JPS5958335A - Method and device for monitoring life of prime mover material - Google Patents

Method and device for monitoring life of prime mover material

Info

Publication number
JPS5958335A
JPS5958335A JP16770582A JP16770582A JPS5958335A JP S5958335 A JPS5958335 A JP S5958335A JP 16770582 A JP16770582 A JP 16770582A JP 16770582 A JP16770582 A JP 16770582A JP S5958335 A JPS5958335 A JP S5958335A
Authority
JP
Japan
Prior art keywords
prime mover
damage
creep
fatigue
stress
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16770582A
Other languages
Japanese (ja)
Inventor
Kazunari Kimura
和成 木村
Kazunari Fujiyama
一成 藤山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP16770582A priority Critical patent/JPS5958335A/en
Publication of JPS5958335A publication Critical patent/JPS5958335A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/32Investigating strength properties of solid materials by application of mechanical stress by applying repeated or pulsating forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0058Kind of property studied
    • G01N2203/0069Fatigue, creep, strain-stress relations or elastic constants
    • G01N2203/0071Creep

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

PURPOSE:To detect the life of a prime mover material in advance, by obtaining the stress value of a separated material, comparing the stress value with the secular stress value of them aterial based on the operated times, etc., and obtaining the distribution of the creep life etc., of the materials. CONSTITUTION:A life monitoring device is constituted of a setter 1 which inputs various parameters necessary to calculate the accumulated amount of damage obtained from the operated history of a prime mover, fatigue failure calculator 2 which calculates the fatigue failure of the whole prime mover materials, creep failure calculator 3 which calculates the accumulated amount of creep faiure, display 4, and recorder 5. When the kind and frequency of unstationary operations and the kind and time of stationary operations are inputted into the setter 1, the distributing conditions of the accumulated amounts of the fatigue failure and creep failure of the whole prime mover materials are calculated by the calculators 2 and 3 and automatically displayed by the display 4 as numerical values or charts. Therefore, the damaged state of the materials can easily be known in advance.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明−1原711J+磯、例えばタービン部材の予内
命を予じめ(q知する)hl f!i!I 機部材の寿
命監視方法および装置&、 +−ITJする。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention-1 Original 711J+Iso, for example, knowing the expected life of a turbine member in advance (q) hl f! i! I Machine parts life monitoring method and device &, +-ITJ.

〔発明の技術的背恩とその間ト111点〕原n+!+ 
+幾は10年又はそれ以」二の長則間にわたって使用さ
れるイ)のが多く、それらCJ長、1114間の使用中
(二非定常および51常運転なlpX、 l’j!;j
する。この様な運転中に原IIIJ磯部層にt、j、非
定常応力、定常応力か夫々の運転中の温度場で発生し、
非定)3゛J′I!・転生には9M労損傷が、又定常運
転中C二は、ノ早lυノ(幾部柑が活況で使用されるも
のであわばクリープtfi、 4bhが蓄積される。こ
わ、らの損傷が原11機の使用期間が増加するにつれて
蓄積されて、それが原1ldr 11を構成する材料の
限界損傷特性値ζ二連すると原動機部′4Aにはき裂が
発生する。通常、きター゛が¥1生すると、き裂の伝播
期間は短かく、きり4発生から時を経ずして原動機部材
の寿命を決定する(aνgj、 (二至ることd多い。
[Technical debt of invention and 111 points] Hara n+! +
A) is often used for 10 years or more, and those CJ lengths are in use for 1114 years (2 unsteady and 51 normal operation lpX, l'j!;j
do. During such operation, t, j, unsteady stress, and steady stress occur in the original IIIJ Isobe layer in the temperature field during each operation,
Undefined) 3゛J′I!・Reincarnation has 9M labor damage, and during steady operation, C2 has accumulated 4bh of creep TFI and 4bH since it is used in active condition. As the period of use of the original 11 increases, it accumulates, and when the limit damage characteristic value ζ of the material composing the original 1ldr 11 is combined, cracks occur in the prime mover section '4A. If the crack propagates within a short period of time, the life of the prime mover member will be determined shortly after the crack occurs (avgj, (2).

従って、原動様部材ζ二蓄積される(h傷の状態を内絡
(二予知することは原動千メセの保守の面から1(要で
ある。
Therefore, it is essential to predict the state of damage to the motive force-like member ζ2 from the viewpoint of maintenance of the motive force.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情5二もとずき、予じめ部材のノ予命を
検知するようにした原動機部(詞の寿イ^シ)に親方法
およびその装置を提供することにある。
The present invention is based on the above-mentioned circumstances and provides a method and device for a prime mover section in which the expected life of a member is detected in advance.

〔)Iら明の概吸」 本発明は、上口己目的を達成するため、分割した部材の
応力値を求めておき、この値と運転回数あるいは継続時
間に基づく部材の経年的な応力値と比較し、部材のクリ
ープ寿命等の分イ1iを求めるものである。また、部材
の寿命を予じめ、検知するため(二、記憶装kc s設
定器、疲労およびクリープ損傷計n機、計算結果を表示
またにt記録する装置を設けたものである。
In order to achieve the purpose of the present invention, the stress value of the divided member is determined, and the stress value of the member over time based on this value and the number of operations or duration of operation is calculated. This is to calculate the component 1i of the creep life of the member. In addition, in order to detect the lifespan of members in advance (2) a memory device, a kcs setting device, a fatigue and creep damage meter, and a device for displaying and recording calculation results are provided.

〔発明の実施例〕[Embodiments of the invention]

本発明の詳細な説明に先立ち、その論理手段を詳述する
Prior to a detailed explanation of the present invention, its logical means will be explained in detail.

一般に、非定常運転1回当り蓄積きれる疲労損傷、ある
いに1定常運転1時間当り蓄積さtするクリープ損傷の
表現の仕方ll5t槓々のものがあるが、最も一般的な
もの1使用分数と吋−ばれるもので前者は(1)式、後
者は(2)式で表わされる。
In general, there are many ways to express fatigue damage that can be accumulated per unsteady operation, or creep damage that can be accumulated per hour of steady operation, but the most common expression is 1 usage minute. The former is expressed by equation (1) and the latter by equation (2).

φ7L=   ”−一−(1) N7L(T、σ) ここでNfL(T+σ)は、非定常J転生に発生する温
度T、応力σが作用し、き裂が発生する丑での非定常運
転の繰り返し数でLり非定常運転の柿類を表わす。Tr
/(T、σ)け定常運転中に発生する温度T。
φ7L = ”-1-(1) N7L (T, σ) Here, NfL (T + σ) is the unsteady operation in the ox where the temperature T and stress σ that occur in the unsteady J transfer act, and cracks occur. The number of repetitions represents persimmons in unsteady operation.Tr
/(T, σ) is the temperature T that occurs during steady operation.

応力σが作用して、き裂が発生ずるまでの定常運転時間
で、/は定常運転の柚力゛1である。説明の便宜上、非
定常運転および定’FS y’J=転の揮類なおのおの
1神類とし温度がTo、応力がσ()である様な郭定′
帛運転がn 1ij1発生し、温度がTQ’、応力が0
0′である様な定常運転時間が1時間である様な原動機
について考えてみると、この原動機に蓄積された疲労損
傷とクリープ損傷klおのおの(1)式、(2)式よと
求せる。一般に(3)式、(4)式で夫々、疲労損傷と
クリープ損傷の8積量が表わされる。
The steady-state operating time until a crack occurs due to the stress σ is applied, and / is the steady-state operating force ゛1. For convenience of explanation, we assume that each of the volatiles in unsteady operation and constant 'FS y' J = one class, and that the temperature is To and the stress is σ().
The chain operation occurs n 1ij1, the temperature is TQ', and the stress is 0.
Considering a prime mover whose steady operation time is 0' for one hour, the fatigue damage and creep damage kl accumulated in this prime mover can be determined by equations (1) and (2), respectively. Generally, the eight volumes of fatigue damage and creep damage are expressed in equations (3) and (4), respectively.

Φ’ −” Iπ(0,o)−T n”φfL  i8
1ここで% rl”l尤JはおのおのLなる非定常運転
の発生回数、J々る定常運転の継続時間である。
Φ' −”Iπ(0,o)−T n”φfL i8
1 Here, %rl''l is the number of occurrences of unsteady operation, and J is the duration of steady operation, respectively.

づで、(3)式、(4)式の様f二求する疲労訃よびク
リープ損傷の蓄積h)、が限界値に達すると原県1枦部
材In &;j:き裂が発生する。この限界損傷値し1
ジノ&労、クリープ(β傷の蓄積状態によって1+j1
々の値をとりつるが拐料によって決った値である。イI
Yつて原動機のコイC転履歴および運転中の温度、応力
から、(8)式又は(41式により疲労4′yl傷やク
リープ打;傷の蓄Kr“t fsi”Φf、Φ。を計q
しΦfとΦ。の絹み合わせによって決まる原動機部材の
限界損傷値D(ΦI、Φ。)で囲寸れるΦf、Φ。座標
系の範囲内にΦf、Φ。かあれは原Xa+機部層に@裂
は未発生の状態であり、Φf、Φ。がD(r、r′)f
、ΦC)に近いほど、き裂発生に近づいていると判定で
きる。
Therefore, when the equations (3) and (4) (f2) and the accumulation of fatigue damage and creep damage (h) reach their limit values, cracks occur. This limit damage value is 1
Jino & Labor, Creep (1+j1 depending on β wound accumulation status)
The value of each item is determined by the bribery fee. I
From the rolling history of the prime mover and the temperature and stress during operation, the accumulation of fatigue scratches and creep damage Kr "t fsi" Φf, Φ can be calculated using equation (8) or equation (41).
Φf and Φ. Φf, Φ can be defined by the limit damage value D (ΦI, Φ.) of the prime mover member determined by the matching of the parts. Φf, Φ within the coordinate system. That is a state in which no cracks have occurred in the original Xa + machine layer, and Φf, Φ. is D(r, r')f
, ΦC), it can be determined that the closer it is to crack initiation.

ところで、一般C二原IIIJ (W4は大形のt14
造物である」21合が多く、原!tilt機部4J内部
で運転中の温度、応力は場所によって異なっている。従
ってJti傷の蓄(7j ’)i;そのものが、原!l
i!+ +j!A部拐内部で分布をもっている。その為
、損傷状態のyllなる原mノ田部相内部全域にわたっ
て扛j傷状J用を知ることが原動機σ)健全性の判定に
げ心安である。ところで原動機内部の冬場J91(二お
ll−fる損傷状態はその部分のやす転生の温度と応力
状態がわかft &;l上、1ホの(1)式、(2)式
により明らかf二なる。原動札轡内部の名湯所における
温L((、−、応力状(、tu 1.を構造物全体]温
1’i!j 、応力状態を解析する有限、9.1’素法
C二よりイ≠易に知ることができる。
By the way, general C Nihara IIIJ (W4 is large T14
``It is a created thing'' 21 go is common, Hara! The temperature and stress during operation inside the tilt machine section 4J differ depending on the location. Therefore, Jti is the accumulation of wounds (7j')i; itself is the original! l
i! ++j! It has a distribution within the A section. Therefore, it is safe to judge the health of the prime mover by knowing the scratches throughout the entire interior of the original Tabe phase, which is in a damaged state. By the way, the damaged state inside the prime mover in winter is clearly determined by the equations (1) and (2) in section 1, above, when the temperature and stress state of the heat transfer in that part are known. Temperature L ((, -, stress state (, tu 1. for the entire structure) temperature L(, -, stress state (, tu 1. for the entire structure) temperature 1'i!j, finite, 9.1' elemental method for analyzing stress state It is easier to know than C2.

即ち、有限の大きさの要素1−分割さねた原動機全体の
温gr 、応力分布の解析結上1か有限の要素内のイ(
衣魚で明らか番−なるので、その代表点1−おける損傷
状)11は(1)式、イ2)式で非定常運転1回轟す、
又は定常運転1時間当りのt;として力えられ、非定常
運転回数、定常運転時間が原価(5j(の運転履歴から
得ら#1.;itは(3)式、(4)式C二よって41
傷の蓄積状態を知ることができる。
In other words, the temperature gr of the entire prime mover divided into elements 1 and 1 of finite size, and the analysis result of stress distribution.
Since there is a clear number in the case of battered fish, the damage condition at the representative point 1) 11 is determined by Equation (1) and Equation (A) 2).
or t per hour of steady operation; Therefore, 41
You can know the state of damage accumulation.

以−]二、説明した原動機部材全体の損傷蓄積状態を計
算する方法をもとに具現化した原!riII機部材のカ
命監視装fi、’i−について以下、計M11に説明す
る。
2. A model realized based on the method of calculating the damage accumulation state of the entire prime mover components explained above! The life monitoring system fi, 'i- of the riII aircraft components will be explained below in total M11.

るし1図は、原動様部材の寿命監視装置の414成図を
示すものである。lは設定器であり、原動機の運転履歴
から非定常運転の4it+類とその回数、定常運転の棹
知とその運転時間等の損傷1ハ)°計算(二必廠な各イ
1[Iパラメータを入力する装置である。2は記憶装置
で、あらかじめ原街、り機・各種非定常運転時や定常運
転時に発生する原動機内部の温度。
Figure 1 shows a 414 diagram of a life monitoring device for a driving member. 1 is a setting device, which calculates damages such as 4it+ type of unsteady operation and its number, knowledge of steady operation and its operating time, etc. from the driving history of the prime mover 2 is a storage device that records in advance the temperature inside the prime mover that occurs during raw materials, rigs, various unsteady operations, and steady operations.

応力を原動機全体を有限の要素に分割して有限要素法に
より解析しその結果と原動機構成拐料の疲労特性、クリ
ープラブチャ特性とを比較することにより、各非定常運
転1回当り、又は定常運転1時間当りに蓄積される疲労
損傷やクリープ損傷が各有限の要素の代表点について計
算さilその計η結果が代表点の座標と共に記憶されて
いる。又、き!7発生に対応する限界損傷値D(ΦハΦ
。)も記憶芒れている。y、14に3の被労扛1傷^I
亥l器、4のクリープ損傷Ml勢、器(−よって原止す
()と全体の戟労損傷又dクリープ損傷1:Iシの計9
−鯖呆が自己憶される。
By dividing the entire prime mover into finite elements, analyzing the stress using the finite element method, and comparing the results with the fatigue characteristics and creep-rubber characteristics of the prime mover components, the Fatigue damage and creep damage accumulated per hour of operation are calculated for the representative points of each finite element, and the total η results are stored together with the coordinates of the representative points. Again, come on! The critical damage value D (ΦhaΦ) corresponding to the occurrence of 7
. ) also has a poor memory. y, 3 labor injuries 1 injury on 14 ^I
Creep damage of I, 4, Ml force, Ml force (-, so it is stopped ()) and total force damage or d creep damage, 1: I, total 9
- I remember being depressed.

3け疲労損傷計算器であり1のiν定器から入力される
非定常運転の棹類と回数および、この記″1.(を装置
111に内蔵されている構造物全体の非定常運転1回当
りの疲労損傷とから上述の(3)式により疲労損傷蓄積
量Φfを計嘗、する装置である。4す」−クリープ損傷
計算器であり1の設定器から入力される定常運転のf=
Jf類とその時間および、2の記憶装(ii I−内蔵
されている構造物全体の定當運転1時間轟りのクリープ
損傷とかを上述の(41)式(二よりクリープ損傷蓄積
倚Φ。を計算する装置である。5は表示器であり、疲労
損傷、クリープ損傷のΔ1:!J!、結果を別々にある
いはその合算値を原動機内部の位商を示す座標と共【二
数値で表示したり、等彼方]1−1傷hiI図1等クリ
ープ損傷線図あるいは全111傷純図を原動機部材の外
形と共に等直線で損傷状態を目視化C二し図形表示する
装置である。又、原動機内部の疲労損傷とクリープ(δ
傷の蓄積に4Φf、Φ。の糾合せが限界損傷D(Φf、
(po)に近いハ(3分につI/Aては、その要素  
・が点滅して表示される。6は記録器であり、1ぐ)設
定器から入力される損傷計/R,に必炊なノζラメータ
や、2の疲労損偏削p器や3のクリープ損傷1算結果等
を記録する装置である。
This is a 3-digit fatigue damage calculator, and the number and number of unsteady operations input from the iν constant device in 1, and the number of unsteady operations inputted from the iν constant device in 1. This is a device that calculates the accumulated amount of fatigue damage Φf from the fatigue damage caused by the collision, using equation (3) above.4 - Creep damage calculator, where f= of steady operation input from the setting device 1.
Jf type and its time, and the creep damage of the entire built-in structure after 1 hour of constant operation are determined by the creep damage accumulation Φ from the above equation (41) (2). This is a calculation device. 5 is a display that displays the results of fatigue damage, creep damage, Δ1:!J!, separately or in combination with the coordinates indicating the position quotient inside the prime mover. This is a device that graphically displays a creep damage diagram such as 1-1 flaws (Fig. 1) or a total 111 flaw diagram along with the outline of the prime mover parts in equal straight lines. Internal fatigue damage and creep (δ
4Φf, Φ for the accumulation of scratches. The combination of is the marginal damage D(Φf,
(po) is close to (3 minutes I/A, the element is
・is displayed blinking. 6 is a recorder, which records the essential parameters for the damage meter/R inputted from the setting device (1), the fatigue loss deflection device (2), the results of creep damage calculations (3), etc. It is a device.

〔発明の効果〕〔Effect of the invention〕

以上i)と明したよう5二肌励tfJ、運転員は原動4
工;;の運転履歴からイ4すられる非定常運転の4!1
1類とその回数。
As stated above in i), 5 two-skin excitation tfJ, the operator is 4
4!1 Unsteady operation revealed from the operation history of the engineer
Type 1 and its number.

定常運転の糊如とその時間を設定器1から入力するだけ
で、原動機部材全体の疲労損傷、クリープl−傷蓄積忰
の原動機f(13月全体の分布状yIJ、iか疲労損傷
計算器2やクリープ損傷H1算器3により計算され、表
示ンi4に数値又は等損傷線図として図形で自動的C二
表示され、かつ、記録器5に記録されるので、極めて容
易に原動機の損傷状態をJV!握することができる様に
なった。これC二より原動機部材の戻竹時期を原動機を
運転しながら予め知ることができ、!l’ Ill的に
部材を更新したり運転状態を軽減する等、原動機の保守
は極めて榮(二なったと言える。
Just by inputting the normality of steady operation and its time from the setting device 1, fatigue damage of the entire prime mover member, creep l - damage accumulation value of the prime mover f (13 months overall distribution yIJ, i), fatigue damage calculator 2 and creep damage H1 is calculated by calculator 3, automatically displayed numerically or graphically as an equal damage diagram on display i4, and recorded in recorder 5, so it is extremely easy to check the damage state of the prime mover. JV! It is now possible to grasp the JV! From this C2, it is possible to know in advance when to return the prime mover parts while operating the prime mover, and to update the parts or reduce the operating condition in a timely manner. The maintenance of the prime mover can be said to be extremely rewarding.

4 回向の17+)年な説明 図1iiは本発明f二よる原動4a部刊の寿命監ネR5
装詔。
4 Explanatory diagram 1ii of 17+) is the Lifespan Monitor R5 published by Modo 4a by the present invention f2.
Edict.

の骨子図である。This is a schematic diagram.

1・・・設5ピ器     2・・・移労損傷泪η−器
3・・・クリープJM傷Ml’算器 4・・・表示器5
 ・・・ h己録器
1... Setup 5 pin device 2... Transfer damage tear η- device 3... Creep JM injury Ml' calculator 4... Display device 5
・・・ h self recorder

Claims (1)

【特許請求の範囲】[Claims] (1)原1jiI1機部拐を有限の大きさの要素g二分
割し、との臂素内の代表部位における応力の実測値を求
め、この実測値と運転回数あるいは継続時間に基づく部
材のれ年内な応力値と比較し、部t」のクリ(2)原Q
i、l)機部材を有限の大きさく二分割し、この要素内
の代表部位f二おける原動機部材の非定常運転1回当り
蓄積される疲労損傷値とW常111J転1時間当り蓄積
さハるクリープ旬傷値を内蔵する記憶装置4と、非定常
運転の種類とその回数、定常運転の種炉とその時間等を
設定する設定器と、疲労損傷、クリープ損傷の蓄fit
I量を計算する疲労損=i+9機およびクリープ損傷計
7?′機と、疲労損傷B1算結果およびクリープ損傷計
繋結果を凹型又は数値で表示する表示器と、計算結果を
稚〕録する記録器とから成る原動機部材の寿命監視装置
(1) Divide the original aircraft wreck into two elements of finite size, find the actual measured value of stress at a representative part within the armpit, and calculate the stress of the member based on this measured value and the number of operations or duration. Comparing with the stress value within the year, the chestnut of part t (2) original Q
i, l) Divide the machine member into two parts of a finite size, and calculate the fatigue damage value accumulated per unsteady operation of the prime mover member at the representative part f2 within this element and the value accumulated per hour of W normal 111J rotation. a storage device 4 containing creep damage values, a setting device for setting the type and number of unsteady operation, the seed furnace for steady operation and its time, etc., and a storage device for fatigue damage and creep damage.
Calculate the amount of fatigue loss = i + 9 aircraft and creep damage total 7? A lifespan monitoring device for prime mover components, comprising a motor, a display that displays fatigue damage B1 calculation results and creep damage meter connection results in a concave shape or numerically, and a recorder that records the calculation results.
JP16770582A 1982-09-28 1982-09-28 Method and device for monitoring life of prime mover material Pending JPS5958335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16770582A JPS5958335A (en) 1982-09-28 1982-09-28 Method and device for monitoring life of prime mover material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16770582A JPS5958335A (en) 1982-09-28 1982-09-28 Method and device for monitoring life of prime mover material

Publications (1)

Publication Number Publication Date
JPS5958335A true JPS5958335A (en) 1984-04-04

Family

ID=15854681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16770582A Pending JPS5958335A (en) 1982-09-28 1982-09-28 Method and device for monitoring life of prime mover material

Country Status (1)

Country Link
JP (1) JPS5958335A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105651606A (en) * 2016-01-26 2016-06-08 苏州热工研究院有限公司 Method for assessing structural integrity of high-temperature and high-pressure welded member
CN105964329A (en) * 2015-03-11 2016-09-28 株式会社佐竹 Control device of grain preparation equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105964329A (en) * 2015-03-11 2016-09-28 株式会社佐竹 Control device of grain preparation equipment
CN105651606A (en) * 2016-01-26 2016-06-08 苏州热工研究院有限公司 Method for assessing structural integrity of high-temperature and high-pressure welded member

Similar Documents

Publication Publication Date Title
US3731070A (en) Gas turbine engine analyzer
CH704112B1 (en) Monitoring method and system for determining turbine blade deformation.
US6568254B2 (en) Method for monitoring the creep behavior of rotating components of a compressor stage or turbine stage
KR101538906B1 (en) System and method for monitoring vibrations in a machine
CN101738293A (en) Real-time diagnosis method of rotor original quality imbalance fault of turbo generator set
CN107893682A (en) For the method for the system for detecting lubrication bearing state
JPS5958335A (en) Method and device for monitoring life of prime mover material
JP2002108440A (en) Damage diagnosing device for power generation facilities
DE102012104234A1 (en) System and turbine with creep indicating element
US20150234365A1 (en) Determining machine condition
JPH0694589A (en) Life diagnosis method for high temperature part
RU2006811C1 (en) Method of revealing degree of wear of bearings in internal combustion engine without disassembling
JP2965716B2 (en) Piping life diagnosis
Grossman Testing and analysis of a transonic axial compressor
Cho et al. Applications of time-frequency analysis for aging aircraft component diagnostics and prognostics
Mariani et al. Improvements in fatigue evaluations of helicopter transmissions
JPH04370741A (en) Method and device for diagnosing life of plant equipment
Di Maggio et al. Rocket engine health assessment using the cepstrum method
JPS612076A (en) Maintenance control device of constitutional element
McMillan et al. Simulation of interference fitted joint strength as used in hot rolling work rolls
DE102023100871A1 (en) Method for monitoring working fluid loss from a heat pump
Tavares et al. Performance Assessment of Gas Turbine Driven Centrifugal Compressor Trains Derived from Field Testing
JPH0127377B2 (en)
WO2021110441A1 (en) Component wear state evaluation method and tool
JPS61140838A (en) Method for diagnosing structural member