JPS5957968A - Blast furnace tap hole sealing material - Google Patents

Blast furnace tap hole sealing material

Info

Publication number
JPS5957968A
JPS5957968A JP57169076A JP16907682A JPS5957968A JP S5957968 A JPS5957968 A JP S5957968A JP 57169076 A JP57169076 A JP 57169076A JP 16907682 A JP16907682 A JP 16907682A JP S5957968 A JPS5957968 A JP S5957968A
Authority
JP
Japan
Prior art keywords
resin
amount
weight
organic binder
blast furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57169076A
Other languages
Japanese (ja)
Other versions
JPS6214512B2 (en
Inventor
安藤 貞一
信之 和田
洋 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harima Refractories Co Ltd
Nippon Steel Corp
Kanae Chemicals Co Ltd
Original Assignee
Harima Refractories Co Ltd
Nippon Steel Corp
Kanae Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harima Refractories Co Ltd, Nippon Steel Corp, Kanae Chemicals Co Ltd filed Critical Harima Refractories Co Ltd
Priority to JP57169076A priority Critical patent/JPS5957968A/en
Publication of JPS5957968A publication Critical patent/JPS5957968A/en
Publication of JPS6214512B2 publication Critical patent/JPS6214512B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は高炉出銑孔の閉塞材料(以下閉塞材と称す)に
係シ、その目的とするところは作業性を損なうことなく
閉塞材に要する有機結合剤の添加量を減じ、不定形耐火
物のなかでも最も苛酷な焼成過程を経る閉塞材の組織安
定化を図り、耐用性を向上させた閉塞材を提供すること
にある。
Detailed Description of the Invention The present invention relates to a plugging material for blast furnace tapholes (hereinafter referred to as plugging material), and its purpose is to determine the amount of organic binder added to the plugging material without impairing workability. The object of the present invention is to provide a plugging material with improved durability by stabilizing the structure of the plugging material, which undergoes the most severe firing process among monolithic refractories.

前記高炉の閉塞材における具備条件としては次のことが
要望されている。
The following requirements are required for the plugging material for the blast furnace.

(、)  作業性はマッドガンによる高炉出銑孔への閉
基材の充填が容易に行えるだけの可塑性を有し、かつ出
銑開孔時の開孔作業が容易に行えること、(b)  硬
化焼結性は、高炉出銑孔に閉塞材を充填してから次の開
孔までに閉塞を持続するだけの硬化焼結が完了している
こと、 (c)  耐用性は溶銑および溶滓の抽出による機械的
あるいは化学的侵食に耐え出銑初期から末期まで出銑孔
径の拡大が少ないこと、 等である。
(,) Workability is such that it has enough plasticity to easily fill the closed base material into the blast furnace tap hole with a mud gun, and that the hole opening operation can be performed easily when opening the tap hole. (b) Hardening. Sinterability is determined by the completion of hardening and sintering to maintain the plugging after the plugging material is filled into the blast furnace tap hole until the next hole is opened. It can withstand mechanical or chemical erosion caused by extraction, and the diameter of the tap hole does not expand from the initial stage to the final stage.

従来の閉塞材としては、シャモット、蝋石、アルミナ、
マグネシア等の耐火原料およびコークス等の炭素質原料
さらには可塑材および焼結材としての耐火粘土にタール
等の有機結合剤を混練してなる閉塞材を用いていた。と
ころが近年、高炉の大型化、高圧操業に伴い、閉塞材へ
の負荷は極めて高くなり、出銑時間の減少、出銑末期の
溶銑。
Conventional occlusion materials include chamotte, Rouseki, alumina,
A plugging material was used, which was made by kneading a refractory raw material such as magnesia, a carbonaceous raw material such as coke, and an organic binder such as tar into fireproof clay as a plasticizer and sintering material. However, in recent years, as blast furnaces have become larger and operated at higher pressures, the load on the plugging material has become extremely high, leading to a reduction in the tapping time and the loss of hot metal at the final stage of tapping.

溶滓の飛散ねど高炉の安定操業に支障を来たしていた。The scattering of slag was interfering with the stable operation of the blast furnace.

この問題を解決する目的で、一般的には耐火骨材および
結合剤の高級化、すなわちアルミナ原料の増大、炭化珪
素の添加、あるいはフェノール樹脂等の有機結合樹脂バ
インダーの添加などが行われ、相当の成果をあげている
が、充分満足されるまでに至っていないのが現状である
To solve this problem, refractory aggregates and binders are generally made more sophisticated, such as by increasing the amount of alumina raw material, adding silicon carbide, or adding organic bonding resin binders such as phenolic resins. Although the results have been achieved, the current situation is that they are not fully satisfied.

本発明者らは上述の現状に鑑み閉塞材の焼結機構の基礎
研究検討を重ねて、組織の安定化を図9耐用性を向上せ
しめた閉塞材を開発するに至った。
In view of the above-mentioned current situation, the present inventors have repeatedly conducted basic research and examination of the sintering mechanism of the plugging material, and have developed a plugging material that has a stabilized structure and improved durability.

すなわち、閉塞材は充填前のマッドガン内では出銑樋残
熱の輻射によって50〜60℃に加熱されているが、出
銑孔閉塞特出銑孔は1500℃以上の温度である。ここ
に充填された閉塞材は急激な昇温を受ける。このため閉
塞材中に含まれる有機結合剤中の揮発物は急激な沸騰現
象を生じ焼成過程にある閉塞材の組織を破壊している事
がわかった。
That is, the plugging material is heated to 50 to 60°C in the mud gun before filling by radiation of residual heat from the tap hole, but the temperature in the taphole plugging hole is 1500°C or higher. The plugging material filled here undergoes a rapid temperature rise. For this reason, it was found that the volatile matter in the organic binder contained in the plugging material caused a rapid boiling phenomenon and destroyed the structure of the plugging material during the firing process.

したがって、アルミナ、炭化珪素等の高級骨相あるいは
フェノール樹脂等の隔級有機結合剤を使用した場合も例
外でなく同様な組織的破壊を生じるためその効果を充分
に引き出し得なかったのである。上記現象の低減には有
機結合剤の低減が有効であシ、本発明に係る閉塞材によ
ってしかも有機結合剤中に含まれる揮発物の急激な蒸発
によっても組織の破壊が生じない安定した閉塞材を得た
ものである。
Therefore, even when high-grade bone materials such as alumina and silicon carbide or interstitial organic binders such as phenol resins are used, similar structural destruction occurs, and the effects cannot be fully exploited. Reducing the amount of organic binder is effective in reducing the above phenomenon, and the occluding material according to the present invention is a stable occluding material that does not cause tissue destruction even due to rapid evaporation of volatiles contained in the organic binder. This is what I got.

以下に本発明の詳細な説明する。The present invention will be explained in detail below.

本発明で使用される耐火原料は、通前のシャモット、ア
ルミナ、蝋石、ジルコン、マグネシアおよび炭化珪素等
の1種または2種以上の混合物を状黒鉛、電極屑、コー
クス、ピッチ、カーゼンブラック、カーがンファイバー
等である。
The refractory raw materials used in the present invention include common chamotte, alumina, Rouseki, zircon, magnesia, and a mixture of two or more of them, such as graphite, electrode scrap, coke, pitch, casen black, Kergan fiber etc.

上記耐火原料、炭素質原料の通常用いられる混合物に対
して平均粒径が5μ以下のアルミナ、シリカ、炭化珪累
、ジルコンおよび合成りロム酸化物から選ばれた1種以
上の超微粉を1〜10重量%加える。平均粒径が5μ以
下の前記超微粉を1〜10重fit %加えることによ
って、閉塞材の可塑性を与えるに要する有機結合剤の添
加量を大きく減少させることができる。
One or more types of ultrafine powder selected from alumina, silica, silicon carbide, zircon, and synthetic silom oxide with an average particle size of 5μ or less are added to the commonly used mixture of the above refractory raw materials and carbonaceous raw materials. Add 10% by weight. By adding 1 to 10 weight percent of the ultrafine powder having an average particle size of 5 μm or less, the amount of organic binder added to impart plasticity to the plugging material can be greatly reduced.

本発明に使用される5μ以下の超微粉とはアルミナ、シ
リカ、炭化珪素、ジルコン、合成りロム酸化物の結晶質
耐火原料およびフェロシリコン。
The ultrafine powder of 5 microns or less used in the present invention includes crystalline refractory raw materials such as alumina, silica, silicon carbide, zircon, synthetic silicon oxide, and ferrosilicon.

メタシリコン合金製造あるいはジルコニア製造ノ除副生
ずる捕集ダストであるシリカフラワーと呼ばれる非晶質
の球状シリカ超微粉あるいはヒユーストシリカ粉の超微
粉であシ、好ましくはシリカフラワー、アルミナ超微粉
が特に有機結合剤添加JJkの減少に効果を発揮する。
Amorphous spherical ultrafine silica powder called silica flour, which is a collected dust produced as a by-product of metasilicon alloy production or zirconia production, or ultrafine powder of hyuusto silica powder, preferably silica flour, and particularly ultrafine alumina powder. Addition of organic binder is effective in reducing JJk.

これら超微粉の添加量が1重量部未満ではマトリックス
中への分散が不充分でアシ、有(幾結合剤の減少効果が
得られない。逆に超微粉の添加量が10重量−を超える
と超微粉は凝集してその超微粉的性實が失われ、有機結
合剤の鷲が増加する。
If the amount of these ultrafine powders added is less than 1 part by weight, the dispersion in the matrix will be insufficient and the effect of reducing the amount of binder will not be obtained.On the other hand, if the amount of ultrafine powders added exceeds 10 parts by weight, The ultrafine powder aggregates and loses its ultrafine nature, and the amount of organic binder increases.

またマトリックス内も超微粉充填となシ細孔径が小さく
なシ有機結合剤中の揮発物の蒸発も阻害され、組織の安
定化が得られない。
Furthermore, since the matrix is filled with ultrafine powder and the pore diameter is small, the evaporation of volatiles in the organic binder is also inhibited, making it impossible to stabilize the structure.

上述の超微粉による効果によって有機結合剤の添加11
1−減少させ得たが、これのみでは閉塞材としての問題
が残されている。すなわち閉塞材中の有機結合剤は充填
後出銑孔内で加熱され、温度上昇に伴う粘性低下を生じ
る。このため閉塞材からの有機結合剤の浸み出しを生じ
、閉塞材が硬化した後に出銑孔の構造的欠陥の原因とな
シ、あるいは閉塞材をマッドガンで充填し、マッドガン
を引き離す場合出銑孔口である1当り部”と呼ばれる部
位のラッパ状損傷の原因ともなる。有機結合剤の減少効
果を持たせた超微粉を添加した場会出銑孔への充填中に
有機結合剤の粘性低下に伴い、可塑性に乏しくなる。可
塑性に乏しくなった閉!b材では圧入時に閉塞材に亀裂
が発生しゃすくなシ、出銑孔深度の減少、溶銑の浸み出
し等による開孔失敗を起す原因ともなる。とこで可塑材
としては一般に耐火粘土が使用される。耐火粘土は加熱
され温度上昇に伴い粘性低下を生じ、余剰となった有機
結合剤を捕獲し浸み出しを防止し、かつ吸着粘土として
の可塑性を維持する。しかしながら、耐火粘土は溶滓に
対し弱く、耐用性を低下させる原因となっていたのであ
る。
Addition of organic binder 11 due to the effect of the ultrafine powder mentioned above
1-Although it was possible to reduce the amount by 1, there remains a problem as a occluding material with this alone. That is, the organic binder in the plugging material is heated in the taphole after being filled, causing a decrease in viscosity as the temperature rises. This may cause leaching of the organic binder from the plugging material, which may cause structural defects in the taphole after the plugging material has hardened, or if the plugging material is filled with a mud gun and the mud gun is pulled away. It can also cause trumpet-shaped damage at the hole opening, which is called the perforation area. When ultrafine powder is added to reduce the amount of organic binder, the viscosity of the organic binder increases during filling into the taphole. As the hardness decreases, the plasticity becomes poor.With closed!B materials that have poor plasticity, cracks may occur in the plugging material during press-fitting, and drilling failure may occur due to a decrease in the taphole depth, hot metal seepage, etc. Fireclay is generally used as a plasticizer.Fireclay is heated and its viscosity decreases as the temperature rises, and it captures the excess organic binder and prevents it from seeping out. It maintains its plasticity as an adsorbent clay.However, fireclay is susceptible to slag, which causes a decrease in its durability.

本発明者らは、上記の可塑材として溶滓に対して強く、
また耐火粘土同様に浸み出しを防止し、その材料特性と
しての可塑性を示すものとして、土状黒鉛の有用性を見
い出すに至った。したがって本発明品では、さらに土状
黒鉛を1〜10重量%加える。土状黒鉛の添加量が1重
量−未満では可塑性を発揮させるに至らず、また有機結
合剤の浸み出しも防止するに至らない。また10重量%
を超えては使用有機結合剤量が増加し、逆に有機結合剤
中の溶剤、揮発物の蒸発によって組織の安定を欠く。
The present inventors have found that the above plasticizer is strong against slag,
In addition, we have discovered the usefulness of earthy graphite, which prevents leaching and exhibits plasticity as a material characteristic, similar to fireclay. Therefore, in the product of the present invention, 1 to 10% by weight of earthy graphite is further added. If the amount of earthy graphite added is less than 1 weight, plasticity will not be exhibited, nor will leaching of the organic binder be prevented. Also 10% by weight
If the amount is exceeded, the amount of organic binder used increases, and conversely, the solvent and volatile substances in the organic binder evaporate, resulting in a lack of stability of the structure.

本発明の閉塞材料は使用する有機結合剤としてコールタ
ール、ピッチ、トール油、フェノール樹脂、フラン樹脂
等一般に閉塞材に使用される有機結合剤が有効に利用で
きる。
As the organic binder used in the plugging material of the present invention, organic binders commonly used in plugging materials such as coal tar, pitch, tall oil, phenol resin, and furan resin can be effectively used.

さらに、有機結合剤のなかでフェノール樹脂系は他の結
合剤に比べ強度発現が早く、高い焼結強度を示すため次
第にその使用量も増加しつつある。
Furthermore, among organic binders, phenolic resins develop strength faster than other binders and exhibit high sintering strength, so their usage is gradually increasing.

しかし、フェノール樹脂系はコールタール(500〜1
200CPS/30℃)等の有機結合剤に比べ8000
〜50000 CPS/30℃と粘性が高いため、混線
に要するフェノール樹脂系の添加量はコールタールなど
に比べ多くなる傾向にあシ、他の有機結合剤に対し揮発
物が多くなる。バインダーとして樹脂を用いた場合、従
来のものに比べ樹脂の添加量は大きく減少し揮発物の沸
騰による組織破壊の面で向上したが、さらに樹脂の高強
度を生かす方法として、樹脂自体の粘性低下を行い、そ
の添加量を下げる必要がある。
However, phenolic resin-based coal tar (500 to 1
8,000 compared to organic binders such as 200CPS/30℃)
Since it has a high viscosity of ~50,000 CPS/30°C, the amount of phenolic resin added for crosstalk tends to be larger than that of coal tar etc., and the amount of volatile matter is higher than that of other organic binders. When resin is used as a binder, the amount of resin added is greatly reduced compared to conventional binders, which improves the ability to destroy structures due to boiling of volatiles.However, as a way to take advantage of the resin's high strength, it is possible to reduce the viscosity of the resin itself. It is necessary to reduce the amount added.

しかし、フェノール樹脂系において粘性を下げる方法と
しては、樹脂量を低下する。樹脂の分子を低分子化する
方法などがあるが、これらはいずれもフェノール樹脂系
の持つ本来の強度特性を低下させる方向にあった。
However, a method for lowering the viscosity in a phenolic resin system is to reduce the amount of resin. There are methods of reducing the molecular weight of resins, but all of these tend to reduce the inherent strength characteristics of phenolic resins.

上記問題点をさらに検討の上、開発を行った結果、フェ
ノール樹脂系のうち、ノボラック型フェノール樹脂とベ
ンジリックエーテル型熱硬化性フェノール樹脂との割合
が、重量比で95:5〜60 :40であるフェノール
樹脂に、溶剤としてカルピトールまたはカルピトールと
グリコールの混合物を20〜70重量%配合した樹脂バ
インダーは100〜20000PS/30℃と低粘性で
あシ、表面張力も33〜42 dyn/cy+rと小さ
く、樹脂バインダーの低減に有効であるため、上記組織
改善に貢献する。
After further consideration of the above problems and development, we found that the weight ratio of novolac type phenol resin and benzylic ether type thermosetting phenol resin in the phenolic resin system was 95:5 to 60:40. The resin binder, which is a phenolic resin mixed with 20 to 70% by weight of carpitol or a mixture of carpitol and glycol as a solvent, has a low viscosity of 100 to 20,000 PS/30°C, and a low surface tension of 33 to 42 dyn/cy+r. , is effective in reducing the amount of resin binder and thus contributes to the above-mentioned structure improvement.

本発明樹脂バインダーのノボラック型フェノール樹脂は
融点45〜75℃の熱可塑性樹脂である。
The novolac type phenolic resin of the resin binder of the present invention is a thermoplastic resin with a melting point of 45 to 75°C.

またベンジリックエーテル型熱硬化性フェノール樹脂は
粘稠状ないしは半固形状樹脂で、50℃の粘度が500
0〜50000 CPSであシその赤外吸収スペクトル
i’11060crn にベンゾリックエーテル結合に
基づく強い特性吸収を示すものであシ、130℃以下で
は熱硬化しない樹脂である。
Furthermore, benzylic ether type thermosetting phenolic resin is a viscous or semi-solid resin with a viscosity of 500°C at 50°C.
It is a resin having a CPS of 0 to 50,000 and exhibits strong characteristic absorption based on benzolic ether bonds in its infrared absorption spectrum i'11060crn, and does not thermoset at temperatures below 130°C.

なお上記ノゲラック型フェノール@J脂及び上記ベンジ
リックエーテル型熱硬化性フェノール樹脂の製造時に原
料として使用しうるフェノール類はフェノール、ノやラ
クレゾール、メタクレゾール。
In addition, the phenols that can be used as raw materials in the production of the above-mentioned Nogelac type phenol@J fat and the above-mentioned benzylic ether type thermosetting phenolic resin are phenol, noyalacresol, and metacresol.

3・4−キシレノール、3・5−キシレノールあるいは
これらの混合物である。
3,4-xylenol, 3,5-xylenol or a mixture thereof.

硬化剤としてのベンジリックエーテル型熱硬化性フェノ
ール樹脂は13’OC以下では熱硬化せず、通常の硬化
剤として使用されているヘキサミンあるいは、レゾール
型フェノール樹脂に比べて硬化温度が高いため、硬化剤
としてベンジリックエーテル型熱硬化性フェノール樹脂
を使用した場合、閉塞材充填時マッドガン中での閉塞材
の焼き付きもなく、充填作業性に優れる。
The benzylic ether type thermosetting phenolic resin used as a curing agent does not heat cure at temperatures below 13'OC, and its curing temperature is higher than that of hexamine or resol type phenolic resins, which are commonly used as curing agents. When a benzylic ether type thermosetting phenol resin is used as the agent, the plugging material does not seize in the mud gun when filling the plugging material, and the filling workability is excellent.

ノボラック型フェノール樹脂とベンジリックエーテル型
熱硬化性フェノール樹脂との割合は重量比で95=5〜
60:40が好ましい。硬化剤としてのベンジリックエ
ーテル型態硬化性フェノール樹脂斌が5重量%以下では
強度発現が遅く、熱間強度も、J−さい。また40重羞
−以上では逆に熱間強度が低下する。本樹脂バインダー
はノ?ラック型フェノール樹脂とベンジリックエーテル
型熱N 化性フェノール樹脂に、カルピトールまたはカ
ルピトールとグリコールの混合物を20〜70重M%配
合するものである。
The weight ratio of novolak type phenolic resin and benzylic ether type thermosetting phenolic resin is 95 = 5 ~
60:40 is preferred. If the amount of benzylic ether type curable phenol resin as a curing agent is less than 5% by weight, the strength development is slow and the hot strength is J-sized. On the other hand, if it exceeds 40 gw, the hot strength decreases. What about this resin binder? Calpitol or a mixture of carpitol and glycol is blended in an amount of 20 to 70% by weight with a lac type phenolic resin and a benzylic ether type thermally N-oxidizing phenolic resin.

カルピトールはカルピトールまたはメチルカルピトール
、ジエチルカルピトール、メチルエチルカルピトール等
のカルピトール誘導体を単独または混合したものである
。また、カルピトールとグリコールの混合物とは、カル
ピトールとエチレンクリコール、ジエチレングリコール
、テロピレングリコールのグリコール類との混合物であ
る。
Calpitol is carpitol or carpitol derivatives such as methylcarpitol, diethylcarpitol, methylethylcarpitol, etc. alone or in combination. Further, the mixture of calpitol and glycol is a mixture of calpitol and glycols such as ethylene glycol, diethylene glycol, and telopylene glycol.

溶剤としてのカルピトールまたはカルピトール混合物が
20重址チ以下では溶剤による粘性低下効果が少なく、
また70重蓋チ以上使用した場合、樹脂バインダーとし
ての粘性が低下しすぎ、閉塞材独特の可塑性を出し得な
い。
When the amount of carpitol or carpitol mixture as a solvent is less than 20 times, the viscosity reducing effect by the solvent is small;
Furthermore, if 70 or more layers are used, the viscosity as a resin binder decreases too much and the unique plasticity of the clogging material cannot be achieved.

以下、笑施例について説明する。An example will be explained below.

第1表に、まず配合割合の混線物を50℃に加熱、混練
し、各試験の供試体を作成し、急熱試験を行った結果、
第1表に見られるように従来品煮1およびA2は、溶剤
の急激な蒸発による”ふくれ”が観察され、内部組織は
蒸発に伴う気孔。
Table 1 shows the results of first heating and kneading mixed materials with the mixing ratio to 50°C, creating specimens for each test, and conducting rapid heating tests.
As shown in Table 1, in conventional products 1 and A2, "blister" was observed due to rapid evaporation of the solvent, and the internal structure had pores due to evaporation.

亀裂の発達していることが確認された。従来品屋3では
、樹脂バインダーの添加量が10.5チ(外掛)と低い
が、可塑性に乏しくパサパサとした状態である。急熱試
験では供試体が加熱される段階でフェノール樹脂の浸み
出しを生じ、供試体は崩壊した。また内部では樹脂の浸
み出しを生じており、粗大気孔の発達が著しい。
It was confirmed that cracks had developed. In Conventional Products Store 3, the amount of resin binder added was as low as 10.5 inches (external), but the plasticity was poor and the product was dry. In the rapid heating test, phenolic resin oozed out when the specimen was heated, and the specimen collapsed. In addition, resin seeps out inside, and coarse pores are significantly developed.

本発明品A4ではタールの添加量が11%(外掛)でア
シ、A5では従来から使われているフェノール樹脂グリ
コール溶液の添加量が13%(外掛)である。A6では
ノビラック型フェノール国脂:ペンジリックエーテル型
熱硬化性フェノール樹脂=8=2のフェノール樹脂と溶
剤がカルピトール単独で樹脂:溶剤=55:45の樹脂
バインダーIを用いその添加量は11%(外掛)であシ
、A7ではノブラック型フェノール樹脂:ペンゾリック
エーテル型熱硬化性フェノール樹脂=7:3のフェノー
ル手苗i旨とカルピトール:ジエチレングリコール=7
=3の溶剤からなシ、樹脂:溶剤=55:45の4;u
 ’AWバインダー11e用い、その添加量は11.5
襲(外掛)であυ、樹脂バインダー■および■を用いる
ことによって、コールタール等を使用した場合の添加量
にほぼ等しい所まで樹脂量を低減させることが可能とな
った。以上のように本発明品では従来品に比べ有機結合
剤の添加量が大きく減少した。
In the product A4 of the present invention, the amount of tar added is 11% (outer layer), and in A5, the amount of added phenol resin glycol solution conventionally used is 13% (outer layer). In A6, the phenolic resin of novilac type phenol national resin: pengylic ether type thermosetting phenol resin = 8 = 2 and the solvent was carpitol alone, and resin binder I with resin: solvent = 55:45 was used, and the amount added was 11% ( For A7, phenol tenae iji of Noblak type phenol resin: penzolic ether type thermosetting phenol resin = 7:3 and calpitol: diethylene glycol = 7
= 3 solvent, resin: solvent = 55:45; u
'AW binder 11e is used, the amount added is 11.5
By using υ and resin binders ■ and ■, it became possible to reduce the amount of resin to a level almost equal to the amount added when coal tar or the like was used. As described above, in the product of the present invention, the amount of organic binder added was significantly reduced compared to the conventional product.

これらはバインダーが少ないにもかかわらず、可塑性は
良好であシ、急熱試験においても組織欠陥はほとんど認
められず良好である。以上の組織的向上効果によって耐
食性も大巾に向上した。
Although these have a small amount of binder, they have good plasticity, and almost no structural defects are observed even in rapid heating tests. Corrosion resistance was also greatly improved due to the above structural improvement effect.

本発明品A4.扁5およびA7を実炉で使用した結果、
炉前での作業性はいずれも従来と同様であった。特にA
7では閉塞中に閉塞材の焼き付きによる閉塞失敗が全く
なく、安定した閉塞作業が行われた。
Invention product A4. As a result of using Flat 5 and A7 in an actual furnace,
Workability in front of the furnace was the same as before. Especially A
In No. 7, there were no failures in closure due to burning of the closure material during closure, and stable closure work was performed.

本発明品では従来品のマッド材に見られだ出銑末期の急
激な出銑孔拡大、溶銑溶滓の飛散が格段に少なくなった
。また出銑時間もそれぞれ20〜30%延長され、した
がって1日の出銑回数も減少し、閉塞材の原単位が著し
く向上した。
In the product of the present invention, the rapid expansion of the tap hole at the end of the tapping stage and the scattering of hot metal slag, which were observed in the conventional mud material, were significantly reduced. Additionally, the tapping time was extended by 20 to 30%, and the number of taps per day was therefore reduced, resulting in a significant improvement in the unit consumption of plugging material.

Claims (1)

【特許請求の範囲】 1、7ヤモツト、アルミナ、蝋石、ジルコン。 マグネシア、および炭化珪素等耐火原料の1種以上と、
コークス等の炭素質原料と、平均粒径が5μ以下のアル
ミナ、シリカ、炭化珪素、ジルコンおよび合成りロム酸
化物から選ばれた1種以上の超微粉1〜10重量%と、
土状黒鉛1〜10重量饅とこれに有機結合剤とを添加混
練してなる高炉出銑孔閉塞材料。 2、前記有機結合剤としてノブラック型フェノール樹脂
とベンジリックエーテル型熱硬化性フェノール樹脂との
割合が重を比で95=5〜60:40であるフェノール
41111tfに、溶剤としてカルピトールまたはカル
ピトールとグリコールとの混合物を20〜70重蛍チ配
合してなる特許請求の範囲第1項記載の高炉出銑孔閉塞
材料。
[Claims] 1, 7 Yamatsuto, alumina, Rouseki, zircon. Magnesia and one or more types of refractory raw materials such as silicon carbide;
A carbonaceous raw material such as coke, and 1 to 10% by weight of one or more types of ultrafine powder selected from alumina, silica, silicon carbide, zircon, and synthetic chromium oxide with an average particle size of 5 μ or less,
A blast furnace tap hole blocking material made by adding and kneading 1 to 10 weight of earthy graphite and an organic binder thereto. 2. As the organic binder, use Phenol 41111tf in which the ratio of Noblak type phenol resin and benzylic ether type thermosetting phenol resin is 95 = 5 to 60:40 by weight, and Calpitol or Calpitol and glycol as the solvent. 2. The blast furnace tap hole closing material according to claim 1, which is obtained by blending a mixture of 20 to 70 double fluorite.
JP57169076A 1982-09-28 1982-09-28 Blast furnace tap hole sealing material Granted JPS5957968A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57169076A JPS5957968A (en) 1982-09-28 1982-09-28 Blast furnace tap hole sealing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57169076A JPS5957968A (en) 1982-09-28 1982-09-28 Blast furnace tap hole sealing material

Publications (2)

Publication Number Publication Date
JPS5957968A true JPS5957968A (en) 1984-04-03
JPS6214512B2 JPS6214512B2 (en) 1987-04-02

Family

ID=15879874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57169076A Granted JPS5957968A (en) 1982-09-28 1982-09-28 Blast furnace tap hole sealing material

Country Status (1)

Country Link
JP (1) JPS5957968A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63105473A (en) * 1986-10-22 1988-05-10 Showa Denko Kk Manufacture of carbon plate for fuel cell
JPH05221737A (en) * 1991-03-15 1993-08-31 Ngk Insulators Ltd Castable refractory
WO2004016568A1 (en) * 2002-08-08 2004-02-26 Fajardo Sola Pedro Refractory coating for ladles used in the stainless steel industry
JP2007186397A (en) * 2006-01-16 2007-07-26 Jfe Refractories Corp Stopper for blast furnace taphole

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57129879A (en) * 1981-01-28 1982-08-12 Nippon Steel Corp Blast furnace tap hole closing material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57129879A (en) * 1981-01-28 1982-08-12 Nippon Steel Corp Blast furnace tap hole closing material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63105473A (en) * 1986-10-22 1988-05-10 Showa Denko Kk Manufacture of carbon plate for fuel cell
JPH05221737A (en) * 1991-03-15 1993-08-31 Ngk Insulators Ltd Castable refractory
JPH07106949B2 (en) * 1991-03-15 1995-11-15 日本碍子株式会社 Irregular refractories
WO2004016568A1 (en) * 2002-08-08 2004-02-26 Fajardo Sola Pedro Refractory coating for ladles used in the stainless steel industry
JP2007186397A (en) * 2006-01-16 2007-07-26 Jfe Refractories Corp Stopper for blast furnace taphole

Also Published As

Publication number Publication date
JPS6214512B2 (en) 1987-04-02

Similar Documents

Publication Publication Date Title
JPS5957968A (en) Blast furnace tap hole sealing material
JP4132471B2 (en) Non-aqueous press-fit material for blast furnace repair
US5403526A (en) Process for preparing benzo(a)pyrene-free, carbon-containing, refractory ceramic materials
JP3906500B2 (en) Method for producing binder for carbon-containing refractory
JP4705548B2 (en) Mud
JP3287905B2 (en) Mud wood
JP7461329B2 (en) mud material
JP2802343B2 (en) Method for producing carbon-bonded refractory brick based on magnesium oxide
JPH11349384A (en) Production of closing material and binder composition for closing material
JP4367824B2 (en) Mud material for filling blast furnace exit hole
GB2196331A (en) Resin-bonded taphole mix
JPS5918350B2 (en) Manufacturing method of occluding material
US4792578A (en) Resin-bonded taphole mix
JPS593069A (en) Alumina-silicon carbide-carbon refractories
JP3927433B2 (en) Mud material for filling blast furnace exit hole
JP2992211B2 (en) Taphole blocking material
JP2017154940A (en) Manufacturing method of mud material for blocking blast furnace tap pore
JP2007046132A (en) Mud material for plugging tap hole of blast furnace
JPH08231278A (en) Material for closing tap hole
JPS5912620B2 (en) Blast furnace tap hole blocking material
JPH07115955B2 (en) Blast furnace tap closure
WO2024150669A1 (en) Production method for magnesia-carbon brick
JPH0158157B2 (en)
JP2023112275A (en) mud material
JP2000063183A (en) Closing material