught so that the micrometer readings at these four points are the same, and the tip coordinate error formula [δ
E]; Error vector of robot tip position caused by angular offset [P]; Origin offset of an articulated robot, characterized in that the origin offset is requested and adjusted from a matrix of constants determined by the angular offset and the error in the robot tip position. Adjustment method.
JP17045182A 1982-09-28 1982-09-28 Origin offset adjusting method for arthrosis type robot Granted JPS5958504A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17045182A JPS5958504A (en) 1982-09-28 1982-09-28 Origin offset adjusting method for arthrosis type robot

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17045182A JPS5958504A (en) 1982-09-28 1982-09-28 Origin offset adjusting method for arthrosis type robot

Publications (2)

Publication Number Publication Date
JPS5958504A true JPS5958504A (en) 1984-04-04
JPS6362001B2 JPS6362001B2 (en) 1988-12-01

Family

ID=15905169

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17045182A Granted JPS5958504A (en) 1982-09-28 1982-09-28 Origin offset adjusting method for arthrosis type robot

Country Status (1)

Country Link
JP (1) JPS5958504A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5959394A (en) * 1982-09-29 1984-04-05 株式会社日立製作所 Device for estimating error of robot mechanism
WO2013161242A1 (en) * 2012-04-25 2013-10-31 パナソニック株式会社 Method for correcting mechanism error of articulated robot

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0294702U (en) * 1989-01-11 1990-07-27

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5638516A (en) * 1979-09-07 1981-04-13 Hino Motors Ltd Cooler of supercharged engine
JPS5650215A (en) * 1979-09-29 1981-05-07 Hino Motors Ltd Method and apparatus for controlling temperature in cooling device for supercharged engine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5638516A (en) * 1979-09-07 1981-04-13 Hino Motors Ltd Cooler of supercharged engine
JPS5650215A (en) * 1979-09-29 1981-05-07 Hino Motors Ltd Method and apparatus for controlling temperature in cooling device for supercharged engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5959394A (en) * 1982-09-29 1984-04-05 株式会社日立製作所 Device for estimating error of robot mechanism
JPH0565318B2 (en) * 1982-09-29 1993-09-17 Hitachi Ltd
WO2013161242A1 (en) * 2012-04-25 2013-10-31 パナソニック株式会社 Method for correcting mechanism error of articulated robot
JPWO2013161242A1 (en) * 2012-04-25 2015-12-21 パナソニックIpマネジメント株式会社 Correction method of mechanism error of articulated robot

Also Published As

Publication number Publication date
JPS6362001B2 (en) 1988-12-01

Similar Documents

Publication Publication Date Title
CN107042528B (en) A kind of Kinematic Calibration system and method for industrial robot
JP2651251B2 (en) Mechanism error correction method for SCARA robot
US6868356B2 (en) Method of and apparatus for correction of coordinate measurement errors due to vibrations in coordinate measuring machines (cmms)
JP3001989B2 (en) Correction method of coordinate measuring device and coordinate measuring device
WO2002016868A1 (en) Positional error evaluation method for mobile device and movement accuracy improving method based on the evaluation result
JPH0328714A (en) Measuring and control system for sensor scanning
JPH07190741A (en) Measuring error correction method
CN116817896B (en) Gesture resolving method based on extended Kalman filtering
US6584379B1 (en) Robot device and method of adjusting origin of robot
JP2640339B2 (en) Automatic correction method for robot constants
JPS5958504A (en) Origin offset adjusting method for arthrosis type robot
JP3096875B2 (en) Robot arm length correction device
JP2002018750A (en) Method and device for calibration of robot
JP2000055664A (en) Articulated robot system with function of measuring attitude, method and system for certifying measuring precision of gyro by use of turntable for calibration reference, and device and method for calibrating turntable formed of n-axes
JPH07248209A (en) Object position and attitude measuring device and part assembling apparatus loading the device
JPS638904A (en) Robot calibrating device
JPH012104A (en) Robot positioning error correction method
KR101915859B1 (en) Servo Mismatch Compensation Method of Multi-axis Control Machine Using Laser Tracker
JPH0760332B2 (en) Robot calibration device
CN112212822B (en) Method for detecting ball center space offset error of ball joint by using three-ball bar instrument
KR20140136119A (en) Temperature correction method for attitude and heading reference system
JPH01153907A (en) Visual sensor attitude correction system utilizing image processor
JPH04259007A (en) Correcting method for instrumental error of robot
JPS62165116A (en) Processing system for determined value of artificial satellite attitude
JPS5959394A (en) Device for estimating error of robot mechanism