JPS61140838A - Method for diagnosing structural member - Google Patents

Method for diagnosing structural member

Info

Publication number
JPS61140838A
JPS61140838A JP26357284A JP26357284A JPS61140838A JP S61140838 A JPS61140838 A JP S61140838A JP 26357284 A JP26357284 A JP 26357284A JP 26357284 A JP26357284 A JP 26357284A JP S61140838 A JPS61140838 A JP S61140838A
Authority
JP
Japan
Prior art keywords
structural member
probability
crack
determined
remaining life
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26357284A
Other languages
Japanese (ja)
Inventor
Hideyuki Hirata
英之 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP26357284A priority Critical patent/JPS61140838A/en
Publication of JPS61140838A publication Critical patent/JPS61140838A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G07CHECKING-DEVICES
    • G07CTIME OR ATTENDANCE REGISTERS; REGISTERING OR INDICATING THE WORKING OF MACHINES; GENERATING RANDOM NUMBERS; VOTING OR LOTTERY APPARATUS; ARRANGEMENTS, SYSTEMS OR APPARATUS FOR CHECKING NOT PROVIDED FOR ELSEWHERE
    • G07C3/00Registering or indicating the condition or the working of machines or other apparatus, other than vehicles

Abstract

PURPOSE:To judge exactly the remaining life of a structural member by calculating the presence and propagation quantity of a crack as wall as the coefft. of stress expansion of the crack from the various use condition quantity and inspection data of the structural member and determining rupture probability from the breaking toughness value of the structural member. CONSTITUTION:A device 1 for detecting the using condition is connected to the structural member and the various use condition quantity such as temp. is measured at all times and is preliminarily stored into a storage device 2 for operating history. On the other hand, the inspection data 3 by various non-destructive inspection obtd. in the stage of inspecting the structural member is inputted from an input part to an arithmetic unit 4 for material characteristics, by which the initial crack size and the deterioration condition quantity of the member are stored. The crack depth is determined as a probability density distribution from both stored data by an arithmetic unit 5 for the crack propagation quantity and further the coefft. of stress expansion for each operation time is determined as the probability density distribution by an arithmetic unit 6 for the coefft. of stress expansion. The rupture probability is determined by an arithmetic unit 7 for the rupture probability from the coefft. of stress expansion and the deterioration condition quantity and the time until the probability exceeds the prescribed value is determined as the remaining life.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は例えば高温蒸気中で使用される機械の構造部材
の余寿命を正確に判断するとともに最適検査期間を定め
る診断方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a diagnostic method for accurately determining the remaining life of a structural member of a machine used, for example, in high-temperature steam and determining an optimal inspection period.

〔従来の技術〕[Conventional technology]

従来から構造部材の寿命を診断するには、月別の固有値
である引張り強さ、疲労強度、クリープラブチャ、破壊
靭性等の破壊強度と応力、振動応力、応力拡大係数等の
予想される負荷吊を比較して、その大小関係ににり破壊
条件の判定を行っていた。どころが、これらの値にはバ
ラツキがあるため、破壊強度の最低値と負荷量の最大1
直を比較し、限界亀裂深さ等の限界値を求め、現在の状
態11 、例えば亀裂深さ、クリープ損傷量或は疲労損
傷量等が限界値に達するまでの期間を余寿命と判断して
いる。
Traditionally, in order to diagnose the lifespan of structural members, monthly eigenvalues such as tensile strength, fatigue strength, creep roughness, fracture toughness, and other fracture strengths, as well as stress, vibration stress, stress intensity factor, and other predicted load loads have been used. The conditions for failure were determined based on the size relationship. However, since there are variations in these values, the minimum value of fracture strength and the maximum value of load
The remaining life is determined as the period until the current state11, for example, crack depth, creep damage amount, fatigue damage amount, etc. reaches the limit value. There is.

そして余寿命を算出するにあたっての亀裂進展速度等に
ついてもバラツキの最大値を採用するようにしている。
Furthermore, when calculating the remaining life, the maximum value of the dispersion is used for the crack growth rate, etc.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上述したように従来にあっては、4.J IIの各種破
壊強度と予想される負荷吊を比較することにより余寿命
等を診断しているが、これらの値はいずれも最低値及び
最大値を採用し、各種値の分布形態については何ら考慮
していないため、以下のごとき不都合がある。
As mentioned above, conventionally, 4. The remaining life, etc. is diagnosed by comparing the various fracture strengths of J II and the expected load lifting, but the minimum and maximum values are used for each of these values, and no consideration is given to the distribution form of the various values. Since this is not taken into consideration, there are the following inconveniences.

即ら、第1図は2種類の拐料の破壊強度ど破壊確率密度
の関係を示すグラフであり、2種類の材料A、Bにおい
てはともに破壊強度の最低値はδ で等しいが、材料A
の方がδ。の近くの破壊強度の部分が多く材料Bの方が
全体的に破壊強度は大である。
That is, Fig. 1 is a graph showing the relationship between the fracture strength and fracture probability density of two types of materials, and the lowest values of fracture strength are equal at δ for two types of materials A and B, but material A
is δ. There are many parts of the fracture strength near , and the fracture strength of material B is higher overall.

しかしながら、従来の診断方法によると材料A。However, according to conventional diagnostic methods, material A.

Bとも採用する破壊強度は等しく、破壊の危険性が大で
ある材料Aについて、材料Bと同一の余野命しか判断し
得ないこととなる。
For material A, which has the same fracture strength and has a high risk of fracture, it is possible to determine only the same remaining life as material B.

更に、従来にあっては構造部材の検査期間と余寿命との
間には何らの関連性も持たせず、単に適当と思われる期
間を検査期間と定めているに過ぎず、合理的とはいいが
たい。
Furthermore, in the past, there was no relationship between the inspection period and the remaining life of structural members, and the inspection period was simply set as an appropriate period, which was not considered reasonable. It's hard to say.

〔問題点を解決するための手段〕[Means for solving problems]

上記問題点を解決するために、本発明は、構造部材の各
種使用状態量と検査データから現在の亀裂の存在、或い
は亀裂の進展量を確率密度分布どして求め、この確率密
度分布に基いて亀裂の応力拡大係数を同じく確率密度分
布として求め、この応力拡大係数と構造部材の固有地と
しての破壊靭性値とから破壊確率を求め、この破壊確率
から余寿命を算出するとともに、この余寿命を1つの基
準として求めた総コストが最小となる期間を最適検査期
間とし、これらを表示装置によって表示するようにした
In order to solve the above-mentioned problems, the present invention determines the current presence of cracks or the amount of crack growth from various usage state quantities and inspection data of structural members using a probability density distribution, and calculates the amount based on this probability density distribution. Similarly, the stress intensity factor of a crack is determined as a probability density distribution, the probability of fracture is determined from this stress intensity factor and the fracture toughness value as the characteristic property of the structural member, and the remaining life is calculated from this probability of fracture. The period during which the total cost calculated using the following as one criterion was set as the optimum inspection period, and these periods were displayed on a display device.

〔実施例〕〔Example〕

以下に本発明の実施例を添附図面に基いて説明する。 Embodiments of the present invention will be described below with reference to the accompanying drawings.

第2図は本発明方法を総括的に説明したブロック図であ
り、診断の順序としては、先ず、構造部材に使用状態検
出装置1を接続し、この検出装置1によって構造部材の
)門磨等の各種使用状態量を常時訂測し、この計測値を
運転履歴記憶装置2に記憶せしめておく。一方、構造部
材点検詩の各種非破壊検査ににる検査データ3を入力部
より材料特性演算装置4に入力し、初期亀裂寸法や部材
の劣化状態量を同装置4に記憶せしめる。
FIG. 2 is a block diagram that comprehensively explains the method of the present invention, and the order of diagnosis is as follows: First, a usage condition detection device 1 is connected to the structural member, and this detection device 1 detects the condition of the structural member. The various usage state quantities are constantly measured and the measured values are stored in the driving history storage device 2. On the other hand, inspection data 3 from various non-destructive inspections of structural member inspections is inputted from the input section to the material property calculating device 4, and the initial crack size and the amount of deterioration of the member are stored in the device 4.

ここで上記計測値、亀裂寸法、劣化状態量などの測定値
は、測定誤差範囲を標準偏差の適当な倍数どザる正規分
布、つまり第3図に示す如き確率密度分布として記憶さ
れる。尚、点検時に亀裂を発見しなかった場合には第4
図に示すように測定限界以下の寸法の亀裂が一様な確率
密度で存在するものと仮定する。
Here, the measured values, such as the above-mentioned measurement values, crack dimensions, deterioration state quantities, etc., are stored as a normal distribution with a measurement error range set to an appropriate multiple of the standard deviation, that is, as a probability density distribution as shown in FIG. In addition, if no cracks are found during the inspection, the fourth
As shown in the figure, it is assumed that cracks with dimensions below the measurement limit exist with a uniform probability density.

そして前記運転履歴記憶装置2に記憶せしめたデータと
、材料特性演算装置4に記憶せしめたデータを逐次亀裂
進展量演算装置5に入力し、現時点での亀裂深さを確率
密度分布として求める。
The data stored in the driving history storage device 2 and the data stored in the material property calculation device 4 are sequentially input to the crack growth amount calculation device 5, and the current crack depth is determined as a probability density distribution.

一方、現時点以後の亀裂深さは過去の運転履歴が今後も
同じように続くものとして、現時点以後の運転時間に対
する亀裂深さをそれぞれ確率密度分布として求める。
On the other hand, regarding the crack depth after the current time, assuming that the past operation history will continue in the same way in the future, the crack depth for each operating time after the current time is determined as a probability density distribution.

次いで、亀裂進展量演算装置5で求めたデータを応力拡
大係数演算装置6に入力し、亀裂深さに基いて、各運転
時間に対する応力重大係数を第5図に示す如く平均値(
実線()及び標準偏差の確率密度分布(破線ρ 、tJ
2)として求める。
Next, the data obtained by the crack growth amount calculating device 5 is input to the stress intensity factor calculating device 6, and based on the crack depth, the stress severity factor for each operating time is calculated as an average value (
Solid line () and probability density distribution of standard deviation (dashed line ρ, tJ
2).

そして、上記で求めた応力拡大係数及び前記材料特性演
算装置4で求めた亀裂寸法等の劣化状態量を破壊確率演
算装置7に入力して破壊確率を求める。
Then, the stress intensity factor determined above and the deterioration state quantities such as the crack size determined by the material property calculation device 4 are input to the fracture probability calculation device 7 to determine the probability of failure.

ここで、応力拡大係数の平均値をml、応力拡大係数の
標準偏差を81.亀裂寸法の平均値をm2.亀裂用法の
標準偏差をS2とすると破DJ jifr率pは次式に
よって求めることができる。
Here, the average value of the stress intensity factor is ml, and the standard deviation of the stress intensity factor is 81. The average crack size is m2. If the standard deviation of the crack usage is S2, the broken DJ jifr rate p can be determined by the following equation.

また第6図は確率密度とm  、 m2 、 S 1 
Also, Figure 6 shows the probability density and m, m2, S1
.

S2どの関係を示J−グラフである。S2 is a J-graph showing which relationship.

そして、以下の如くして求めた破壊確率と運転時間どの
関係は第7図に表わされる。そこで本発明にあっては、
破壊確率が所定値D(どなった場合を構造部材の寿命と
判断し、この所定値ptを超えるまでの時間1[fを余
寿命と定める。
The relationship between the probability of failure and the operating time determined as follows is shown in FIG. Therefore, in the present invention,
The life of the structural member is determined when the probability of failure reaches a predetermined value D (the life expectancy of the structural member is defined as the time 1 [f) until the probability of failure exceeds the predetermined value pt.

更に本実施例にあっては最適検査時期を決定J−るため
以下の如き4算を行う。
Furthermore, in this embodiment, the following four calculations are performed in order to determine the optimum inspection timing.

即ち、8を端部材の破壊確率演算装置7からのデータを
総コスト演算装置8に入力し、この総]スト演算装置8
により以下の如き演算を行う。つま゛り構造部材が破損
した際に予想される破損金額をCf、運転時間をt、点
検に必要な費用をC8とすると、総コス1−Cは C= (C−pf+co)、/l・・・(2)で表わさ
れるため、この式に基き総コストを計算する。
That is, the data from the end member failure probability calculation device 7 is input to the total cost calculation device 8, and the total cost calculation device 8
The following calculations are performed. If the estimated cost of damage when a structural member is damaged is Cf, the operating time is t, and the cost required for inspection is C8, the total cost 1-C is C= (C-pf+co), /l・Since it is expressed by (2), the total cost is calculated based on this formula.

ここで、第8図は運転時間と総コストとの関係を示すグ
ラフであり、このグラフから明らかなように、総コスト
Cが最小とする運転時間t。が存在する。換言づれば、
検査期間をあまり短くすると検査に要するコストが高く
なり、検査期間をあまり長くすると破壊確率が高くなり
、結果的には総コストは高くなる。そこで、前記総コス
トが最小となる運転時間t。を最適検査期間と定める。
Here, FIG. 8 is a graph showing the relationship between operating time and total cost, and as is clear from this graph, the operating time t at which the total cost C is the minimum. exists. In other words,
If the inspection period is too short, the cost required for the inspection will increase, and if the inspection period is too long, the probability of failure will increase, resulting in an increase in the total cost. Therefore, the operating time t at which the total cost is the minimum. is determined as the optimal inspection period.

また、破壊確率演算装置7で求めたデータ及び総コスト
演算装置で求めたデータはともに余寿命判定装置9に入
力され、この余寿命判定装置は最適検査期間し。と破壊
確率が所定値を超える運転時間t とを比較し、1  
<1fならば最適な検査期間としてt を、1  >1
fならば余寿命としてt(を出)jし、更に1fが零又
は零に近い場合には警報を発する。
Further, both the data obtained by the failure probability calculation device 7 and the data obtained by the total cost calculation device are input to the remaining life judgment device 9, and this remaining life judgment device determines the optimum inspection period. and the operating time t for which the probability of failure exceeds a predetermined value, and 1
If <1f, set t as the optimal inspection period, 1 >1
If f, then t (is output)j as the remaining life, and if 1f is zero or close to zero, an alarm is issued.

第9図は本発明の他の実施例を示すものであり、この実
施例にあって【よ構造部材として蒸気タービンロータを
余寿命の判断対象とした。即ち、ロータ温度検出器11
a及びロータ回転数検出器11bを運転履歴記憶装置1
2に接続し、検査データ13として初期亀裂寸法と材料
劣化度を材料特性演算装置14に入力し、また前記運転
履歴記憶装置12及び材料特性演算装置14を亀裂進展
量演算装置15に、亀裂進展量演算装置15を応力拡大
係数演算装置置 置16及び前記拐料特性演算装置14を破壊確率演算装
置17に、破壊確率演n装置17を総コスト演算装置1
8に、この総コスト演算装置18及び前記破壊確率演算
装置17を余寿命判定装置19にそれぞれ接続し、余寿
命判定装置19からの信号によって余寿命、最適検査期
間又は警報を選択的に出力する。
FIG. 9 shows another embodiment of the present invention, in which a steam turbine rotor is used as a structural member to determine the remaining life. That is, the rotor temperature detector 11
a and the rotor rotation speed detector 11b as the driving history storage device 1.
2, input the initial crack size and material deterioration degree as inspection data 13 to the material property calculation device 14, and input the operation history storage device 12 and material property calculation device 14 to the crack growth amount calculation device 15 to calculate the crack growth. The quantity calculation device 15 is placed in a stress intensity factor calculation device 16, the debris characteristic calculation device 14 is placed in a fracture probability calculation device 17, and the fracture probability calculation device 17 is placed in a total cost calculation device 1.
8, the total cost calculation device 18 and the failure probability calculation device 17 are connected to a remaining life determination device 19, and the remaining life, optimum inspection period, or alarm is selectively output based on the signal from the remaining life determination device 19. .

具体的には、ロータ温度とロータ回転数を運転脂層とし
て運転記憶装置12に記憶せしめておき、これら温度と
回転数から亀裂進展量演算装置15において熱応力と遠
心応力を計算し、応力変化から次式によって応力係数変
化昂へkを求める。
Specifically, the rotor temperature and rotor rotational speed are stored in the operation storage device 12 as an operating fat layer, and the crack growth amount calculation device 15 calculates the thermal stress and centrifugal stress from these temperatures and rotational speed, and calculates the stress change. From the following equation, find the stress coefficient change k.

Δに=1.12Δδ「四1   ・・・(3)ここで、
aは亀裂深さであり、材料特性演算装置14から与えら
れ、−回の応力変動による亀裂進展量△aは次式によっ
て求められる。
Δ = 1.12 Δδ ``41...(3) Here,
a is the crack depth, which is given from the material property calculating device 14, and the amount of crack growth Δa due to - times of stress fluctuation is determined by the following equation.

Δa−いΔn1     ・・・(4)ここで、c −
nlは材料特性値であり、材料特性演算装置14に確率
分布として記憶されている。
Δa−Δn1 (4) Here, c −
nl is a material property value, which is stored in the material property calculation device 14 as a probability distribution.

次に一定応力一定渇度でのクリープ亀裂進展量を求める
。作用応力から応力拡大係数(k)は次式となる。
Next, find the amount of creep crack growth under constant stress and constant dryness. From the acting stress, the stress intensity factor (k) is determined by the following equation.

k=1.12δ「5冒     ・・・(5)ここでδ
は作用応力、aは亀裂深さである。そして、微小時間Δ
tの間の亀裂進B量Δaは次式%式% Δa−A−Kn2Δt        ・(5)ここで
Δ、n2は411斜特性値であり、月利特性演算装置1
4に確率分布として記憶されている。
k=1.12δ ``5 voyage...(5) Here δ
is the applied stress and a is the crack depth. And the minute time Δ
The crack advance B amount Δa during time t is calculated using the following formula % Δa-A-Kn2Δt (5) Here, Δ and n2 are 411 oblique characteristic values, and monthly interest characteristic calculation device 1
4 as a probability distribution.

したがって、運転履歴記憶装置12に記憶されている温
度・回転数の履歴と、月利特性演算装置14に記憶され
ている拐料特性と初期亀裂深さとから、(3)式ど(5
)式により疲労亀裂進展ωとクリープ亀裂進展量を計算
し、これを積分することにJ:つ−C1点検後の運転開
始から現在までの亀裂深さを計算する。また現時点以後
の亀裂進展量については、今までの運転履歴と同じよう
な運転が続くものどして計算する。そして、運転時間に
対する亀裂進展量を第5図と同様の第10図に示J−如
く、確率密度分布として求める。ここで第10図中、実
線Oは亀裂深さの平均値、破線、01゜η2はそれぞれ
平均値から標準偏差分離れた値である。
Therefore, from the history of temperature and rotational speed stored in the operation history storage device 12, and the cracking characteristics and initial crack depth stored in the monthly profit characteristics calculation device 14, equations (3) and (5)
) by calculating the fatigue crack growth ω and creep crack growth amount, and by integrating these, the crack depth from the start of operation after the J:T-C1 inspection to the present is calculated. In addition, the amount of crack growth after this point is calculated assuming that the same operation as the previous operation history continues. Then, the amount of crack growth with respect to the operating time is determined as a probability density distribution as shown in FIG. 10, which is similar to FIG. 5. Here, in FIG. 10, the solid line O is the average value of the crack depth, and the broken line 01°η2 is the value separated by a standard deviation from the average value.

そして亀裂進展量I)装置15で求めIC亀裂深さと作
用応力どから応力拡大係数演算装置16により応力拡大
係数を算出し、前記第5図と同様に運転時間に対する応
力拡大係数の分布として求める。
Then, the crack growth amount I) is determined by the device 15, and the stress intensity factor is calculated from the IC crack depth and the applied stress by the stress intensity factor calculation device 16, and the distribution of the stress intensity factor with respect to the operating time is obtained in the same manner as in FIG.

また、破壊靭性値KICは第11図に示′?l−J:う
に温度によって変化し、この値も材料特性演算装置14
に記憶されている。これら材料特性値(疲労亀裂伝播速
度、クリープ亀裂伝播速度、破壊靭性)はいずれも劣化
状態の計測結果を考慮して確率密度分布として与えられ
る。
In addition, the fracture toughness value KIC is shown in Figure 11. l-J: Changes depending on the sea urchin temperature, and this value is also calculated by the material property calculation device 14.
is stored in These material property values (fatigue crack propagation velocity, creep crack propagation velocity, fracture toughness) are all given as probability density distributions in consideration of the measurement results of the state of deterioration.

そして、破壊確率演算装置17において、材わI特性演
算装置14から求まる破壊靭性値に1oの分布と、応力
拡大係数演算装置16により求まる拡大係数に1の分布
から破壊確率を求める。つまりK とに1oの分布は前
記第6図のようになるので、■ 両者の平均値と標準偏差とから前記(1)式によって破
壊確率を運転時間に対して第7図の如く求め、これによ
って余寿命trを計算する。
Then, in the fracture probability calculation device 17, the probability of fracture is determined from the distribution of 1o in the fracture toughness value determined by the material I characteristic calculation device 14 and the distribution of 1 in the expansion factor determined by the stress intensity factor calculation device 16. In other words, since the distribution of K and 1o is as shown in Figure 6 above, ■ From the average value and standard deviation of both, calculate the failure probability with respect to the operating time using equation (1) as shown in Figure 7. Calculate the remaining life tr.

次に総コスト演算装置18において(1)式により総コ
ストの運転時間に対する変化を第8図のように求め、最
適な検査期間t。を求める。
Next, in the total cost calculating device 18, the change in total cost with respect to the operating time is determined by equation (1) as shown in FIG. 8, and the optimum inspection period t is determined. seek.

=  12 − ソーシて余寿命判定装置19にてt。ど1−fを比較し
、t o> 1: (<>らば余ステ命としてtrを出
力し、1:f>t  ならば最適検査期間として1:。
= 12 - t at the remaining life determination device 19. Compare 1-f, and if t o > 1: (<>, output tr as the remaining step life, and if 1: f > t, then 1: as the optimal testing period.

を出力し、tr −0ならば危険な状態として警報を発
する。
is output, and if tr -0, a warning is issued as a dangerous situation.

第12図は更に別実施例を示す第9図と同様のブロック
図であり、この実施例にあっては構造部材を蒸気タービ
ンのケーシングとし、前記ロータ温度検出器11a及び
ロータ回転数検出器11bの代りに蒸気温度検出器21
a及び蒸気圧力検出器21bを運転履歴記憶装置12に
接続している。
FIG. 12 is a block diagram similar to FIG. 9 showing yet another embodiment, in which the structural member is a casing of a steam turbine, and the rotor temperature detector 11a and the rotor rotational speed detector 11b are Steam temperature detector 21 instead of
a and a steam pressure detector 21b are connected to the operation history storage device 12.

他の構成については同一であるため同一の番号をイ」シ
ている。即ち、ケーシングにおいては、使用状態量の検
出として、蒸気温iと蒸気圧力を検出し、内外圧の圧力
差による応力と熱応力を計算する。
Since the other configurations are the same, the same numbers are numbered. That is, in the casing, the steam temperature i and the steam pressure are detected to detect the usage state quantities, and the stress and thermal stress due to the pressure difference between the inside and outside pressures are calculated.

〔発明の効果〕〔Effect of the invention〕

以上に説明した如く本発明によれば、月利データや測定
データのばらつきをただ単に上限値ヤ)下限値で取扱う
のではなく、全体の分布形態を考慮に入れて、確率的に
評価を行うため、従来方法に比較して正確で合理的な寿
命評価ができる。
As explained above, according to the present invention, variations in monthly interest rate data and measured data are not simply treated as upper and lower limit values, but are evaluated probabilistically by taking into account the overall distribution form. Therefore, it is possible to perform more accurate and reasonable life evaluation than conventional methods.

また、部材の破壊を破壊するか否かだりでとらえるので
はなく、破壊確率としてとらえているため、破壊確率と
破壊時の被害から求まる危険度と検査費用を比較する事
により最適な検査期間を判定でき、更に従来の寿命診断
装置では、検査期間については何の情報も与えなかった
が、本発明の適用によりそれを明確に知る事ができる。
In addition, since we consider the failure of a component not as a measure of whether or not it will break, but as a probability of failure, we can determine the optimal inspection period by comparing the probability of failure, the degree of risk determined from damage at the time of failure, and the inspection cost. In addition, conventional life diagnosis devices did not provide any information regarding the inspection period, but by applying the present invention, this can be clearly known.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は破壊強度と破壊確率密度との関係を示すグラフ
、第2図は本発明方法の概略を示すブロック図、第3図
は測定値と確率密度との関係を示すグラフ、第4図は亀
裂寸法と確率密度との関係を示すグラフ、第5図は運転
時間と応力拡大係数との関係を示すグラフ、第6図は応
力拡大係数と破壊靭性値との関係を示すグラフ、第7図
は運転時間に対する破壊確率を示すグラフ、第8図は運
転時間と総コストとの関係を示すグラフ、第9図は別実
施例を示J第2図と同様のブロック図、第10図は運転
時間と亀裂深ざとの関係を示すグラフ、第11図は温U
と破壊靭性値との関係を示づ゛グラフ、第12図は別実
施例を示す第2図と同様のブロック図である。 1.11a、11b、21a、21b・・・状態1u検
出器、2,12・・・運転履歴記憶装置、3.13・・
・検出データ、4,14・・・月料特性演算装置、5,
15・・・亀裂進展量演算装置N、6.16・・・応力
拡大係数演算装置、7.17・・・破壊確率演算」へ置
、8,18・・・総コス1へ演算装置、9.19・・・
余寿命判定装置。 出願人代理人  猪  股    清 50         力皮壊弓但度 第5図 第6図 I堕@−め 紫口区五〇
FIG. 1 is a graph showing the relationship between fracture strength and fracture probability density, FIG. 2 is a block diagram showing an outline of the method of the present invention, FIG. 3 is a graph showing the relationship between measured values and probability density, and FIG. 4 is a graph showing the relationship between measured values and probability density. is a graph showing the relationship between crack size and probability density, Figure 5 is a graph showing the relationship between operating time and stress intensity factor, Figure 6 is a graph showing the relationship between stress intensity factor and fracture toughness value, and Figure 7 is a graph showing the relationship between stress intensity factor and fracture toughness value. Figure 8 is a graph showing the probability of failure versus operating time, Figure 8 is a graph showing the relationship between operating time and total cost, Figure 9 is a block diagram similar to Figure 2, and Figure 9 shows another embodiment. A graph showing the relationship between operating time and crack depth, Figure 11 is a graph showing the relationship between operating time and crack depth.
FIG. 12 is a block diagram similar to FIG. 2 showing another embodiment. 1.11a, 11b, 21a, 21b...Status 1u detector, 2,12...Driving history storage device, 3.13...
・Detection data, 4, 14... Monthly charge characteristic calculation device, 5,
15...Crack growth amount calculation device N, 6.16...Stress intensity factor calculation device, 7.17...Put to "Fracture probability calculation", 8,18...Calculation device to total cost 1, 9 .19...
Remaining life determination device. Applicant's agent Kiyoshi Inomata, 50, 50, figure 5, figure 6, I fallen @me Shikou-ku, 50

Claims (1)

【特許請求の範囲】 1、構造部材の各種使用状態量と検査データから亀裂の
存在及び進展量を確率密度分布として求め、この確率密
度分布から亀裂の応力拡大係数を確率分布として求め、
この応力拡大係数と構造部材の固有値としての破壊靭性
値とから破壊確率求め、この破壊確率が予じめ定めた所
定値を超えるまでを余寿命とするようにしたことを特徴
とする構造部材の診断方法。 2、構造部材の各種使用状態量と検査データから亀裂の
存在及び進展量を確率密度分布として求め、この確率密
度分布から亀裂の応力拡大係数を確率密度分布として求
め、この応力拡大係数と構造部材の固有値としての破壊
靭性値とから破壊確率を求め、この破壊確率が予め定め
た所定値を超えるまでを余寿命とし、この余寿命が零と
なり構造部材が破損した際の予想破損金額と検査費用か
ら総コストを求め、この総コストが最小となる期間を最
適検査期間としたことを特徴とする構造部材の診断方法
。 3、前記最適検査期間が余寿命より小であるときには最
適検査期間を表示装置に出力し、余寿命が最適検査期間
より小であるときには余寿命を表示、装置に出力し、更
に余寿命が零に近づいた場合には警報を発するようにし
たことを特徴とする特許請求の範囲第2項記載の構造部
材の診断方法。
[Claims] 1. The existence and extent of crack growth are determined as a probability density distribution from various usage state quantities and inspection data of the structural member, and the stress intensity factor of the crack is determined as a probability distribution from this probability density distribution.
A structural member characterized in that the probability of fracture is calculated from this stress intensity factor and the fracture toughness value as an eigenvalue of the structural member, and the remaining life is defined as the time until this probability of fracture exceeds a predetermined value. Diagnostic method. 2. Determine the presence and extent of crack growth as a probability density distribution from various usage status quantities and inspection data of the structural member, determine the stress intensity factor of the crack as a probability density distribution from this probability density distribution, and calculate the stress intensity factor and the structural member as a probability density distribution. Calculate the fracture probability from the fracture toughness value as the eigenvalue of A method for diagnosing a structural member, characterized in that a total cost is determined from the above, and a period during which this total cost is minimized is set as an optimal inspection period. 3. When the optimum inspection period is smaller than the remaining life, the optimum inspection period is output to the display device, and when the remaining life is smaller than the optimum inspection period, the remaining life is displayed and output to the device, and the remaining life is zero. 3. The method for diagnosing a structural member according to claim 2, further comprising: issuing an alarm when the temperature approaches .
JP26357284A 1984-12-13 1984-12-13 Method for diagnosing structural member Pending JPS61140838A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26357284A JPS61140838A (en) 1984-12-13 1984-12-13 Method for diagnosing structural member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26357284A JPS61140838A (en) 1984-12-13 1984-12-13 Method for diagnosing structural member

Publications (1)

Publication Number Publication Date
JPS61140838A true JPS61140838A (en) 1986-06-27

Family

ID=17391409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26357284A Pending JPS61140838A (en) 1984-12-13 1984-12-13 Method for diagnosing structural member

Country Status (1)

Country Link
JP (1) JPS61140838A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6272901B1 (en) 1997-12-26 2001-08-14 Nec Corporation Detecting apparatus capable of detecting magnitude of shock and portable electronic appliance with the same
JP2007078376A (en) * 2005-09-12 2007-03-29 Universal Shipbuilding Corp Maintenance management system and maintenance management program of hull structure
JP2015512526A (en) * 2012-04-04 2015-04-27 シーメンス・コーポレイション Probabilistic fatigue life prediction using ultrasonography data considering EIFS uncertainty
JP2019158474A (en) * 2018-03-09 2019-09-19 三菱重工業株式会社 Stress estimation device, stress estimation method, and program

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6272901B1 (en) 1997-12-26 2001-08-14 Nec Corporation Detecting apparatus capable of detecting magnitude of shock and portable electronic appliance with the same
JP2007078376A (en) * 2005-09-12 2007-03-29 Universal Shipbuilding Corp Maintenance management system and maintenance management program of hull structure
JP4711786B2 (en) * 2005-09-12 2011-06-29 ユニバーサル造船株式会社 Hull structure maintenance management system and maintenance management program
JP2015512526A (en) * 2012-04-04 2015-04-27 シーメンス・コーポレイション Probabilistic fatigue life prediction using ultrasonography data considering EIFS uncertainty
JP2019158474A (en) * 2018-03-09 2019-09-19 三菱重工業株式会社 Stress estimation device, stress estimation method, and program

Similar Documents

Publication Publication Date Title
US5140264A (en) Method for non-destructively assessing the condition of a turbine blade using eddy current probes inserted within cooling holes
EP0288979B1 (en) Method and apparatus for observing operating state of mechanical seal
US6460012B1 (en) Nonlinear structural crack growth monitoring
JP5113874B2 (en) Structural integrity monitoring system
US6568254B2 (en) Method for monitoring the creep behavior of rotating components of a compressor stage or turbine stage
US4107980A (en) Assessment of flaw growth potential in structural components
JPH01267436A (en) Method and apparatus for measuring fatigue of vibration member
JPS61140838A (en) Method for diagnosing structural member
JPS62145155A (en) Method for monitoring crack in structure to which load is applied
JP3332971B2 (en) Diagnosis method for deterioration of ferritic heat-resistant steel
JPS58211625A (en) Method for estimating life of high temperature fluid container
JPH0694589A (en) Life diagnosis method for high temperature part
JPH075086A (en) Method for estimating superposed damage of creep and fatigue of high-temperature structure material
JPH10207534A (en) Method and device for piping abnormality detection of high-temperature gas piping
JPH0127377B2 (en)
JPH11280410A (en) Observation device for rotor life
JPS6346242B2 (en)
JPH0127378B2 (en)
RU2796240C1 (en) Method for determining the degree of wear of equipment under the influence of corrosion
Lichtenwalner et al. Local-area damage detection in composite structures using piezoelectric transducers
JP3533517B2 (en) Life prediction method for high temperature parts
JPS59204740A (en) Method and apparatus for monitoring life of rotary body
RU2739715C1 (en) Method for determination of safe operation period of fiberglass pipelines
Armstrong et al. Paper 14: Fatigue Life of Compressor Blading
JPS6336133A (en) Method and device for diagnosing life of structure member used at high temperature