JPS5957984A - Method for contacting seed crystal or substrate - Google Patents

Method for contacting seed crystal or substrate

Info

Publication number
JPS5957984A
JPS5957984A JP17204082A JP17204082A JPS5957984A JP S5957984 A JPS5957984 A JP S5957984A JP 17204082 A JP17204082 A JP 17204082A JP 17204082 A JP17204082 A JP 17204082A JP S5957984 A JPS5957984 A JP S5957984A
Authority
JP
Japan
Prior art keywords
substrate
resistance
seed crystal
melt
moment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17204082A
Other languages
Japanese (ja)
Inventor
Yozo Nishiura
洋三 西浦
Kouji Tada
多田 「こう」二
「たつ」見 雅美
Masami Tatsumi
Yoshikazu Nishiwaki
西脇 由和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP17204082A priority Critical patent/JPS5957984A/en
Publication of JPS5957984A publication Critical patent/JPS5957984A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To detect accurately and easily the moment when a seed crystal or substrate contacts with a molten starting material over a long time while causing little fatigue to an observer by measuring resistance at the moment when the seed crystal or substrate contacts with the molten starting material. CONSTITUTION:Platinum wires 9, 10 are insulated from each other by an air layer 12 until a seed crystal or substrate 8 contacts with a molten starting material 1, and a resistance meter 11 indicates the maximum resistance. When the seed crystal or substrate 8 lowers and contacts with the melt 1, the wires 9, 10 are connected with the melt 1 and a crucible 2 in-between, and the resistance value of the meter 11 reduces remarkably by the value corresponding to the resistance of the air 12 because Bi12SiO20 has low resistance in the molten state. While lowering the seed crystal or substrate 8, the resistance value of the meter 11 is read to detect the moment when the resistance value reduces suddenly. By the detection the moment when the seed crystal or substrate 8 contacts with the melt 1 can be detected accurately and momentarily.

Description

【発明の詳細な説明】 (技術分野) 本発明u、B112SiO30(ビスマス、ンリコン、
オキサイド)、Bi+2GeO2o  (ビスマス、ゲ
ルマニウム、オキサイド)又はその他の酸化物単結晶を
育成又はエピタキシャル成長させる方法において、!1
!1″に種結晶(シード)又は基板と原註融液が接触し
た瞬間を・検知する方法に関するものである。
Detailed Description of the Invention (Technical Field) The present invention u, B112SiO30 (bismuth,
oxide), Bi+2GeO2o (bismuth, germanium, oxide) or other oxide single crystals in a method for growing or epitaxially growing it! 1
! This invention relates to a method of detecting the moment when a seed crystal or a substrate and a melt contact each other.

(背景技術) 従来、B112Si02(1(以下、BSOと称す)単
結晶を育成又はエピタキシャル成長させるには、第1図
に例を示すよう外方法を採っていた。(2)において、
外周にヒーター4を設けた結晶育成炉(又はエピタキシ
ャル炉)3内のるつは2に原刺融/?り】が収容されて
いる。上部カバー15の開口16より炉3内に支持棒7
が挿入され、支持棒7の下端にはシード(又は基板)8
が取付けられる。この/−ド(又は基板)8を徐々に下
降させ、それを融′D、1に接触させた後、シード8全
引」二げてBSO単結晶を育成するか、又は基板8上に
BSOエピタキシャル成長させた後、基板8を引上ける
ものである。この場合、シード(又は基板)8と融ml
とが接触した瞬間を知ることが重要であるが、従来亀 は支持棒7と上部カバー15の開口16の隙間から目視
によって行なうか、又は炉3内に石英ロッドを挿入し、
これ全通して観察することにより行なりていた。
(Background Art) Conventionally, in order to grow or epitaxially grow a B112Si02 (1 (hereinafter referred to as BSO)) single crystal, a method as shown in FIG. 1 has been adopted. In (2),
The crystal growth furnace (or epitaxial furnace) 3 has a heater 4 installed around its outer periphery. ] is accommodated. The support rod 7 is inserted into the furnace 3 through the opening 16 of the upper cover 15.
is inserted, and a seed (or substrate) 8 is inserted at the lower end of the support rod 7.
is installed. After gradually lowering the seed (or substrate) 8 and bringing it into contact with the melt, the seed 8 is completely withdrawn to grow a BSO single crystal, or the BSO single crystal is grown on the substrate 8. After epitaxial growth, the substrate 8 is pulled up. In this case, the seed (or substrate) 8 and the melted ml
It is important to know the moment when the two contact each other. Conventionally, this is done by visually observing from the gap between the support rod 7 and the opening 16 of the upper cover 15, or by inserting a quartz rod into the furnace 3.
This was done by observing the entire process.

しかし、この炉3では、炉内の温度分布が外気の影響を
受けにくいように、上部カバー15の開口16を極力小
さくしているため、目視による場合、視野が狭く、又炉
3内の暖ためられた空気が上昇気流として、開1月6よ
り流出するだめ、目視では熱くて長時間の観察が不可能
である欠点がある。
However, in this furnace 3, the opening 16 of the upper cover 15 is made as small as possible so that the temperature distribution inside the furnace is less affected by the outside air. The accumulated air flows out in the form of updrafts starting from January 6, which has the disadvantage that it is too hot to observe with the naked eye for a long period of time.

又イ」英ロット全使用した場合は、融液1中がらBi2
O3の蒸気が絶えず蒸発しており、石英ロッドの主成分
である5102と反応するため、表面がくもり、長期に
わたり使用した場合、透明度が悪くなり、観察しにくい
欠点があった。
In addition, if all British lots are used, melt 1 and Bi2
O3 vapor constantly evaporates and reacts with 5102, the main component of the quartz rod, resulting in a cloudy surface and poor transparency when used for a long period of time, making it difficult to observe.

(発明の開示) 本発明は、上述の欠点を解消するため成されたもので、
種結晶又は基板と原料融液が接触した瞬間を電気的に検
知することにより、単結晶育成炉又はエピタキシャル炉
全密閉した状態で使用でき、長時間の観察が容易で、疲
労少なく、かつ長期間精度良く、検知可能な種結晶又は
基板の接触方法を提供せんとするものである。
(Disclosure of the Invention) The present invention has been made in order to eliminate the above-mentioned drawbacks.
By electrically detecting the moment when the seed crystal or substrate comes into contact with the raw material melt, the single crystal growth furnace or epitaxial furnace can be used in a completely sealed state, making long-term observation easy, reducing fatigue, and providing long-term operation. It is an object of the present invention to provide a method of contacting a seed crystal or a substrate that can be detected with high precision.

本発明は、Bl 12s102 o、Bl 12Ge0
2g又はその他の酸化物t1つ結晶を育成又はエピタキ
シャル成長させる方法において、種結晶又は基板が原訃
l酵1!液に4と)(]・11した瞬間を、前記種結晶
又は前記基板と前記原第1融液との間の抵抗を測定する
ことにより、検知すること庖・特徴とする種結晶又は基
板の接触方法である。
The present invention provides Bl 12s102 o, Bl 12Ge0
In a method for growing or epitaxially growing 2g or other oxide crystals, a seed crystal or substrate is used as a source for fermentation. Detecting the moment when the liquid enters the liquid by measuring the resistance between the seed crystal or the substrate and the original first melt. This is a contact method.

本発明における単結晶を育成する方法は、(」11結晶
(ソート)ヲ用いて単結晶を育成する方法で、例えばチ
ョクラルスキー法、ブリッジマン法(ボート成長法)な
どである。又エピタキシャル成長させる方法は、基板を
原相融液中に浸漬し、液相エピタキシャル成長させるも
のである。
The method of growing a single crystal in the present invention is a method of growing a single crystal using 11 crystals (sorting), such as the Czochralski method and Bridgman method (boat growth method).Also, epitaxial growth The method involves immersing the substrate in an original phase melt and performing liquid phase epitaxial growth.

以下、本発明を図面を用いて実施例により説明する。第
2図は本発明方法の実施例を説明する縦断面図である。
Hereinafter, the present invention will be explained by examples using the drawings. FIG. 2 is a longitudinal sectional view illustrating an embodiment of the method of the present invention.

図において第1図と同一の符号はそれぞれ同一の部分を
示す。図において、支持棒7の下端に取付けられた種結
晶(シード)又は基板8の一部に白金線9の一端が固定
され、白金線9il−1:支持棒7を伝って結晶育成炉
(又はエピタキシャル炉)3外に出て、他端が抵抗言1
11に接11’j’1″、されている。
In the figure, the same reference numerals as in FIG. 1 indicate the same parts. In the figure, one end of the platinum wire 9 is fixed to a seed crystal (seed) attached to the lower end of the support rod 7 or to a part of the substrate 8, and the platinum wire 9il-1: The platinum wire 9il-1 is passed through the support rod 7 to the crystal growth furnace (or epitaxial furnace) 3, and the other end is the resistance word 1.
11 and 11'j'1''.

又るつは2(例、白金るつぼ)の外壁に他の白金#II
I Oの一端が接続され、その他端は炉3外に取出され
、抵抗泪11に接続されている。
Another platinum #II is placed on the outer wall of 2 (e.g. platinum crucible)
One end of the IO is connected, and the other end is taken out of the furnace 3 and connected to the resistor 11.

このように構成された単結晶育成又はエピタキシャル成
長装置によると、シート又は基板8が原オ′1融d久1
に接触する寸では、固自金線9.10の間は空気層12
によって絶縁されて抵抗計IIは極太抵抗を示すが、シ
ート又は基板8が下降し、融ilと接触すると、固自金
線9.10の間は融液1、るつぼ2を介して接続され、
13+123i020  は溶融状態では低抵抗である
ので、抵抗計11による抵抗値は空気層12の抵抗たけ
減少し、著しく低下する。従ってシート又は基板8を下
降しながら、抵抗計11による抵抗値の読み全観測し、
抵抗が急激に低下するjμm間全間知検知ことにより、
シート又は基板8が融#!lに接触した瞬間を精度良く
瞬時に検知することができる。
According to the single crystal growth or epitaxial growth apparatus configured in this way, the sheet or substrate 8 is
There is an air layer 12 between the solid gold wires 9 and 10 at the contact point.
When the sheet or substrate 8 descends and comes into contact with the molten metal, the solid gold wires 9 and 10 are connected via the melt 1 and the crucible 2.
Since 13+123i020 has a low resistance in a molten state, the resistance value measured by the resistance meter 11 is reduced by the resistance of the air layer 12, and is significantly lowered. Therefore, while lowering the sheet or substrate 8, read all the resistance values with the resistance meter 11, and
By detecting the entire distance between jμm where the resistance suddenly decreases,
The sheet or substrate 8 is melted! It is possible to instantly detect the moment of contact with l with high precision.

この場合、従来のように、目視又は石英ロッドにより/
−ト又は基板8の接触を観察するための上1°(IXカ
バー15の開口16と支持棒7の間の大きな隙間(第1
図)を要しないので、上部力・・−5の開口6と支持棒
7の間(第2図)を密閉状態にして単結晶の育成又はエ
ピタキシャル成長を行なうことが可能である。
In this case, as in the past, / by visual inspection or by a quartz rod.
- upper 1° (large gap between the opening 16 of the IX cover 15 and the support rod 7 (the first
(Fig. 2), it is possible to grow a single crystal or epitaxially grow the space between the opening 6 of -5 and the support rod 7 (Fig. 2) in a sealed state.

実施例: 第2図に示すようなエピタキシャル成長装置を使用して
、本発明方法によりBSO基板上にBSOエピタキシャ
ル層を成長させた。
Example: Using an epitaxial growth apparatus as shown in FIG. 2, a BSO epitaxial layer was grown on a BSO substrate by the method of the present invention.

基板8として13 S O基板を用い、支持棒7の下端
に取付け、その一部に白金線9の一端を固定した。
A 13 SO substrate was used as the substrate 8, and was attached to the lower end of the support rod 7, and one end of the platinum wire 9 was fixed to a part of the support rod 7.

原木1融液1は約900°Cに保持された。Log 1 melt 1 was maintained at approximately 900°C.

2本の白金線9,10の終端間の抵抗は、基板8が原料
融液1に接触するまでは、2本の白金線するつぼ十融液
+空気層→−BSO基板の直列抵抗となり、抵抗i11
1による抵抗値は20MΩ以上を示していたが、基板8
が下降し、融液1に接触した瞬間、空気層12による最
大の抵抗が無くなった結果、抵抗値は数百にΩまで急激
に低下したので、この瞬間を基板と原料融液の接触開始
点と認め、これより10〜30分間浸漬した後、基板8
を融液1より引1−け/へ。基板8−にには所望の厚さ
1〜5μmのBSOエヒ゛クキ/ヤル成長層が精度良く
得られた。
The resistance between the ends of the two platinum wires 9 and 10 is the series resistance of the two platinum wires, melt + air layer → -BSO substrate, until the substrate 8 comes into contact with the raw material melt 1. resistance i11
The resistance value of 1 was more than 20MΩ, but the resistance value of substrate 8
At the moment when the substrate descended and came into contact with the melt 1, the maximum resistance due to the air layer 12 disappeared, and the resistance value rapidly decreased to several hundred ohms. After dipping for 10 to 30 minutes, the substrate 8
is drawn from melt 1 to page 1. On the substrate 8-, a BSO cavity/dial growth layer having a desired thickness of 1 to 5 μm was obtained with high accuracy.

これより、本発明によれば通常の抵抗it k使って容
易に観測1」能であり、炉の内部を監視しなくても、基
板が原料融液に接触する瞬間を検知することがriJ能
であることが分った。
From this, according to the present invention, it is possible to easily observe using a normal resistor, and it is possible to detect the moment when the substrate comes into contact with the raw material melt without monitoring the inside of the furnace. It turned out to be.

なお、上述の実施例ではBSOのエピタキシャル成艮の
場合について説明したが、BSO単結晶育成の場合にも
全く同様に実施し得ることは明らかである。
Incidentally, in the above-mentioned embodiments, the case of epitaxial growth of BSO was explained, but it is clear that the same method can be applied to the case of BSO single crystal growth.

又抵抗を測定する装置は、第2図に示す抵抗計のみに限
定されるものではなく、例えば2本の白金&Q9.10
に一定の電圧を印加しておき、シード又は基板と原オニ
・1融澄の接触により流れる電流を検知するものであっ
ても良い。
Furthermore, the device for measuring resistance is not limited to the resistance meter shown in Fig. 2, for example, two platinum &Q9.10
It may also be possible to apply a constant voltage to the substrate and detect the current flowing due to contact between the seed or the substrate and the raw oni-1 melt.

(発明の効果) 以」二のように+16成された本発明方法は次のような
効果を有する。
(Effects of the Invention) The method of the present invention, which has been achieved as described above, has the following effects.

(イl  13! +251020.Bi 12GeO
20又はその他の酸化物単結晶を育成又(はエピタキシ
ャル成長させる方法において11棟結晶又は基板が原料
融液に接触したR間を、前記種結晶又は前記基板と前記
原料融液との間の抵抗を測定することにより、検知する
だめ、従来のような観1111しにくい目視等全心安と
ぜす、抵抗計の指示の変化を読み取るたけであるので、
前記接触の検知が極めて容易で、精度が良く、かつ肉体
的疲労が少ないので、長期間精度の良い観察が可能であ
る。
(Il 13! +251020.Bi 12GeO
In the method of growing or (epitaxially growing) 20 or other oxide single crystals, the resistance between the seed crystal or the substrate and the raw material melt is increased between R where the crystal or substrate is in contact with the raw material melt. By measuring, you can simply read the change in the resistance meter's indication, without having to detect it or visually inspecting it, which is difficult to do in the past.
Since the contact detection is extremely easy, highly accurate, and requires little physical fatigue, long-term, highly accurate observation is possible.

(ロ)抵抗測定のためのリート線(例、2本の白金線)
を取出す口を炉に設けるたけて良いため、炉全密閉(〜
だ状態で使用できるので、炉内の熱の放散が小なく、か
つ炉内の温度分布が外気の影響を受けず、規定の温度分
布に保持し易い。
(b) Riet wire for resistance measurement (e.g., two platinum wires)
The furnace can be completely sealed (~
Since it can be used in the open state, heat dissipation inside the furnace is not small, and the temperature distribution inside the furnace is not affected by outside air, making it easy to maintain a specified temperature distribution.

シ] リード線(例、白金線)、るつぼ、原オー1融散
の抵抗値の経時変化は、殆んど無視できる程度に僅かで
あるから、経時変化による測定精度の劣化は非常に小さ
いので、測定装置4の寿命が非常に長い。
C] Changes over time in the resistance values of the lead wire (e.g., platinum wire), crucible, and original O1 melt are negligible, so the deterioration in measurement accuracy due to changes over time is extremely small. , the life of the measuring device 4 is very long.

【図面の簡単な説明】[Brief explanation of the drawing]

第1商は従来の単結晶育成装置又d:エビクキシャル成
長装置の例を示す縦断伯j図である。 第2図は本発明方法の実施例を説り」1″るための縦断
面図である。 1・原Fl醐)液、2・・るつは、3・・・結晶育J戊
炉又はエビクキ/キル炉、4・・・ヒーター、5.15
・・」−音ISカバー、6.16・・・l1P4 D、
7・・・支持棒、8・・(耳支綻i晶(7−ド)又は基
板、9.10・・白金線、11  抵抗泪、12・空気
層。 ″71関
The first quotient is a vertical sectional diagram showing an example of a conventional single crystal growth apparatus or d: eviaxial growth apparatus. Fig. 2 is a vertical cross-sectional view for explaining an embodiment of the method of the present invention. Ebikuki/Kill Furnace, 4...Heater, 5.15
..."-Sound IS Cover, 6.16...l1P4 D,
7...Support rod, 8...(ear split i crystal (7-board) or substrate, 9.10...platinum wire, 11. resistance layer, 12. air layer. ``71 section

Claims (1)

【特許請求の範囲】[Claims] (υ J3+ 1251020. Bl 126eo2
0又はその他の酸化物単結晶を育成又はエピタキシャル
成長させる方法において、イΦ結晶又は基板が原料融液
に接触した瞬間を、前記種結晶又は前記基板と前配原刺
融敵との間の抵抗を測定することにより、検知すること
を特徴とする種結晶又は基板の接触方法。
(υ J3+ 1251020. Bl 126eo2
In the method of growing or epitaxially growing a single crystal of 0 or other oxides, the moment when the Φ crystal or the substrate comes into contact with the raw material melt, the resistance between the seed crystal or the substrate and the pre-distribution material is A method of contacting a seed crystal or a substrate, characterized by detecting by measuring.
JP17204082A 1982-09-29 1982-09-29 Method for contacting seed crystal or substrate Pending JPS5957984A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17204082A JPS5957984A (en) 1982-09-29 1982-09-29 Method for contacting seed crystal or substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17204082A JPS5957984A (en) 1982-09-29 1982-09-29 Method for contacting seed crystal or substrate

Publications (1)

Publication Number Publication Date
JPS5957984A true JPS5957984A (en) 1984-04-03

Family

ID=15934409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17204082A Pending JPS5957984A (en) 1982-09-29 1982-09-29 Method for contacting seed crystal or substrate

Country Status (1)

Country Link
JP (1) JPS5957984A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002092885A1 (en) * 2001-05-15 2002-11-21 Memc Electronic Materials, Inc. Electrically conductive crystal seed chuck assembly
CN107523869A (en) * 2017-09-21 2017-12-29 浙江晶盛机电股份有限公司 A kind of single crystal growing furnace can lift water cooling heat shield arrangement

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002092885A1 (en) * 2001-05-15 2002-11-21 Memc Electronic Materials, Inc. Electrically conductive crystal seed chuck assembly
CN107523869A (en) * 2017-09-21 2017-12-29 浙江晶盛机电股份有限公司 A kind of single crystal growing furnace can lift water cooling heat shield arrangement
CN107523869B (en) * 2017-09-21 2024-03-05 浙江晶盛机电股份有限公司 Single crystal furnace device capable of lifting water-cooling heat shield

Similar Documents

Publication Publication Date Title
da C Andrade et al. Glide in metal single crystals
CN110284186B (en) Czochralski single crystal furnace and method for measuring and controlling longitudinal temperature gradient of Czochralski single crystal furnace
Chalmers Micro-plasticity in crystals of tin
US2799758A (en) Electrical temperature indicating device
HU216213B (en) Oxygen measuring electrode and method for measuring oxygen concentration
JPS5957984A (en) Method for contacting seed crystal or substrate
Williams Thermal expansion and the ferromagnetic change in volume of nickel
Goetz et al. The thermoanalysis of metal single crystals and a new thermoelectric effect of bismuth crystals grown in magnetic fields
Dickinson et al. CALORIMETRIC RESISTANCE THERMOMETERS AND THE TRANSITION TEMPERATURE OF SODIUM SULPHATE1.
Read et al. The thermal conductivity of organic materials near the melting point
Emrick The formation volume and energy of single vacancies in platinum
Ancsin A study of thermocouple stability, reproducibility and accuracy (Pt vs Pt-Rh and Pt vs Au)
Wood et al. Pyrometry
Preston-Thomas et al. The international practical temperature scale
JPS59102895A (en) Method for controlling diameter of single crystal
CN116856048A (en) Method for correcting electromotive force baseline of crystal interface in crystal growth process by pulling method
Mangum et al. SRM 1970: Succinonitrile Triple-Point Standard—A Temperature Reference Standard Near 58.08° C
Poppy Electrical Resistivities of Single and Optically Mosaic Zinc Crystals
SU1704050A1 (en) Method of determining impurities content in substances
JP2853840B2 (en) Crucible for producing single crystal and method for producing single crystal
JPH09110582A (en) Crystal producing apparatus
Evans Evaluation of some high-temperature platinum resistance thermometers
White et al. Uncertainties in the SPRT subranges of ITS-90: Topics for further research
JP2717175B2 (en) Single crystal growing method and apparatus
Millea et al. Melting Patterns Appearing on Single Crystals of InSb