JPS59102895A - Method for controlling diameter of single crystal - Google Patents

Method for controlling diameter of single crystal

Info

Publication number
JPS59102895A
JPS59102895A JP21286282A JP21286282A JPS59102895A JP S59102895 A JPS59102895 A JP S59102895A JP 21286282 A JP21286282 A JP 21286282A JP 21286282 A JP21286282 A JP 21286282A JP S59102895 A JPS59102895 A JP S59102895A
Authority
JP
Japan
Prior art keywords
single crystal
diameter
crystal
circuit
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21286282A
Other languages
Japanese (ja)
Inventor
Masami Tatsumi
雅美 龍見
Koji Tada
多田 紘二
Miki Kuhara
美樹 工原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP21286282A priority Critical patent/JPS59102895A/en
Publication of JPS59102895A publication Critical patent/JPS59102895A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B15/00Single-crystal growth by pulling from a melt, e.g. Czochralski method
    • C30B15/20Controlling or regulating
    • C30B15/22Stabilisation or shape controlling of the molten zone near the pulled crystal; Controlling the section of the crystal

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To control the diameter of a single crystal growing by Czochralski (CZ) process, easily, by determining the electrical resistance between the seed crystal and the molten raw material, thereby detecting the variation in the diameter of the single crystal. CONSTITUTION:The electrical resistance between the seed crystal 4 and the molten raw material 3 is determined continuously using an electric cell or the thermoelectromotive force in the circuit as the electrical source 11 of the circuit. The variation of the diameter of the single crystal pulled by CZ process can be detected by the variation of the electrical resistance. Consequently, the diameter of the single crystal can be controlled by a simple method.

Description

【発明の詳細な説明】 (技術分野) 本発明は、チョクラルスキー法(以下、CZ法と称す)
により半導体又は酸化物単結晶を引上げる際、単結晶の
直径を制御する方法に関するものである。
[Detailed Description of the Invention] (Technical Field) The present invention relates to the Czochralski method (hereinafter referred to as CZ method).
This invention relates to a method for controlling the diameter of a single crystal when pulling a semiconductor or oxide single crystal.

(背景技術) CZ法は、第1図に例を示すように、ヒーター2により
加熱されたるつぼ1内に原料融液3を収容し、原料融液
3表面に種結晶4を浸漬し、なじませた後、種結晶4を
回転し々から引上げて単結晶5を引上げる方法である。
(Background Art) As shown in FIG. 1, in the CZ method, a raw material melt 3 is placed in a crucible 1 heated by a heater 2, and a seed crystal 4 is immersed on the surface of the raw material melt 3. This is a method of pulling the single crystal 5 by rotating the seed crystal 4 and then pulling it up.

この単結晶5の直径の制御は、従来、図に示すような目
視法、又は重量法もしくは光学的方法を構造によっては
不可能な場合がある。す々わち、炉の構造上斜め上方か
ら見るため、のぞき窓を設けても原料蒸気により曇り、
観測が不=J能になることが多く、又結晶径が細る方向
にある時は、結晶成長界面の観測ができなくなり、成長
界面の観測が非常に難かしい。重量法、光学的方法は設
備が複雑となるため、高価となる欠点がある。
Conventionally, the diameter of the single crystal 5 cannot be controlled by a visual method as shown in the figure, a gravimetric method, or an optical method depending on the structure. Due to the structure of the furnace, it can be viewed from diagonally above, so even if a peephole is installed, it will become cloudy due to the raw material steam.
Observation often becomes impossible, and when the crystal diameter is in the direction of decreasing, it becomes impossible to observe the crystal growth interface, making observation of the growth interface very difficult. The gravimetric method and the optical method require complicated equipment and have the disadvantage of being expensive.

(発明の開示) 本発明は、上述の問題点を解決するため成されたもので
、高価な設備を必要とせず、成長界面を観測しなくても
単結晶の直径の変化を簡単に検知することができる単結
晶の11径制御方法を提供批せんとするものである。
(Disclosure of the Invention) The present invention was made to solve the above-mentioned problems, and it is possible to easily detect changes in the diameter of a single crystal without requiring expensive equipment and without observing the growth interface. The purpose of the present invention is to provide a method for controlling the diameter of a single crystal.

木発811は、チョクラルスキー法により単結晶を引上
げる方法において、種結晶と原料融液の間の電気抵抗を
連続的に測定し、該電気抵抗の変化により前記単結晶の
直径の変化を検知することを特徴とする即結晶の直径制
御方法である。
Kihatsu 811 is a method of pulling a single crystal using the Czochralski method, in which the electrical resistance between the seed crystal and the raw material melt is continuously measured, and the change in the diameter of the single crystal is determined by the change in electrical resistance. This is a method for controlling the diameter of an instant crystal, which is characterized by detecting the diameter.

本発明により引上げられる単結晶は、酸化物(iul 
、 Bj 12 S j 020 + Bl 12 G
e 020等八又へ周期律表のl−V族化合物(例、G
aAs、 GaP、 InSb。
The single crystal pulled by the present invention is an oxide (iul)
, Bj 12 S j 020 + Bl 12 G
e 020, etc. to the l-V group compounds of the periodic table (e.g., G
aAs, GaP, InSb.

lnP、  InAs−等)、Si、Ge等の半導体よ
り成るものである。
It is made of semiconductors such as InP, InAs-, etc.), Si, and Ge.

以下、本発明を図面を用いて実施例により説、川、 す
る。第2図は本発明方法の実施例に用いられる単結晶育
成炉の例を示す縦μs1曲図である。図において第1図
と同一の符号にtそれぞれ同一の部分を示す。
Hereinafter, the present invention will be explained by way of examples using drawings. FIG. 2 is a vertical μs 1 curve diagram showing an example of a single crystal growth furnace used in an embodiment of the method of the present invention. In the figure, the same reference numerals as in FIG. 1 indicate the same parts.

図において、シード棒6の下端に収付けられだ種結晶4
に白金線7の一端が接続され、白金線7はシード棒6を
伝い、他端は白金箔製のスリスプリング8に接続されて
いる。スリップリング8に接続されたリード線9は抵抗
10、回路電源11を通り、他端は原料融液3を収容し
た白金製るつぼ1に接続されている。 12は電圧レコ
ーダーである。回路電源11としては電池又は回路内の
熱起電力が利用される。又測定器としては、電気抵抗又
はそれKtl:I当する他の電気的測定値を測定するも
ので、回路の構造、電源の種類により、電流計、電圧計
、抵抗測定器などが用いられる。
In the figure, a seed crystal 4 is housed at the lower end of the seed rod 6.
One end of a platinum wire 7 is connected to the seed rod 6, and the other end is connected to a pick spring 8 made of platinum foil. A lead wire 9 connected to the slip ring 8 passes through a resistor 10 and a circuit power supply 11, and the other end is connected to a platinum crucible 1 containing a raw material melt 3. 12 is a voltage recorder. As the circuit power source 11, a battery or a thermal electromotive force within the circuit is used. The measuring device is one for measuring electrical resistance or other electrical measurement values corresponding to Ktl:I, and may be an ammeter, a voltmeter, a resistance measuring device, etc. depending on the circuit structure and the type of power source.

このような回路を形成し、種結晶4と原料融液3の間に
電圧を印加すると、種結晶4−単結晶5−原料融液3を
通って電流が流れ抵抗10、電圧レコーダー12により
電流が測定される。この場合、回路を流れる電流は、単
結晶5の長さと結晶成長界面13の接触面積に依存する
。すなわち、引」−けを行なっている時は単結晶5の長
さが長くなるに従って抵抗が増I7、電流は単調に減少
する。若し引上げ途中に成長界面13で単結晶5の直径
の変化があれば、その自在K Ar〉Uて担″抗が斐化
し、電流か変化する。
When such a circuit is formed and a voltage is applied between the seed crystal 4 and the raw material melt 3, a current flows through the seed crystal 4 - single crystal 5 - raw material melt 3 and is detected by the resistor 10 and the voltage recorder 12. is measured. In this case, the current flowing through the circuit depends on the length of the single crystal 5 and the contact area of the crystal growth interface 13. That is, when drawing is performed, as the length of the single crystal 5 becomes longer, the resistance increases I7 and the current decreases monotonically. If there is a change in the diameter of the single crystal 5 at the growth interface 13 during the pulling process, the free KAr>U carrier resistance changes and the current changes.

又回路電源11.1!: して回路の熱起電力を利用し
た場合にLL電圧レコーダー12により電11か測定さ
れ、同様に若し成長界面13で単結晶5の直径の変化か
あれば、その内径に応じて電圧が変化する。
Also circuit power supply 11.1! : When the thermal electromotive force of the circuit is used, the voltage 11 is measured by the LL voltage recorder 12, and similarly, if there is a change in the diameter of the single crystal 5 at the growth interface 13, the voltage will change according to the inner diameter. Change.

従って−E述の電流又は電圧111′Iの変化を監視す
ることにより結晶径の大体の変化を知ることができ、そ
れによって単結晶の直径制御を定性的に行なうことがで
きる。この場合、電流又は電圧の大きさから成長界面1
3の面積(結晶径に相当)を定性的に検出することがで
きるので、それにkt3して成長界面13句近の〃i(
度を調節すれば良い。
Therefore, by monitoring the change in the current or voltage 111'I mentioned in -E, it is possible to know the approximate change in the crystal diameter, thereby making it possible to qualitatively control the diameter of the single crystal. In this case, due to the magnitude of the current or voltage, the growth interface 1
Since the area of 3 (corresponding to the crystal diameter) can be qualitatively detected, kt3 is added to it to calculate the area of 〃i(
Just adjust the degree.

(実施例) 第2図に示すような単結晶育成炉を使用し、l内径30
 m mのヒ゛スマスシリコンオキサイド(Bi12S
 l 020 )単結晶を引上げた。
(Example) Using a single crystal growth furnace as shown in Fig. 2,
mm of bismuth silicon oxide (Bi12S
l 020 ) A single crystal was pulled.

回路の電源としては、電池の代りに回路内の熱起電力を
利用した。結晶原料約600gを白金製るつぼ1に充埴
した後、約900℃で加熱融解した。
As the power source for the circuit, thermoelectromotive force within the circuit was used instead of batteries. Approximately 600 g of the crystal raw material was charged into platinum crucible 1, and then heated and melted at approximately 900°C.

引上げ中、回路の電圧をレコーダー12により連続的に
記録した。第3図は得られた単結晶の断面形状とそれに
対応する電圧の変化のレコードを示す図である。
During the pulling, the voltage of the circuit was continuously recorded by the recorder 12. FIG. 3 is a diagram showing a record of the cross-sectional shape of the obtained single crystal and the corresponding change in voltage.

第3図に示すように、種結晶が原料融液に接触しない状
態では回路に電流は流れず、レコーダーに信号は現われ
ないが、種結晶が原料融液に接触すると約0.4mVの
電圧が観測され、引上げと共に中結晶5の直径が増大す
るにつれ、電圧の上昇が観測された。直径が変化しない
単結晶5の直胴部では、単結晶の長さが長くなるに従っ
て抵抗が増加し電圧はゆるやかに低下する(範囲A)が
、この状態での単結晶の直径の変化は数10μ■の変化
で、電圧変化の異常は充分観測if能であり、それによ
り成長界面の温度を調節し、直径を制御することは6ノ
能であった。bv長界曲の目視d、はとんど行なわなか
った。
As shown in Figure 3, when the seed crystal is not in contact with the raw material melt, no current flows in the circuit and no signal appears on the recorder, but when the seed crystal is in contact with the raw material melt, a voltage of approximately 0.4 mV is generated. An increase in voltage was observed as the diameter of the middle crystal 5 increased with pulling. In the straight body of the single crystal 5, where the diameter does not change, as the length of the single crystal increases, the resistance increases and the voltage gradually decreases (range A), but in this state, the change in the diameter of the single crystal is only a few seconds. With a change of 10 μι, the abnormality of the voltage change was sufficiently observable, and thereby it was possible to adjust the temperature of the growth interface and control the diameter. Visual inspection of the bv long world song was rarely performed.

単結晶であった。It was a single crystal.

(発明の効果) 上述のように構成された本発明の単結晶の直径制御方法
は次のような効果かある。
(Effects of the Invention) The single crystal diameter control method of the present invention configured as described above has the following effects.

(イ)種結晶上原料融液の間の電気抵抗を連続的に測定
し、該電気抵抗の変化によりvrI記単結晶の直径の変
化を検知するから、結晶成長界面での接触抵抗の面積依
存性を利用しているため、回路内Ω電気的接触を保証す
る金属線を新だに設置するだけで、高価な設備を必要と
せず、他の直径制御装置のない単結晶育成炉でも簡単に
単結晶の直径の変化を検知でき、それに応じて単結晶の
直径の制御を定性的に行なうことができる。
(b) Since the electrical resistance between the seed crystal and the raw material melt is continuously measured, and the change in the diameter of the vrI single crystal is detected from the change in electrical resistance, the contact resistance at the crystal growth interface depends on the area. Because it takes advantage of the characteristics, it does not require expensive equipment by simply installing a new metal wire to ensure ohm electrical contact in the circuit, and can easily be used in single crystal growth furnaces without other diameter control devices. Changes in the diameter of the single crystal can be detected, and the diameter of the single crystal can be qualitatively controlled accordingly.

(ロ)納品成長界面を見ることができないような構造の
中結晶育成炉においても、抵抗測定により単結晶の直径
の大体の変化を知ることができ、それにより弔結晶の直
径の制御を定性的に行なうことができる。
(b) Even in medium-sized crystal growth furnaces with a structure that makes it impossible to see the growth interface, it is possible to know the approximate change in the diameter of a single crystal by measuring resistance, which allows qualitative control of the diameter of a single crystal. can be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の単結晶育成炉の例を示す縦断面図である
。 第2図は本発明方法の実施例に用いられる単結晶育成炉
の例を示す縦断面図である。 第3図は本発明方法の実施例により得られ単結晶の断面
形状とそれに対応する電圧の変化のレコードを示す図で
ある。 1− るつぼ、2− ヒーター、3−原料融液、4− 
種結晶、5−単結晶、6−シード捧、7−白金線、8−
 スリップリング、9− リード線、10−抵抗、11
− 回路電源、12−電圧レコーダー、13− 結晶成
長界面、A−範囲。
FIG. 1 is a longitudinal sectional view showing an example of a conventional single crystal growth furnace. FIG. 2 is a longitudinal sectional view showing an example of a single crystal growth furnace used in an embodiment of the method of the present invention. FIG. 3 is a diagram showing a record of the cross-sectional shape of a single crystal obtained by an embodiment of the method of the present invention and the corresponding change in voltage. 1- Crucible, 2- Heater, 3- Raw material melt, 4-
Seed crystal, 5-single crystal, 6-seed, 7-platinum wire, 8-
Slip ring, 9- Lead wire, 10- Resistor, 11
- circuit power supply, 12- voltage recorder, 13- crystal growth interface, A- range.

Claims (2)

【特許請求の範囲】[Claims] (1)チョクラルスキー法により単結晶を引上げる方法
において、種結晶と原料融液の間の電気抵抗を連続的に
測定し、該電気抵抗の変化により前記単結晶の直径の変
化を検知することを特徴とする単結晶の直径制御方法。
(1) In a method of pulling a single crystal using the Czochralski method, the electrical resistance between the seed crystal and the raw material melt is continuously measured, and the change in the diameter of the single crystal is detected from the change in the electrical resistance. A method for controlling the diameter of a single crystal, characterized by:
(2)電気抵抗の測定が、回路の電源として電池又は回
路内の熱起電力を用いて行なわれる特許請求の範囲第1
項記載の単結晶の直径制御方法。
(2) The measurement of electrical resistance is carried out using a battery or thermoelectromotive force within the circuit as a power source of the circuit. Claim 1
Method for controlling the diameter of a single crystal as described in Section 3.
JP21286282A 1982-12-03 1982-12-03 Method for controlling diameter of single crystal Pending JPS59102895A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21286282A JPS59102895A (en) 1982-12-03 1982-12-03 Method for controlling diameter of single crystal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21286282A JPS59102895A (en) 1982-12-03 1982-12-03 Method for controlling diameter of single crystal

Publications (1)

Publication Number Publication Date
JPS59102895A true JPS59102895A (en) 1984-06-14

Family

ID=16629526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21286282A Pending JPS59102895A (en) 1982-12-03 1982-12-03 Method for controlling diameter of single crystal

Country Status (1)

Country Link
JP (1) JPS59102895A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61136989A (en) * 1984-12-05 1986-06-24 Toshiba Ceramics Co Ltd Method for controlling shape of single crystal while growing in pulling method
US10512959B2 (en) * 2014-04-03 2019-12-24 Pusan National University Industrial-University Cooperation Foundation Method for manufacturing single-crystalline metal ultrafine wire

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61136989A (en) * 1984-12-05 1986-06-24 Toshiba Ceramics Co Ltd Method for controlling shape of single crystal while growing in pulling method
US10512959B2 (en) * 2014-04-03 2019-12-24 Pusan National University Industrial-University Cooperation Foundation Method for manufacturing single-crystalline metal ultrafine wire

Similar Documents

Publication Publication Date Title
CN106048713A (en) Method for monitoring and regulating solid-liquid interface height in silicon carbide solution process in real time
US5723337A (en) Method for measuring and controlling the oxygen concentration in silicon melts and apparatus therefor
JPS5933554B2 (en) crystal growth equipment
JP4775594B2 (en) Method for detecting molten metal leak in single crystal pulling apparatus and single crystal pulling apparatus
JPS59102895A (en) Method for controlling diameter of single crystal
US6200383B1 (en) Melt depth control for semiconductor materials grown from a melt
TWI812512B (en) Single crystal silicon crystal pulling control method and device, single crystal silicon crystal pulling furnace
JPS6219727A (en) Immersion thermometer for molten metal
US5911826A (en) Method for pulling crystal
CN103194803B (en) Be applicable to the auxiliary monitoring system of high-temp oxide crystal growth
KR960006261B1 (en) Method of growing silicon dendritic-web crystal from deep melts
Hamilton et al. Association in Melted Semiconductors
Cook Transport properties of solid and liquid Cs
JPS5957984A (en) Method for contacting seed crystal or substrate
JP2717175B2 (en) Single crystal growing method and apparatus
JP2016223976A (en) Impurity analysis method, and method for evaluating silicon crystal
JP2975948B2 (en) Crystal growth method
JPS59102894A (en) Method for seeding of single crystal
Steingart et al. Experiments on wireless measurement of anode currents in hall cells
JPS58168927A (en) Measuring apparatus of temperature of melt for single crystal rearing furnace
JP2982123B2 (en) Method and apparatus for measuring oxygen potential in silicon melt
Ciszek et al. Silicon sheet bicrystal growth for the study of grain boundary effects in solar cells
JPS5933553B2 (en) crystal growth equipment
JPH04332859A (en) Device for detecting conductive insoluble constituent within high-temperature melt
CN116856048A (en) Method for correcting electromotive force baseline of crystal interface in crystal growth process by pulling method