JPH0158157B2 - - Google Patents
Info
- Publication number
- JPH0158157B2 JPH0158157B2 JP58060918A JP6091883A JPH0158157B2 JP H0158157 B2 JPH0158157 B2 JP H0158157B2 JP 58060918 A JP58060918 A JP 58060918A JP 6091883 A JP6091883 A JP 6091883A JP H0158157 B2 JPH0158157 B2 JP H0158157B2
- Authority
- JP
- Japan
- Prior art keywords
- parts
- weight
- raw material
- carbonaceous
- ring block
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000011449 brick Substances 0.000 claims description 23
- 239000002994 raw material Substances 0.000 claims description 14
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 9
- 239000000843 powder Substances 0.000 claims description 6
- 239000000203 mixture Substances 0.000 claims description 4
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 4
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 4
- 239000011230 binding agent Substances 0.000 claims description 3
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 2
- 238000004898 kneading Methods 0.000 claims description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 2
- 229920001169 thermoplastic Polymers 0.000 claims description 2
- 239000004416 thermosoftening plastic Substances 0.000 claims description 2
- 230000007797 corrosion Effects 0.000 description 12
- 238000005260 corrosion Methods 0.000 description 12
- 239000000945 filler Substances 0.000 description 11
- 239000004570 mortar (masonry) Substances 0.000 description 8
- 238000010276 construction Methods 0.000 description 7
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 6
- 239000002184 metal Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 238000005336 cracking Methods 0.000 description 4
- 230000035882 stress Effects 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 230000008646 thermal stress Effects 0.000 description 3
- 229920005992 thermoplastic resin Polymers 0.000 description 3
- 229910000831 Steel Inorganic materials 0.000 description 2
- RHZUVFJBSILHOK-UHFFFAOYSA-N anthracen-1-ylmethanolate Chemical compound C1=CC=C2C=C3C(C[O-])=CC=CC3=CC2=C1 RHZUVFJBSILHOK-UHFFFAOYSA-N 0.000 description 2
- 239000003830 anthracite Substances 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000002893 slag Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 240000001549 Ipomoea eriocarpa Species 0.000 description 1
- 235000005146 Ipomoea eriocarpa Nutrition 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 239000002585 base Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 229910052570 clay Inorganic materials 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 230000009970 fire resistant effect Effects 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21B—MANUFACTURE OF IRON OR STEEL
- C21B7/00—Blast furnaces
- C21B7/04—Blast furnaces with special refractories
- C21B7/06—Linings for furnaces
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Ceramic Products (AREA)
- Blast Furnaces (AREA)
Description
本発明は高炉に使用される充填材に関するもの
である。
近年高炉は高温、高圧操業などの操業技術の進
歩によつて出銑量は著しく増大しているが、内張
耐火物は炉底部およびシヤフト下部から朝顔部に
かけて苛酷な条件下で使用されるためその損傷が
大きくなり、高炉の寿命が低下している。
この内張耐火物の損傷原因は炉内々容物による
摩耗、溶銑、スラグ、アルカリによる侵食および
熱応力による割れ破壊があげられ、これらがさら
に複合して損傷を進めていると考えられている。
これらの原因の中でも最近では熱応力による割
れが内張耐火物損傷の主原因の一つとされてい
る。
この熱応力によるれんがの割れは高炉の火入れ
当初の昇温から稼働初期におけるれんがの熱膨張
が拘束されることによつてれんがに大きな応力が
働いて発生するものである。
例えば高炉解体調査時の炉底部の調査において
も炉底周辺部に使用されたカーボンブロツク或い
は中央部に使用されたシヤモツトれんがに大きな
割れがよくみられる。一方、この炉底構造は図に
示すように炉底カーボン質ブロツク2′上に構築
されたシヤモツトれんが1、カーボン質リングブ
ロツク2(以下、リングブロツク2と云う)、充
填材3及びシヤモツトれんが1を接着する目地モ
ルタル4で構成されているのが一般的である。
これらの中でシヤモツトれんが1の熱膨張を吸
収しうる材料はシヤモツトれんが1間に使用され
る目地モルタル4と、シヤモツトれんが1とリン
グブロツク2間およびリングブロツク2と、鉄皮
5間に使用される充填材3である。
ところが、シヤモツトれんが1間に使用される
目地モルタル4はシヤモツトれんが1間を強固に
接着せしめ、一体構造を形成するものである。こ
のため目地モルタル4は高い接着強度が要求され
ると同時に1500℃という高温の溶銑と接触するの
で、収縮をおこさず容積安定性に優れていること
が最も重要である。
即ち、目地モルタル4は、上記特性を満足する
がためにこれらの特性と相反するシヤモツトれん
が1の熱膨張を吸収する可縮性をほとんど有して
いない。
さらに充填材3については、目地モルタル4と
同様に収縮の少ない高耐食性の材料がしつかりと
充填され使用されているのでシヤモツトれんが1
の熱膨張を吸収することができないのが現状であ
る。
使用目的は異なるが熱膨張の吸収材でクツシヨ
ン性を有する充填材は公知である。例えば特公昭
55−32676号公報には高炉鉄皮内側のステーブと
ステーブ間に充填し、ステーブの熱膨張を吸収さ
せる充填材はクツシヨン性(収縮性)が少なく、
また溶銑、スラグ等に対して耐食性の劣る欠点が
ある。
本発明は前述したような欠点を解消するために
創案したものであつて、耐食性を有すると同時に
シヤモツトれんが1の熱膨張を吸収し、シヤモツ
トれんが1の割れを防止すると同時にリングブロ
ツク2にかかる熱応力の低減を計るために可縮性
を備えた充填材を提供するものである。
本発明は炭素質原料の単独、または炭素質原料
に炭化珪素質原料、及び炭化珪素質原料を単独ま
たは複合添加してなる混合物からなる耐火骨材
100重量部に高軟化点ピツチ粉末、15〜50重量部
及び、アルミナ系原料5〜40重量部を添加して適
量のタール或はレジンなどの熱可塑性結合剤で混
練してなる可縮性と耐食性を兼ね備えた高炉炉底
のカーボン質リングブロツクと該リングブロツク
の内側に配設されるシリカ・アルミナ系れんがと
の間に充填する充填材である。
即ち、本発明は耐食性に優れた耐火骨材をベー
スに熱可塑性樹脂、高軟化点粉末ピツチおよびア
ルミナ系原料によつて低温より800℃以上の高温
度まで可縮性を付与せしめると同時に高温におい
て耐食性を兼ね備えた高炉炉底のカーボン質リン
グブロツクと該リングブロツクの内側に配設され
るシリカ・アルミナ系れんがとの間に充填する充
填材である。
本発明で重要なことは熱間で可縮性を5〜40%
有することである。
その理由は高炉々底の直径は10〜15m、シヤモ
ツトれんがの熱膨張係数は5〜6×10-6℃で単純
にシヤモツトれんがの熱膨張量は800℃で40〜75
mmにもなり、この熱膨張量を適当に吸収すること
が必要である。発明者等の各種実験の結果によれ
ば充填材3を100〜200mmの施工幅及び目地モルタ
ルの収縮、鉄皮の熱膨張及び炉底内張りれんがと
鉄皮強度の応力バランスをも考慮し、充填材に5
〜40%の可縮性を付与することにより、内張りれ
んがの損傷のない良好な結果を得ることができ
た。次に本発明の充填材について更に詳しく説明
する。
高軟化点ピツチ粉末は軟化点150℃以上、かつ
固定炭素15〜80%、揮発分15〜80%で200〜800℃
の広範囲に亘つて揮発する揮発分の多いものが好
ましい。またその使用量は耐火骨材100重量部に
対し15〜50重量部が好ましい。
即ち、15重量部未満では可縮性が5%以下とな
り少ない。また50重量部より多いと充填材の気孔
が多くなり、即ち可縮性が40%以上と大きくなり
炉体構造のバランス応力が低くなり、炉底内張り
れんががゆるみ、溶銑漏れの危険が生じる。
アルミナ系原料は仮焼アルミナ、焼結アルミ
ナ、電融アルミナなどが使用可能であり、粒度も
極力小さい方が良好であるが、44μ以下の仮焼ア
ルミナの使用が好ましい。
即ち、これは1100℃程度で焼結が始まり溶銑と
接する。1500℃前後では充分焼結し耐食性を発揮
する。またその使用量は耐火骨材100重量部当り
5〜40重量部がよい。
即ち5重量部未満であれば耐食性の維持が困難
であり、40重量部より多いと溶銑による浸潤が増
加し、耐溶損性にも好ましくない。
本発明に使用する耐火骨材の炭素質原料として
は仮焼無煙炭、コークス、または揮発分を含有す
る無煙炭、天然黒鉛、人造黒鉛等を0.3〜5mmの
粗粒子とし0.3mm以下を微粉として用いることが
でき、耐食性を得る骨材部である。なお炭化珪
素、窒化珪素は価格が高いが施工時の充填性が得
られ易く、また耐食性が向上するため炭素質原料
微粉の一部例えば炭素質原料微粉10〜70重量部好
ましくは35〜50重量部を置き換えることができ
る。
結合剤としてはタール、ノボラツク型フエノー
ル樹脂等の熱可塑性樹脂を使用することができ
る。
熱可塑性樹脂の添加量は耐火骨材に対し100重
量部当り7〜20重量部が好ましく、7重量部未満
では施工時の充填性が得られず、また昇温初期の
可縮性の発現にも好ましくない。
20重量部より多いと施工時の充填性が悪く、ま
た耐食性が劣下するので好ましくない。
なお施工時に必要な可塑性を付与および焼結剤
として粘土、リン酸ナトリウム、ケイ酸ナトリウ
ム等を添加することができる。
次に本発明の具体的な実施例を説明する。
実施例
第1表は本発明に使用した耐火骨材および仮焼
アルミナの化学組成を示す。
第2表の配合物をニーダにて常温で20分間混練
した。充填施工は230×114×65mmのセラミツク枠
にラミング施工し、施工体を得た。
可縮性測定条件はセラミツク枠を含む施工体を
常温から800℃まで24時間で直線的に昇温および
加圧は一軸加圧で常圧(無加圧)から150Kg/cm2
まで24時間で直線的に昇圧し、その時の変形量%
を可縮性として示す。
第2表に示す如く本発明品は、比較品(5)に比
し、耐食性は大幅に向上した。また比較品(6)に比
し適度な可縮性を有している。
The present invention relates to a filler used in a blast furnace. In recent years, the amount of iron produced by blast furnaces has increased significantly due to advances in operating technology such as high-temperature and high-pressure operation, but the refractory lining is used under harsh conditions from the bottom of the furnace and shaft to the morning glory. The damage is increasing and the lifespan of the blast furnace is decreasing. The causes of damage to the refractory lining are abrasion caused by the contents inside the furnace, erosion by hot metal, slag, and alkali, and cracking due to thermal stress, and it is thought that these factors combine to cause further damage. Among these causes, cracking due to thermal stress has recently been considered to be one of the main causes of damage to lining refractories. This cracking of bricks due to thermal stress is caused by the large stress exerted on the bricks due to the restricted thermal expansion of the bricks during the early stages of operation, from the initial temperature rise when the blast furnace is fired. For example, when inspecting the bottom of a blast furnace during a dismantling survey, large cracks are often found in the carbon blocks used around the bottom of the furnace or the diamond bricks used in the center. On the other hand, as shown in the figure, this hearth bottom structure includes a shim brick 1, a carbon ring block 2 (hereinafter referred to as ring block 2), a filler 3, and a shim brick 1 constructed on a bottom carbonaceous block 2'. It is generally made up of joint mortar 4 that adheres the joints. Among these materials, materials that can absorb the thermal expansion of the Shiamotsu bricks 1 are used for the joint mortar 4 used between the Shiamotsu bricks 1, between the Shiamotsu bricks 1 and the ring block 2, and between the ring block 2 and the iron skin 5. This is the filler material 3. However, the joint mortar 4 used between the Shiamotsu bricks 1 firmly adheres the Shiamotsu bricks 1 to form an integral structure. For this reason, the joint mortar 4 is required to have high adhesive strength, and since it comes into contact with hot metal at a high temperature of 1500°C, it is most important that it not shrink and have excellent volume stability. That is, since the joint mortar 4 satisfies the above-mentioned characteristics, it has almost no contractility to absorb the thermal expansion of the Shamoto bricks 1, which is contrary to these characteristics. Furthermore, as for the filling material 3, similar to the joint mortar 4, a highly corrosion-resistant material with little shrinkage is firmly filled and used.
Currently, it is not possible to absorb the thermal expansion of Although the purpose of use is different, fillers that are thermal expansion absorbers and have cushioning properties are known. For example, Tokkosho
Publication No. 55-32676 states that the filler, which is filled between the staves inside the blast furnace shell and absorbs the thermal expansion of the staves, has low cushioning properties (shrinkability).
It also has the disadvantage of poor corrosion resistance against hot metal, slag, etc. The present invention was devised to eliminate the above-mentioned drawbacks, and has corrosion resistance and at the same time absorbs the thermal expansion of the sheath brick 1, prevents cracking of the sheath brick 1, and at the same time reduces the heat applied to the ring block 2. The present invention provides a filler material that is compressible in order to reduce stress. The present invention provides a refractory aggregate made of a carbonaceous raw material alone or a mixture formed by adding a silicon carbide raw material and a silicon carbide raw material to a carbonaceous raw material singly or in combination.
A compressible powder made by adding 15 to 50 parts by weight of high softening point pitch powder and 5 to 40 parts by weight of alumina raw material to 100 parts by weight and kneading with an appropriate amount of a thermoplastic binder such as tar or resin. This is a filler that is filled between a carbonaceous ring block at the bottom of a blast furnace that has corrosion resistance and a silica-alumina brick placed inside the ring block. In other words, the present invention uses a refractory aggregate with excellent corrosion resistance as a base, and uses thermoplastic resin, high softening point powder pitch, and alumina-based raw materials to provide shrinkability from low temperatures to high temperatures of 800°C or higher, and at the same time, to provide elasticity at high temperatures. This is a filler that is filled between a carbonaceous ring block at the bottom of a blast furnace that has corrosion resistance and a silica-alumina brick placed inside the ring block. What is important in this invention is that the shrinkage is 5 to 40% in hot conditions.
It is to have. The reason for this is that the diameter of the blast furnace bottom is 10 to 15 m, and the coefficient of thermal expansion of Shamoto bricks is 5 to 6 x 10 -6 ℃.The thermal expansion of Shamoto bricks is simply 40 to 75 at 800℃.
mm, and it is necessary to appropriately absorb this amount of thermal expansion. According to the results of various experiments conducted by the inventors, the filling material 3 was filled by taking into account the construction width of 100 to 200 mm, the shrinkage of the joint mortar, the thermal expansion of the steel shell, and the stress balance between the furnace bottom lining brick and the steel shell strength. 5 for wood
By imparting ~40% shrinkability, we were able to obtain good results without damage to the lining bricks. Next, the filler of the present invention will be explained in more detail. High softening point Pituchi powder has a softening point of 150℃ or higher, fixed carbon 15-80%, volatile content 15-80%, and temperature 200-800℃.
It is preferable to use a material with a large volatile content that evaporates over a wide range of . The amount used is preferably 15 to 50 parts by weight per 100 parts by weight of the refractory aggregate. That is, if it is less than 15 parts by weight, the shrinkability will be less than 5%. If the amount is more than 50 parts by weight, the filler will have many pores, that is, the compressibility will increase to 40% or more, which will lower the balance stress of the furnace structure, loosen the furnace bottom lining bricks, and cause the risk of hot metal leakage. As the alumina raw material, calcined alumina, sintered alumina, fused alumina, etc. can be used, and the particle size is preferably as small as possible, but it is preferable to use calcined alumina with a particle size of 44μ or less. That is, it begins to sinter at about 1100°C and comes into contact with hot metal. At around 1500℃, it is sufficiently sintered and exhibits corrosion resistance. The amount used is preferably 5 to 40 parts by weight per 100 parts by weight of the refractory aggregate. That is, if it is less than 5 parts by weight, it is difficult to maintain corrosion resistance, and if it is more than 40 parts by weight, infiltration by hot metal increases, which is also unfavorable for erosion resistance. As the carbonaceous raw material for the refractory aggregate used in the present invention, calcined anthracite, coke, anthracite containing volatile matter, natural graphite, artificial graphite, etc. are used as coarse particles of 0.3 to 5 mm and fine particles of 0.3 mm or less. This is the aggregate part that provides corrosion resistance. Although silicon carbide and silicon nitride are expensive, they are easy to fill during construction and improve corrosion resistance, so they can be used as part of the carbonaceous raw material fine powder, for example, 10 to 70 parts by weight, preferably 35 to 50 parts by weight. can be replaced. As the binder, thermoplastic resins such as tar and novolak type phenolic resins can be used. The amount of thermoplastic resin added is preferably 7 to 20 parts by weight per 100 parts by weight of the fire-resistant aggregate; if it is less than 7 parts by weight, filling properties during construction will not be obtained, and the development of shrinkability at the initial stage of temperature rise will be prevented. I also don't like it. If the amount is more than 20 parts by weight, filling properties during construction will be poor and corrosion resistance will deteriorate, which is not preferable. Note that clay, sodium phosphate, sodium silicate, etc. can be added to impart necessary plasticity and as a sintering agent during construction. Next, specific examples of the present invention will be described. Examples Table 1 shows the chemical composition of the refractory aggregate and calcined alumina used in the present invention. The formulations shown in Table 2 were kneaded in a kneader at room temperature for 20 minutes. The filling work was performed by ramming a ceramic frame of 230 x 114 x 65 mm to obtain a construction body. The compressibility measurement conditions were to linearly raise the temperature of the construction body including the ceramic frame from room temperature to 800°C in 24 hours, and apply uniaxial pressure from normal pressure (no pressure) to 150 kg/cm 2
The pressure is increased linearly in 24 hours until the deformation amount is %.
is shown as contractible. As shown in Table 2, the corrosion resistance of the product of the present invention was significantly improved compared to the comparative product (5). It also has moderate shrinkability compared to comparative product (6).
【表】【table】
【表】【table】
【表】
して示す。
[Table]
図は炉底の側面図である。
1……シヤモツト質れんが、2……カーボン質
リングブロツク、2′……炉底カーボン質ブロツ
ク、3……充填材、4……目地モルタル、5……
鉄皮。
The figure is a side view of the hearth bottom. 1... Shamo brick, 2... Carbon ring block, 2'... Hearth carbon block, 3... Filler, 4... Joint mortar, 5...
Iron skin.
Claims (1)
素質原料及び窒化珪素原料を単独または複合添加
してなる混合物からなる耐火骨材100重量部に高
軟化点ピツチ粉末15〜50重量部およびアルミナ系
原料5〜40重量部を添加し、熱可塑性結合剤で混
練してなることを特徴とする高炉炉底のカーボン
質リングブロツクと該リングブロツクの内側に配
設されるシリカ・アルミナ系れんがとの間に充填
する充填材。1. 100 parts by weight of a refractory aggregate consisting of a carbonaceous raw material alone or a mixture of a silicon carbide raw material and a silicon nitride raw material added singly or in combination to a carbonaceous raw material, 15 to 50 parts by weight of high softening point pitch powder and alumina-based A carbonaceous ring block at the bottom of a blast furnace characterized by adding 5 to 40 parts by weight of raw materials and kneading with a thermoplastic binder, and a silica-alumina brick arranged inside the ring block. Filling material to be filled in between.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58060918A JPS59190307A (en) | 1983-04-08 | 1983-04-08 | Packing material for blast furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP58060918A JPS59190307A (en) | 1983-04-08 | 1983-04-08 | Packing material for blast furnace |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS59190307A JPS59190307A (en) | 1984-10-29 |
JPH0158157B2 true JPH0158157B2 (en) | 1989-12-08 |
Family
ID=13156237
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP58060918A Granted JPS59190307A (en) | 1983-04-08 | 1983-04-08 | Packing material for blast furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59190307A (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6357706A (en) * | 1986-08-28 | 1988-03-12 | Nippon Steel Corp | Construction of blast furnace bottom |
CN100362114C (en) * | 2005-04-01 | 2008-01-16 | 武汉钢铁(集团)公司 | Blast furnace hearth |
US8182599B2 (en) * | 2005-07-22 | 2012-05-22 | Krosaki Harima Corporation | Carbon-containing refractory, production method thereof, and pitch-containing refractory raw material |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5532676A (en) * | 1978-08-31 | 1980-03-07 | Matsushita Electric Works Ltd | Method of manufacturing gutter |
JPS5535355A (en) * | 1978-09-05 | 1980-03-12 | Fujitsu Ltd | Hologram scanner |
JPS5628866A (en) * | 1979-08-17 | 1981-03-23 | Hitachi Ltd | Ink jet recording device |
-
1983
- 1983-04-08 JP JP58060918A patent/JPS59190307A/en active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5532676A (en) * | 1978-08-31 | 1980-03-07 | Matsushita Electric Works Ltd | Method of manufacturing gutter |
JPS5535355A (en) * | 1978-09-05 | 1980-03-12 | Fujitsu Ltd | Hologram scanner |
JPS5628866A (en) * | 1979-08-17 | 1981-03-23 | Hitachi Ltd | Ink jet recording device |
Also Published As
Publication number | Publication date |
---|---|
JPS59190307A (en) | 1984-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0476112B1 (en) | Magnesite-carbon refractories | |
CN101033144B (en) | Composite mortar for building blast furnace stack graphite brick and carborundum brick | |
JPS6343342B2 (en) | ||
US3842760A (en) | Refractory composition and shaped article containing carbon and silicon | |
JPH0158157B2 (en) | ||
JP2005162607A (en) | Carbon brick having microporosity and method for manufacturing the same | |
JPS6141862B2 (en) | ||
CN109734459A (en) | Hot-metal bottle pyrophillite silicon carbide carbon brick and preparation method thereof | |
JP6361705B2 (en) | Lining method of converter charging wall | |
JPH0881256A (en) | Brick containing compressed and pulverized expanded graphite | |
JP6266968B2 (en) | Blast furnace hearth lining structure | |
JP3197680B2 (en) | Method for producing unburned MgO-C brick | |
CN110282990A (en) | A kind of cheek inner liner of blast furnace hearth of blast furnace crucibe castable and composition | |
JP4384351B2 (en) | Refractory for blast furnace tuyere | |
JPS59146975A (en) | Plate refractories for sliding nozzle | |
JPS62176963A (en) | Filling material around blast furnace tapping hole constructed by flow-in | |
JPH06287057A (en) | Carbon-containing refractory | |
JPS5957968A (en) | Blast furnace tap hole sealing material | |
JPH01282143A (en) | Refractory mortar composition | |
JPS6212655A (en) | Carbon-containing refractory brick | |
JP3256397B2 (en) | Room temperature curing type fireproof mortar | |
JP2004149330A (en) | Carbon-containing brick and manufacturing process therefor | |
KR900008589B1 (en) | Refractory | |
JP2947385B2 (en) | Carbon containing refractories | |
JP3314983B2 (en) | High durability magnesia-spinel cement and refractory for lime burning kiln |