JPS5957487A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPS5957487A
JPS5957487A JP17005182A JP17005182A JPS5957487A JP S5957487 A JPS5957487 A JP S5957487A JP 17005182 A JP17005182 A JP 17005182A JP 17005182 A JP17005182 A JP 17005182A JP S5957487 A JPS5957487 A JP S5957487A
Authority
JP
Japan
Prior art keywords
type
laser
region
clad layer
stripe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP17005182A
Other languages
Japanese (ja)
Inventor
Yutaka Mihashi
三橋 豊
Shoichi Kakimoto
柿本 昇一
Misao Hironaka
美佐夫 廣中
Toshio Sogo
十河 敏雄
Saburo Takamiya
高宮 三郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP17005182A priority Critical patent/JPS5957487A/en
Publication of JPS5957487A publication Critical patent/JPS5957487A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2202Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure by making a groove in the upper laser structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2232Buried stripe structure with inner confining structure between the active layer and the lower electrode
    • H01S5/2234Buried stripe structure with inner confining structure between the active layer and the lower electrode having a structured substrate surface

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To manufacture a multimode laser with small non-spot astigmation by a method wherein a clad layer near the end of laser beam emitting channel of a gain guide type laser is made thicker near the stripe type current supplying region and thinner distant from the region providing the clad layer with a waveguide filling the effective role of refractive guide. CONSTITUTION:Before starting epitaxial growing operation, an N type GaAs substrate 1 is preliminarily etched by mask and etching solution excluding the part directly below the stripe type current supplying region so that the part A with specified length near the end is made thicker than the remaining region i.e. forming a groove 9 with a concave section. When an N type AlxGa1-xAs clad layer 2 is epitaxially grown on such an N type GaAs substrate 1, the grown surface becomes almost flat when the clad layer 2 is completely grown. Therefore the thickness of said layer 2 is thicker at the A part near the end directly below the stripe becoming thinner at both sides. The non-spot astigmation of the gain guide type laser may be improved by means of providing the part A near the end of a laser resonator with said structure.

Description

【発明の詳細な説明】 この発明は、縦マルチモードで発振するゲインガイド形
半導体レーザ装置に係り、特にその非点収差(アステイ
グマテイズム)を改善するための構造に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a gain guide type semiconductor laser device that oscillates in longitudinal multimode, and particularly to a structure for improving astigmatism thereof.

近年、半導体レーザ装置の発展は著しく、特に屈折率ガ
イドを有する様々なストライプ構造の横シングルモード
はもちろん、縦シングルモード発振(以下、シングルモ
ード発振という)が実現され、光デイスクメモリの読み
取り用゛(デジタルオーディオディスク等)や通信等の
分野で実用期九人りつつある。しかし、シングルモード
発振では、レーザ自身への戻り光の干渉によってノイズ
が発生しや1い事、また、温度変化時の縦モード遷移時
に著しいモード競合雑音が発生する等の問題点があり、
特にビデオディスクやオーディオディスク等の広い温度
範囲で使用される民生機器用の分野ではシングルモード
レーザよりも、これらの現象が発生しにくい縦マルチモ
ード発振する半導体レーザの方が適していると言われて
いる。
In recent years, the development of semiconductor laser devices has been remarkable, and in particular, not only transverse single mode oscillation of various stripe structures with refractive index guides, but also longitudinal single mode oscillation (hereinafter referred to as single mode oscillation) have been realized, and semiconductor laser devices have been used for reading optical disk memories. It is now reaching the practical stage in fields such as digital audio discs (digital audio discs, etc.) and communications. However, single mode oscillation has problems such as noise being easily generated due to the interference of the returning light to the laser itself, and significant mode competition noise occurring during longitudinal mode transitions due to temperature changes.
Particularly in the field of consumer equipment such as video discs and audio discs, which are used over a wide temperature range, it is said that semiconductor lasers with longitudinal multimode oscillation, which are less susceptible to these phenomena, are more suitable than single-mode lasers. ing.

一方、マルチモード発振する半導体レーザの構造として
は屈折率ガイドを持たない種々の狭いストライプ形レー
ザが知られている。しかしこのよ5な狭いストライプ形
レーザでは、活性層に平行な方向には光はゲインガイド
により導波される(以下、ゲインガイド形レーザという
)ため、光の波面が曲り、活性層と垂直な方向に広がっ
て出てくるレーザ光圧比較して、仮想的な放射位置が異
なる、いわゆる非点収差(アスデイグマテイズム)か生
ずる。ビデオテイスク、デジタルオーディオディスク(
1) A D )等、レーザ光tレンズで絞って使用す
る用途にはこの非点収差は好ましくない。というのは非
点収差があると光を有効に絞るには円柱レンズ等の特殊
なレンズヶ使用せねばならないからである。しかも、円
柱レンズを使用するにしても非点収差は素子の製造条件
に微妙に依存し、再現性が乏しいので、様々な規格のレ
ンズを準備する必要があり、事実上、円柱レンズを用い
て非点収差乞補償することは困離であった。
On the other hand, various narrow stripe-shaped lasers without a refractive index guide are known as semiconductor laser structures that emit multimode oscillation. However, in such a narrow striped laser, the light is guided by a gain guide in the direction parallel to the active layer (hereinafter referred to as a gain-guided laser), so the wavefront of the light is curved and the wavefront is bent in the direction parallel to the active layer. Compared to the laser light pressure that spreads out in different directions, the virtual radiation position differs, which is what is called astigmatism. videotask, digital audio disc (
This astigmatism is undesirable for applications such as 1) AD) in which laser light is focused by a t-lens. This is because if there is astigmatism, a special lens such as a cylindrical lens must be used to effectively focus the light. Moreover, even if a cylindrical lens is used, astigmatism slightly depends on the manufacturing conditions of the element and has poor reproducibility, so it is necessary to prepare lenses of various standards, and in fact, it is difficult to use a cylindrical lens. It was difficult to compensate for astigmatism.

この発明は、上述の点に鑑みてなされたもので、ゲイン
ガイド形レーザのレーザ光放出路の端面近傍のクラッド
層を、ストライブ状電流注入領域近傍では厚く、ストラ
イブから離れた所では薄くして実効的に屈折率ガイド的
な働きをする導波ガイドを設ける事により、非点収差の
小さいマルチモードレーザを提供することケ目的どして
いる。以下、この発明を図面に基づいて説明する。
This invention was made in view of the above points, and the cladding layer near the end face of the laser light emission path of a gain-guided laser is made thick near the striped current injection region and thinned away from the stripe. By providing a waveguide that effectively functions as a refractive index guide, the objective is to provide a multimode laser with small astigmatism. The present invention will be explained below based on the drawings.

第1図はこの発明の一実施例ケなす半導体レーザ装置ヶ
示す斜視図で、1はn型ガリウム砒素(GaAs )基
板、2,3および4はそれぞれ前記n型G a A S
基板1の主面上に液相エピタキシャル成長技術を用いて
積層さ第1た、n形AlxGa1−、 Asクラッド層
、p形AIyGa、−y As活性層およびp形Alx
Ga 、 −x A、sクラッド層であり、n形Alx
Ga+−xAsラッド層2およびp形AlxGa、−、
Asクラッド層4の屈折率がp形A l y G a 
H−y A s  活性層3の屈折率より十分小さくな
るよう、Xおよびyの値が選ばれ、ダブルへテロ構造が
形成されている。ここでこの発明の特徴はn形Qa A
s a板1は、エピタキシャル成長前に、あらかじめス
トライプ状電流注入部直下付近ケ除き、端面近傍のある
長さン持った部分(図中A)で、残りの領域よりもn形
GaAs基板1の厚さが厚くなるように、すなわち断面
か凹字形となる溝9が形成されるように所定のマスク(
フォトレジストやS i s N+IIQ )およびエ
ツチング液(硫酸、過酸化水素、水の混合液等)を用い
てエラランクしてお(。このようlx n形GaAs基
板1上にn形AlXGal−8AsクラツドN42 %
’エピタキシャル成長丁ftば、結晶成長を゛よ一般的
に四部では成長速度が速く凸部では遅いという性質を有
1゛るため、このn形A IxGa、−XAsクラッド
層2の成!終了時には成長面は、はぼ平坦となる。
FIG. 1 is a perspective view showing a semiconductor laser device according to an embodiment of the present invention, in which 1 is an n-type gallium arsenide (GaAs) substrate, 2, 3, and 4 are the n-type GaAs substrates, respectively.
A first layer is laminated on the main surface of the substrate 1 using a liquid phase epitaxial growth technique: an n-type AlxGa1-, As cladding layer, a p-type AIyGa,-yAs active layer, and a p-type Alx
Ga, -x A, s cladding layer, n-type Alx
Ga+-xAs rad layer 2 and p-type AlxGa,-,
The refractive index of the As cladding layer 4 is p-type A ly G a
The values of X and y are selected to be sufficiently smaller than the refractive index of the H-y As active layer 3, forming a double heterostructure. Here, the feature of this invention is that n-type Qa A
Before epitaxial growth, the s-a plate 1 is prepared by removing the area immediately below the striped current injection part, and forming a part (A in the figure) near the end face with a certain length of the n-type GaAs substrate 1, which is thicker than the remaining area. A predetermined mask (
In this way, an n-type Al %
In epitaxial growth, the growth rate of the n-type A IxGa, -XAs cladding layer 2 has a characteristic that the crystal growth is generally faster in the four parts and slower in the convex parts. At the end of the process, the growth surface becomes almost flat.

従ってn形A I X G ;+1− x A Sクラ
ッド層2の厚サバ、端面近傍のへの部分でストライブ直
下では厚く、その両側では薄くすることができる。
Therefore, the thickness of the n-type A I X G ;+1-x A S cladding layer 2 can be made thicker in the vicinity of the end face, directly under the stripe, and thinner on both sides thereof.

この発明においては、後述のようにレーザ共振器端面近
傍九このような+i造l設けることにより、ゲインガイ
ド形レーザの非点収差を改善することができる。5はこ
のようなダブルへテロ構造の上に形成されたn形G a
 A 8層、8は前記n形GaAs105 Yストライ
ブ状にp形AlxGa、−X 、Asクラッド層4まで
エツチングして形成した溝であり、この溝8の位置は基
板端部の溝9の直十圧位置されている。6はこの溝8の
中を含めて表面全体KZnを拡散したp+拡散層であり
、7はp側電極、1゜はn 111]電極である。
In this invention, as described below, by providing such a +i structure near the end face of the laser resonator, the astigmatism of the gain guide type laser can be improved. 5 is an n-type Ga formed on such a double heterostructure
A 8 layer 8 is a groove formed by etching the n-type GaAs105Y stripe up to the p-type AlxGa, -X, As cladding layer 4, and the position of this groove 8 is directly in line with the groove 9 at the edge of the substrate. Ten pressure is located. 6 is a p+ diffusion layer in which KZn is diffused over the entire surface including the inside of this groove 8, 7 is a p-side electrode, and 1° is an n111] electrode.

この実施例において、n側電極1とn側電極1゜の間に
、前者が正極性となるように電圧を印加すると、ストラ
イブ状の溝8中の底以外の領域はp−n −−p構造の
電流ブロック層として働くため、電流はストライブ状の
溝8の直下あるいはその近傍にのみ集中して流れる。こ
のとき電子が、口形A I y G a 1− X A
 Sクラッド層2がら、ホールが p形Alx oa、
−、Asクラッド層4からp形Al、 Ga I−、A
s活性層3へ注入され、電子・ホールの再結合発光が生
じる。このような構造において、電流を十分増加させれ
ば、p形Aly Ga+ −y As活性層3と平行な
方向に、ゲイン分布により光がガイドされたゲインガイ
ド形のレーザ発振が生ずることは良く知られている。そ
の発振モードは一般にストライブ幅を充分狭く(例えば
5μm以下に)すれば、横モードはシングルモード、縦
モードはマルチモード発振となることも良(知られてい
る。しかしこのようなゲインガイド形の発振においては
、前述のように非点収差が見られ、また、その非点収差
が再現性に乏しいためこの非点収差ヶなくするか、ある
いは再現性良くある値にそろえるかじプよければ、ノイ
ズが少ないという利点を持ったマルチモードレーザケ実
用に供するのは困難である。
In this embodiment, when a voltage is applied between the n-side electrode 1 and the n-side electrode 1° so that the former has positive polarity, the area other than the bottom of the striped groove 8 is p−n −− Since it acts as a p-structured current blocking layer, current flows concentrated only directly under or in the vicinity of the striped grooves 8. At this time, the electron has a mouth shape A I y Ga 1-
In the S cladding layer 2, the holes are p-type Alx oa,
-, As cladding layer 4 to p-type Al, Ga I-, A
s is injected into the active layer 3, and light emission occurs due to recombination of electrons and holes. It is well known that in such a structure, if the current is increased sufficiently, gain-guided laser oscillation will occur in which light is guided by the gain distribution in a direction parallel to the p-type AlyGa+ -yAs active layer 3. It is being In general, if the stripe width is made narrow enough (for example, 5 μm or less), the oscillation mode can become single mode in the transverse mode and multimode in the longitudinal mode (it is known that this type of gain guide type As mentioned above, astigmatism is seen in the oscillation of , and since the astigmatism has poor reproducibility, it would be better to eliminate this astigmatism or to adjust it to a certain value with good reproducibility. It is difficult to put multimode lasers into practical use, which has the advantage of low noise.

そのため、この発明においてはゲインガイド形レーザの
レーザ光放出路の端面近傍に第1図中への部分で示され
るように、n形GaAs基板IK溝9火形成した後、n
形A IX Qa I −! Asクラッド層2を成長
する事によりこのクラッド層2に厚み分布火つけ、実効
的に屈折率ガイド的な働き11ろ導波ガイドを設けたも
のである。
Therefore, in the present invention, after forming an IK groove 9 in an n-type GaAs substrate near the end face of a laser beam emission path of a gain-guided laser, as shown in the part in FIG.
Form A IX Qa I-! By growing the As cladding layer 2, the cladding layer 2 is given a thickness distribution, and a waveguide is provided which effectively functions as a refractive index guide.

第2図に、第1図Bの部分で、接合面に垂直な断面の光
のp形A l y G a I−y A S活性層3か
らのしみ出しの様子ヶ模式的に示す。n形GaAS基板
1の溝9の外側の部分(第2図中すの部分)におけるn
形A I X G a H−X A Sクラッド層2の
厚さt”r充分に薄く1°れば、p形A I y G 
a 1−y A S活性層3からしみ出した光の1そは
第2図中11のように、吸収の大きいn形G a A 
S基板1に到達し、n形G a A S基板1の屈折率
の影響を受けろ。n形QaAs基板1の屈折率はn形A
 1xGa I−x A、sクラッド層2の屈折率に比
して大きいこと、および光吸収が大きい(n形AlアG
 a H−X A Sクラッド層2のバンドギャップが
、p形Al、oa、−Y As活性層3のバンドギャッ
プより大きいため)ことから、一種の屈折率ガイドかこ
の部分に形成されること忙なる。
FIG. 2 schematically shows how light seeps out from the p-type AlyGaI-yAS active layer 3 in a cross section perpendicular to the junction surface in the part shown in FIG. 1B. n in the outer part of the groove 9 of the n-type GaAS substrate 1 (the part marked with a square in FIG. 2)
Type A I
a 1-y A The light seeping out from the A S active layer 3 is an n-type G a A with large absorption, as shown in 11 in Fig. 2.
Reach the S substrate 1 and be affected by the refractive index of the n-type GaAs substrate 1. The refractive index of the n-type QaAs substrate 1 is n-type A.
1xGa I-x A, which is larger than the refractive index of the s cladding layer 2, and has large light absorption (n-type Al
Since the bandgap of the aH-XAS cladding layer 2 is larger than that of the p-type Al, OA, -Y As active layer 3), a kind of refractive index guide is likely to be formed in this part. Become.

第3図(a)、 (b)はこの発明の導波ガイド部分A
が非点収差を改善する効果ン模式的に示した活性層面に
垂直な方向から眺めた平面図であり、第3図(a)は導
波ガイド部分を待たない従来のゲインガイド形レーザ、
第3図(b)はこの発明の実施例における共振器端面近
傍でのレーザ光の波面および光の広がりを示す。第3図
(a)かられかるように、従来のゲインガイド形レーザ
では共振器端面近くで波面(図中破線で示す)か次第に
曲ること、およびp形AlyGa+ −Y As活性層
3に対して水平な方向の光のとじ込め効果が弱いため端
面のかなり奥から出る光もレーザ光として寄与するから
、レーザ光は共振器端面かも距li++i dだけ奥か
ら放射されるように見える。ところかこの発明の上記実
施例の構造では第3図(b)に示すようにゲインガイド
形レーザ部分Bから導波ガイド部分Aに入った光は、前
述のように導波ガイド部分Aが屈折率ガイド的な働きを
し、光のとじ込め効果を有すること、およびn形GaA
s基板1に漏れ出た光は吸収されることから、端面側近
で広がらず、レーザ光は端面のごとく近傍(図中d′)
から放射されるように見える。
FIGS. 3(a) and 3(b) show the waveguide portion A of the present invention.
is a plan view schematically showing the effect of improving astigmatism when viewed from a direction perpendicular to the active layer surface, and FIG.
FIG. 3(b) shows the wavefront of the laser beam and the spread of the light in the vicinity of the resonator end face in the embodiment of the present invention. As can be seen from FIG. 3(a), in the conventional gain-guided laser, the wavefront (indicated by the broken line in the figure) gradually curves near the cavity end face, and the p-type AlyGa+ -YAs active layer 3 Since the light confinement effect in the horizontal direction is weak, the light emitted from a considerable depth of the end face also contributes as laser light, so the laser light appears to be emitted from the depth of the resonator end face by a distance li++i d. However, in the structure of the above embodiment of the present invention, as shown in FIG. 3(b), the light entering the waveguide portion A from the gain guide type laser portion B is refracted by the waveguide portion A as described above. It acts as a rate guide and has a light confinement effect, and n-type GaA
Since the light leaking into the s-substrate 1 is absorbed, it does not spread near the end face, and the laser light is transmitted near the end face (d' in the figure).
It appears to be radiated from.

一方、p形A1y Gal −y A s活性層3面と
垂直方向にはダブルへテロ構造の屈折率ガイドで光は導
波されるため、レーザ光の放射源位置は共振器端面圧あ
るので、p形At、oa、−y As活性層31C対し
て垂直方向と水平方向での各放射源位置はほぼ一致し、
非点収差はほとんどなくなる。なお、導波ガイド部分A
の長さはあまり長いと、縦方向発振モードかシングルモ
ードに近くなり、ノイズが大きくなるので、できるだけ
短かい方が良い。しかし、あまり短かいとガイド効果が
なくなる事、およびへき開による鏡面形成の際の精度等
から最小限20μm〜30/Am程度は必要である。
On the other hand, since the light is guided by a double heterostructure refractive index guide in the direction perpendicular to the three surfaces of the p-type A1yGal-yAs active layer, the laser light source position is at the resonator end surface pressure. The positions of the radiation sources in the vertical and horizontal directions with respect to the p-type At, oa, -y As active layer 31C are almost the same,
Astigmatism almost disappears. In addition, the waveguide part A
If the length is too long, the mode will become close to vertical oscillation mode or single mode, which will increase the noise, so it is better to make it as short as possible. However, if the length is too short, the guide effect will be lost, and the minimum length of about 20 μm to 30/Am is required because of the accuracy in forming a mirror surface by cleavage.

なお、上記実施例においてはGaAs  AlGaAs
系の材料ケ用いた例乞示したが、InP (インジウム
・リン)  InGaAsP (インジウム・ガリウム
・砒素・リン)系の四元化合物を用いた半導体レーザに
も適用できるのは言うまでもない。また、この実施例の
ような溝による電流狭搾方法を用いたもの以外のゲイン
ガイド形ストライプ構造の半導体レーザにもこの発明は
適用できる。また、上記実施例においては簡単にするた
めレーザ共振器の片側端面にのみ導波ガイドを設けた例
を示したが、もちろん両側に設けても良い。
In addition, in the above embodiment, GaAs AlGaAs
Although examples using InP (indium phosphide) and InGaAsP (indium gallium arsenic phosphorous) based quaternary compounds have been shown, it goes without saying that the present invention can also be applied to semiconductor lasers using quaternary compounds such as InP (indium phosphide) and InGaAsP (indium gallium arsenic phosphorus). Further, the present invention can also be applied to semiconductor lasers having a gain guide type stripe structure other than those using the current narrowing method using grooves as in this embodiment. Further, in the above embodiment, for the sake of simplicity, the waveguide guide is provided only on one end face of the laser resonator, but it is of course possible to provide the waveguide guide on both sides.

以上説明したように、この発明に係る半導体レーザ装置
は、半導体レーザの共振器端面近傍に共振器端面近傍の
クラッド層をストライプ状領域直下では厚く、それt除
く領域では薄くした構造の導波ガイド欠設けたので、非
点収差ンはとんどなく丁ことかでき、従ってこの発明を
用いれば、温度変化時のモード遷移ノイズが少ないとい
うマルチモード発振の!侍長を生かしたままで、非点収
差がない、実用的なゲインガイド形レーザが実現できろ
という極めて丁ぐれた効果火発揮するものである。
As explained above, the semiconductor laser device according to the present invention provides a waveguide guide having a structure in which the cladding layer near the cavity end face of the semiconductor laser is thick immediately below the striped region and thin in the region other than the striped region. Since this is not provided, astigmatism can be reduced to a minimum, and therefore, if this invention is used, the mode transition noise during temperature changes will be reduced, resulting in multi-mode oscillation! This is an extremely effective way to realize a practical gain-guided laser that is free of astigmatism while keeping the Samurai's characteristics intact.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例火水す斜視図、第2図は第
1図中人の部分の接合面に垂直な断面図で、活性層から
の光のしみ出し夕説明するだめの模式図、第3図(a)
、 (b)はこの発明の導波ガイド部分が非点収差ン改
善することχ示す図で、同図(a)は従来のゲインガイ
ド形レーザにおける共振器端面近傍でのレーザ光の波面
および光の広がりを示し、同図(b)はこの発明の実施
例におけるレーザ光の波面および光の広がりを示す図で
ある。 図中、1はn形G a A S基板、2はn形Al x
G a 、−。 Asクラッド層、3はp形A ly G a H−y 
A S活性層、4はp形Atxoa、−1Asクラッド
層、5はn形G a A 8層、6はp+拡散層、7は
p all TL極、8はn形QaAs*Yエツヂング
して形成したストライプ状の溝、9は導波ガイド部分に
おける基板の溝、10はn側電極、Aは導波ガイド部分
、Bはゲインガイド形レーザ部分である。 なお、図中の同一符号は同一または相当部分な示す。 代理人 葛野信−(外1名) 第1図 第2図 一43′; 第3図 (a) 手 行、補 正 i4F   C自発)″”4’:’+
’ :Fl庁長官殿 1、事1′1・の表小    1冒(ill、’j 5
7−170051冗2、発明の?、称    半導体レ
ーザ装置3.1山正をする−と 名 称(GOI)   三菱型(組1、式会社代表者片
111仁八部 4、代理人 注 所     東京都千代1.1.I区丸の内二丁I
I Z音33S5、補正の対象 明細1)の特許請求の範囲の4閑および発明の1;C細
な説明の欄 6、補正の内容 (1)  明細書の特許請求の範囲を別紙のように補止
する。 (2)明細書第7頁1111の「クラッド層2jを、[
n形A LX  Ga1−xAsAsクララ1ζ層2羽
口1+る。 (3)同じく第7頁14行の「第1図B」を、「第11
図A」と補正する。 以  1゜ 2、4;Ir 1NJ請求の柿、囲 活性層をこれよりバンドキャップが大きく、屈折率が小
さいクラット層で挟みこんだ形のダブルへテロ描ii9
で2つの活性層のせまいストライブ状領域に集中的にキ
ャリアか注入されるようにした構造を有するゲインガイ
ド形ダブルへテロ接合半導体レーザにおいて、この半導
体レーザのJl<41S器を構成する2つの端面の一方
または両方の近傍の2つのクラッド層の少なくとも一方
のクラッド層の前記ストライブ状領域面と垂直な方向に
おける厚さ分4Iを、このストライプ状領域近傍におい
ては厚く、これ以外の領域においては薄くなるようにし
た導波ガイドを設けたことを特徴とする半導体レーザ装
置ν1゜
Fig. 1 is a perspective view of an embodiment of the present invention, and Fig. 2 is a sectional view perpendicular to the joint surface of the human part in Fig. 1. Schematic diagram, Figure 3 (a)
, (b) is a diagram showing that the waveguide portion of the present invention improves astigmatism, and (a) is a diagram showing the wavefront of laser light and light near the resonator end face in a conventional gain guide type laser. FIG. 3B is a diagram showing the wavefront of laser light and the spread of light in the embodiment of the present invention. In the figure, 1 is an n-type Ga AS substrate, 2 is an n-type Al x
Ga, -. As cladding layer, 3 is p-type A ly G a H-y
AS active layer, 4 is p-type Atxoa, -1As cladding layer, 5 is n-type GaA 8 layer, 6 is p+ diffusion layer, 7 is pall TL pole, 8 is formed by etching n-type QaAs*Y 9 is a groove in the substrate in a waveguide portion, 10 is an n-side electrode, A is a waveguide portion, and B is a gain guide type laser portion. Note that the same reference numerals in the figures indicate the same or corresponding parts. Agent Makoto Kuzuno - (1 other person) Figure 1 Figure 2 - 43'; Figure 3 (a) Hand line, correction i4F C spontaneous)''4':'+
': Mr. Director-General of Fl Agency 1, 1'1.
7-170051 2, Invention? , Name Semiconductor laser device 3.1 Yamamasa - Name (GOI) Mitsubishi type (Group 1, Company representative Kata 111 Jinhachibe 4, Agent note Address 1.1, Marunouchi, I-ku, Chiyo, Tokyo Nicho I
I Z Sound 33S5, Section 4 of Claims of Specification Subject to Amendment 1) and Section 1 of Claims; C Detailed Explanation Column 6, Contents of Amendment (1) The scope of claims of the specification as attached. Make amends. (2) “The cladding layer 2j is [
n-type A LX Ga1-xAsAs Clara 1ζ layer 2 tuyere 1+ru. (3) Similarly, “Figure 1 B” on page 7, line 14 is changed to “Figure 11
Figure A”. 1゜2, 4; Persimmon claimed by Ir 1NJ, a double-hetero drawing in which a surrounding active layer is sandwiched between crat layers with a larger band cap and a lower refractive index ii9
In a gain-guided double heterojunction semiconductor laser having a structure in which carriers are intensively injected into narrow stripe-like regions of two active layers, two The thickness of at least one of the two cladding layers near one or both of the end faces in the direction perpendicular to the striped region surface is set to be 4I thick in the vicinity of the striped region and thick in other regions. A semiconductor laser device ν1゜ characterized in that it is provided with a waveguide whose thickness is reduced.

Claims (1)

【特許請求の範囲】[Claims] 活性層をこれよりバンドキャップが太き(、屈折率が小
さいクラット層で挾みこんだ形のダブルへテロ構造で2
つの活性層のせまいストライブ状tfI域に集中的に=
Vヤリアが注入されるようにした構造ケ有するガイツガ
イド形ダブルへi1接合半導体レーザにおいて、この半
導体レーザの共振器をn?成する2つの端面の一方また
は両方の近傍の2つのクラッド層の少なくとも一方のク
ラッド層の前記ストライプ状領域面と垂直な方向におけ
る厚さ分布t、このストライプ状領域近傍においては厚
く、これ以外の領域においては薄くなるようにした導波
ガイドを設けたことを特徴とする半導体レーザ装置。
The active layer has a thicker band cap (2) with a double heterostructure sandwiched by crat layers with a lower refractive index.
Concentrated in narrow stripe-like tfI regions of two active layers =
In a Geitz-guided double-i1 junction semiconductor laser having a structure in which V rays are injected, the resonator of this semiconductor laser is n? The thickness distribution t in the direction perpendicular to the striped region surface of at least one of the two cladding layers near one or both of the two end faces of the striped region is thick in the vicinity of the striped region and thick in other regions. 1. A semiconductor laser device comprising a waveguide that is thinner in a region.
JP17005182A 1982-09-27 1982-09-27 Semiconductor laser device Pending JPS5957487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17005182A JPS5957487A (en) 1982-09-27 1982-09-27 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17005182A JPS5957487A (en) 1982-09-27 1982-09-27 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPS5957487A true JPS5957487A (en) 1984-04-03

Family

ID=15897706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17005182A Pending JPS5957487A (en) 1982-09-27 1982-09-27 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS5957487A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6183911A (en) * 1984-10-01 1986-04-28 Sony Magnescale Inc Optical type displacement measuring apparatus
KR100473349B1 (en) * 2001-04-02 2005-03-08 파이오니아 가부시키가이샤 Nitride semiconductor laser device and method for manufacturing the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55141778A (en) * 1979-04-20 1980-11-05 Matsushita Electric Ind Co Ltd Semiconductor laser and manufacturing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55141778A (en) * 1979-04-20 1980-11-05 Matsushita Electric Ind Co Ltd Semiconductor laser and manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6183911A (en) * 1984-10-01 1986-04-28 Sony Magnescale Inc Optical type displacement measuring apparatus
KR100473349B1 (en) * 2001-04-02 2005-03-08 파이오니아 가부시키가이샤 Nitride semiconductor laser device and method for manufacturing the same

Similar Documents

Publication Publication Date Title
US4371966A (en) Heterostructure lasers with combination active strip and passive waveguide strip
JPS60206081A (en) Semiconductor laser device
JPS5957487A (en) Semiconductor laser device
JPH10144991A (en) Semiconductor laser
JP2846668B2 (en) Broad area laser
JPS6358389B2 (en)
JP2723888B2 (en) Semiconductor laser device
JPH0983059A (en) Semiconductor laser
JPS6362292A (en) Semiconductor laser device and manufacture thereof
JPS63164290A (en) Semiconductor laser device
JPS6174384A (en) Semiconductor laser
JPH0644661B2 (en) Semiconductor laser device
JPH07131108A (en) Semiconductor laser
JPS63142879A (en) Semiconductor laser
JPH0587997B2 (en)
JP2763781B2 (en) Semiconductor laser device and method of manufacturing the same
JP2988552B2 (en) Semiconductor laser device and method of manufacturing the same
JPS594870B2 (en) semiconductor light emitting device
JPS60115283A (en) Semiconductor laser device
JPS6239084A (en) Semiconductor laser device and manufacture thereof
JPS6167982A (en) Semiconductor laser
JPH01282883A (en) Semiconductor laser device
JPS58116786A (en) Semiconductor light emitting device
JPS61220393A (en) Semiconductor laser element
JPS6129183A (en) Semiconductor laser