JPS5956487A - Two-step liquefaction of coal - Google Patents

Two-step liquefaction of coal

Info

Publication number
JPS5956487A
JPS5956487A JP16508182A JP16508182A JPS5956487A JP S5956487 A JPS5956487 A JP S5956487A JP 16508182 A JP16508182 A JP 16508182A JP 16508182 A JP16508182 A JP 16508182A JP S5956487 A JPS5956487 A JP S5956487A
Authority
JP
Japan
Prior art keywords
coal
solvent
component
oil
heavy component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16508182A
Other languages
Japanese (ja)
Other versions
JPH0410517B2 (en
Inventor
Takafumi Shimada
嶋田 隆文
Masahito Kaneko
雅人 金子
Hirotoshi Horizoe
浩俊 堀添
Kiyomi Uehara
上原 清美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP16508182A priority Critical patent/JPS5956487A/en
Publication of JPS5956487A publication Critical patent/JPS5956487A/en
Publication of JPH0410517B2 publication Critical patent/JPH0410517B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

PURPOSE:To make the conditions of cracking of solubilizable components into light components coincide with those of hydrogenation with effective ingredients of solent, by dissolving coal in a solvent for separation of oil component and heavy component and performing hydrogenation by feeding the heavy component into the 1st reactor of a reaction zone consisting of two or more reactors and feeding the heavy component midway into the reaction zone. CONSTITUTION:Coal is dissolved, under heating, in a solvent consisting of partially hydrogenated bi-quinque-cyclic aromatic hydrocarbon. The solution is distilled and separated into an oil component with a boiling point of 400-500 deg.C and a heavy component with a higher boiling point. For hydrogenation treatment, the heavy component is fed into the 1st reactor of a reaction zone consisting of two or more reactors under the same pressure arranged in a series and the oil component is fed midway into the reaction zone.

Description

【発明の詳細な説明】 本発明は石炭液化法に係るものであり、特に溶剤と石炭
を混合加熱し石炭を可溶化する第1段反応工程、第1段
反応工程生成物を触媒およびガス状水素の存在下で水素
化する第2段反応工程から構成される2段液化方法の改
良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a coal liquefaction method, and in particular, a first reaction step in which a solvent and coal are mixed and heated to solubilize the coal, and the first reaction step product is treated with a catalyst and a gaseous state. The present invention relates to an improvement in a two-stage liquefaction method comprising a second stage reaction step of hydrogenation in the presence of hydrogen.

近年エネルギー源の多様化に伴がい、石炭の液化プロセ
スの開発が加速推進されており、数多くの研究が行なわ
れている。
In recent years, with the diversification of energy sources, the development of coal liquefaction processes has been accelerated, and numerous studies are being conducted.

その中で、石炭を先ず溶剤の能力を利用して比較的温和
な条件下で可溶化させ、その後可溶化成分を触媒作用を
用いて、水素の存在下で分解軽質化する2段液化法は、
水素の消費量の低減、製品の多様化に対する自由度の増
大等から優れた方法である。
Among them, the two-stage liquefaction method involves first solubilizing coal under relatively mild conditions using the ability of a solvent, and then using a catalytic action to decompose and lighten the solubilized components in the presence of hydrogen. ,
This is an excellent method because it reduces hydrogen consumption and increases the degree of freedom for product diversification.

一方、2段液化法は、第1段反応が溶剤の能力に支配さ
れているため、溶剤の性状をいかに保つかが重要な課題
となる。
On the other hand, in the two-stage liquefaction method, since the first stage reaction is controlled by the ability of the solvent, an important issue is how to maintain the properties of the solvent.

第1段反応では石炭は高温条件下で熱分解され、プレア
スファルテン、アスファルテンと呼ばれる高分子成分に
転換され可溶化する。この熱分解時に生成するラジカル
は水素供与性溶剤、および、又は石炭の水素リッチか部
分から水素を受けとり、容易に水素を渡しそうになった
溶剤(この現象は溶剤のシャトリング効果と呼ばれてお
り、多環の芳香族類にこの効果があるといわれている)
から水素を受は取り安定化すると考えられている。
In the first stage reaction, coal is thermally decomposed under high temperature conditions and converted into polymeric components called pre-asphaltenes and asphaltenes, which are then solubilized. The radicals generated during this thermal decomposition receive hydrogen from hydrogen-donating solvents and/or hydrogen-rich parts of the coal, and the solvents that are likely to readily transfer hydrogen (this phenomenon is called the solvent shuttling effect). (Polycyclic aromatics are said to have this effect.)
It is thought that it absorbs hydrogen and stabilizes it.

従って、第1段反応に供給する溶剤は上記機能に優れた
溶剤でなくてはならず、もしそうでない場合は、熱分解
で生じた活性なプレアスファルテン、アスファルテンは
再結合し、極めて分解しにくい巨大分子に転換すること
になる。
Therefore, the solvent supplied to the first stage reaction must be a solvent with excellent functions as described above. If not, the active pre-asphaltenes and asphaltenes generated by thermal decomposition will recombine and be extremely difficult to decompose. It will be converted into a macromolecule.

上記条件に適合した良質の溶剤としては、本発明者ら、
他研究者らにより2〜5環の多環芳香族の部分水素化物
が挙げもねている。従ってこの溶剤を石炭液化プロセス
内でいかに合理的に製造するかが2段液化法の成否を左
右する。
As a high-quality solvent that meets the above conditions, the inventors
Other researchers have also mentioned partially hydrogenated polycyclic aromatic compounds having 2 to 5 rings. Therefore, the success or failure of the two-stage liquefaction method depends on how to rationally produce this solvent within the coal liquefaction process.

多環芳香族の部分水素化物を製造するには、多環芳香族
を触媒(例えばニッケル・モ11プデン系、コバルト・
モリブデン系触媒〕およびガス状水素の存在下で水素化
すわば良いが、この反応1jsoa℃以上、  100
 Kg/cfG以上の高温、高圧反応であり、高圧反応
器を必要とする上、高圧下へ水素を供給するための圧縮
機9反応余剰水素を回収循環するための装置、高圧下に
原料を供給するポンプ、反応液からガスを分熱し當圧才
で減圧する装置等諸々の周辺機器を必要とする。
In order to produce partially hydrogenated polycyclic aromatics, polycyclic aromatics are treated with catalysts (e.g. nickel/molybdenum, cobalt/
Hydrogenation may be carried out in the presence of a molybdenum-based catalyst] and gaseous hydrogen;
This is a high-temperature, high-pressure reaction of Kg/cfG or more, and requires a high-pressure reactor, as well as a compressor 9 to supply hydrogen under high pressure.A device to recover and circulate excess hydrogen from the reaction, and supply raw materials under high pressure. Various peripheral equipment is required, such as a pump to heat the reaction liquid and a device to separate the heat from the gas and reduce the pressure at the same pressure.

又、溶剤の取り扱い量も、第1段反応工程での溶剤/石
炭比が15〜3.0であることから本来の石炭処理量の
1.5〜3.0倍とな妙、石炭液化プラントの建設費、
運転費の可成りの部分を占めることとなる。
In addition, since the solvent/coal ratio in the first stage reaction process is 15 to 3.0, the amount of solvent handled is 1.5 to 3.0 times the original amount of coal processed. construction cost,
This will account for a significant portion of operating costs.

−1+、石炭の可溶化物を触媒、水素の存在下で分解軽
質化を行なわせるための第2段反応工程で同時に溶剤成
分の水素化を行なわせる方法も従来性なわれている。
-1+, there is also a conventional method in which the solvent component is simultaneously hydrogenated in the second reaction step for decomposing and lightening the solubilized coal in the presence of a catalyst and hydrogen.

この場合、の大き力問題は可溶化物の分解軽質化条件と
溶剤の有効成分を適度に水素化する条件が一致しないと
ころにある。すなわち、可溶化物の分解軽質化条件の方
が溶剤の有効成分の水素化条件より厳いため、条件を分
解主体にすると溶剤の有効成分が過水素化され、溶剤能
力が極度に低下するし、溶剤の水素化主体にすると分解
率が不足する。
In this case, the major problem lies in the fact that the conditions for decomposing and lightening the solubilized material and the conditions for appropriately hydrogenating the active components of the solvent do not match. In other words, the decomposition and lightening conditions for the solubilized material are more severe than the hydrogenation conditions for the active component of the solvent, so if the conditions are made to mainly decompose, the active component of the solvent will be overhydrogenated, and the solvent capacity will be extremely reduced. If the solvent is mainly hydrogenated, the decomposition rate will be insufficient.

本発明は上記の従来法の難点を克服した新しい石炭の2
段液化法であり、石炭の可溶化物の分解軽質化と溶剤の
有効成分の適度な水素化を第2段反応工程内で合理的に
行なう方法を提供するものである。
The present invention proposes two new types of coal that overcome the drawbacks of the above-mentioned conventional methods.
This is a stage liquefaction method, which provides a method for rationally performing decomposition and lightening of coal solubilized materials and appropriate hydrogenation of the effective components of the solvent within the second stage reaction process.

すなわち、本発明は石炭と溶剤を混合加熱し、石炭を可
溶化せしめる第1段反応工程、l@1段反応工程生成物
の少なくとも1部を水素化処理する第2段反応工程から
なる石炭液化方法に於て、第1段反応工程生成物を沸点
400乃至500℃以下の油分とそれ以上の沸点を有す
る重質分に分離し、第2段反応工程を実質的に圧力が等
しい複数個かつ、直列の反応域で構成せしめて、前記重
質分は複数個の反応域の第1番目から供給すると共に前
記油分は複数個の反応域の途中から供給することを特徴
とする石炭の2段液化方法を要旨とするものである。
That is, the present invention is a coal liquefaction process that consists of a first reaction step in which coal and a solvent are mixed and heated to solubilize the coal, and a second reaction step in which at least a part of the product of the first step reaction step is hydrotreated. In this method, the product of the first stage reaction step is separated into an oil component with a boiling point of 400 to 500°C or less and a heavy component with a boiling point higher than that, and the second stage reaction step is carried out in multiple stages with substantially equal pressure and , a two-stage coal coal production system comprising reaction zones connected in series, wherein the heavy component is supplied from the first of the plurality of reaction zones, and the oil component is supplied from the middle of the plurality of reaction zones. The gist is the liquefaction method.

本発明によねば先ず、第1段反応工程で生成する溶剤成
分を含む混合物を蒸留操作により沸点400〜500℃
以下の油分とそれ以上の沸点を有する重質分に分離する
。この場合溶剤としての有効成分(水素化された多環芳
香族と水素化されていない多環芳香族)は油分中に回収
されるように蒸留カット温度を設定すべきであるが4項
および5環の芳香族の沸点から400〜500の範囲が
好ましい。
According to the present invention, first, the mixture containing the solvent component produced in the first reaction step is distilled to a boiling point of 400 to 500°C.
It is separated into the oil component below and the heavy component with a boiling point higher than that. In this case, the distillation cut temperature should be set so that the active ingredients as a solvent (hydrogenated polycyclic aromatics and non-hydrogenated polycyclic aromatics) are recovered in the oil, but items 4 and 5 should be set. The range is preferably 400 to 500 from the boiling point of the aromatic ring.

次いで第2段反応工程を、実質的に圧力が等しい複数個
かつ直列の反応域で構成せしめ、重質分を第1番目の反
応域から供給するのに対し、油分を途中から供給する。
Next, the second stage reaction step is composed of a plurality of reaction zones connected in series with substantially the same pressure, and the heavy component is supplied from the first reaction zone, while the oil component is supplied from the middle.

このように重質分と油分を別々に供給することにより各
々の反応器内での滞留時間をほぼ任意に変化させること
ができ、前記の重質分の軽質化と溶剤の水素化処理を一
連の反応装置で行なうことが可能となる。
By feeding the heavy components and oil components separately in this way, the residence time in each reactor can be changed almost arbitrarily, and the above-mentioned lightening of the heavy components and hydrogenation of the solvent can be carried out in a series. The reaction can be carried out using a reactor.

具体的な実施態様例としては、固定床、流動床、懸濁床
等の反応器を直列に接続し、その途中の接続部から油分
(溶剤成分〕を供給することけ勿論の事、一つの固定床
反応器に触媒層と不活性充填物の層を交互に多重に充填
し、途中の触媒層から油分を供給する方法が挙げられる
As a specific embodiment, reactors such as a fixed bed, a fluidized bed, and a suspended bed may be connected in series, and oil (solvent component) may be supplied from a connection in the middle of the reactors. One example is a method in which a fixed bed reactor is alternately filled with catalyst layers and layers of inert fillers, and oil is supplied from the intermediate catalyst layers.

また、油分の供給については全てを途中から供給する方
法には限定されず、その一部を重質分と一緒に第1番目
の反応域に供給しても良い。
Furthermore, the method of supplying the oil is not limited to the method in which all the oil is supplied from the middle, and a part of the oil may be supplied to the first reaction zone together with the heavy components.

以下実施例をもって本発明を具体的に説明する。The present invention will be specifically explained below with reference to Examples.

〔実施例1〕 多環芳香族が多重に含まれる石炭系重質油をニッケル・
モリブデン系触媒(16φ押出成形品、組成MoO31
9,8wt%、NiO3,4wt% 、A/、2O37
6,8wt%〕を用いて水素化処理して得た溶剤と石炭
を、450℃、15 KFX7crt12G 、の条件
下で7分保持し、石炭を可溶化させた。
[Example 1] Coal-based heavy oil containing multiple polycyclic aromatics was treated with nickel.
Molybdenum catalyst (16φ extruded product, composition MoO31
9.8wt%, NiO3,4wt%, A/, 2O37
6.8 wt%] and the coal were held at 450° C. and 15 KFX7crt12G for 7 minutes to solubilize the coal.

その後、高温遠心分離機および蒸留操作により固形分含
有−9ji O,3wt%、沸点450℃以上の石炭の
可溶化物質(以下SCと略記するつと沸点300〜45
0℃の範囲の溶剤留分を回収し、水素化試験の原料とし
た。溶剤留分中にけ昇温式ガスクロマトグラフィーで顕
著なピークとして閉められる代表的な3.4環の多環芳
香族(以下PA 成分と略記)が42.9 wt%、そ
れらの部分水素化物(2水1化物および4水李化物、以
下HPA成分と略記〕が4.2 wt%存在していた。
Thereafter, by using a high-temperature centrifuge and distillation operation, a solubilized substance of coal with a solid content of -9jiO, 3 wt% and a boiling point of 450°C or higher (hereinafter abbreviated as SC) and a boiling point of 300-45
The solvent fraction in the 0°C range was collected and used as a raw material for the hydrogenation test. In the solvent fraction, 42.9 wt% of typical 3.4-ring polycyclic aromatics (hereinafter abbreviated as PA component), which appear as a prominent peak in temperature-programmed gas chromatography, were partially hydrogenated. 4.2 wt% of (dihydride and tetrahydride, hereinafter abbreviated as HPA component) was present.

次に、上記SCを1,000g、油分3,300gの混
合物を250117/hr  の供給速度で固定床式反
応器に供給し、380℃、  150 Kg/cm” 
Gの榮件で水紫化反応を行なわせた。
Next, a mixture of 1,000 g of the above SC and 3,300 g of oil was supplied to a fixed bed reactor at a feed rate of 250,117/hr, and the mixture was heated at 380°C and 150 Kg/cm.
At the request of G, a water purple reaction was carried out.

固定床式反応器は、N011  反応器、NO,2反応
器が直列に接続さねており、その各々には250 mA
 のニッケル・モリブデン系触媒(同上)が充填されて
いる。
The fixed bed reactor has an N011 reactor and a NO,2 reactor connected in series, each with a 250 mA
It is filled with a nickel-molybdenum catalyst (same as above).

反応生成物については蒸留分離、ガスクロマトグラフィ
ーによる測定を原料と同様に行なった。
The reaction products were separated by distillation and measured by gas chromatography in the same manner as for the raw materials.

本実施例の結果を第1表に示す。The results of this example are shown in Table 1.

F2O量の変化は供給側の10100O対し生成物側が
537gであり、46.3%の転換率であ妙良好な結果
を得た。
The change in F2O amount was 10,100 O on the feed side and 537 g on the product side, giving a very good result with a conversion rate of 46.3%.

しかしながら、PA 成分量の大@が減少の割にけHP
A成分量の増加が少々〈良質の溶剤製造には適していな
いことがわかる。
However, despite the decrease in the amount of PA components, the HP
It can be seen that the amount of component A increased slightly (it is not suitable for producing high-quality solvents).

〔実施例2〕 実施例1と同じSC1,000、、、、、溶剤留分3゜
300gを試験原料とし、実施例1と同じ固定床反応器
を用いた。
[Example 2] The same fixed bed reactor as in Example 1 was used, using the same SC1,000, 300 g of the solvent fraction as in Example 1 as the test raw material.

801.000+7と溶剤留分700gの混合物を17
0 g/hr  の供給速度でNo、 1  反応器に
供給し、それらの反応生成物に残りの溶剤留分2゜60
0gを260 F!7/hr  の供給速度で圧入混合
し、No、 2  反応器に供給した。
A mixture of 801.000+7 and 700g of solvent fraction
No. 1 reactor at a feed rate of 0 g/hr, and the remaining solvent fraction 2.60 g/hr was added to their reaction products.
0g to 260F! The mixture was mixed under pressure at a feed rate of 7/hr and fed to the No. 2 reactor.

No、1 、 No、 2いずれの反応器にもニッケル
・モリブデン系触W(実施例1と同一) 250 ml
250 ml of nickel-molybdenum-based catalyst W (same as Example 1) was added to each reactor No. 1, No. 2, and No. 2.
.

が充填されており、反応温度380℃、圧力150Kg
/c m” Gである。
is filled, the reaction temperature is 380℃, the pressure is 150Kg
/cm”G.

反応生成物は実施例1と同様の分析を行ない、第1表に
示す結果を得た。
The reaction product was analyzed in the same manner as in Example 1, and the results shown in Table 1 were obtained.

本実施例では実施例1に較べSC、溶剤留分のいずれも
処理速廖が増大している。
In this example, the processing speed of both the SC and the solvent fraction is increased compared to Example 1.

又、PA 成分量の減少に対応してHPA成分量の増加
が生じており、良質な溶剤が製造されている。
In addition, the amount of HPA component increases in response to the decrease in the amount of PA component, and a high quality solvent is produced.

更にSC量の変化からみても実施例jと同等である。Furthermore, the change in SC amount is also equivalent to Example j.

第1表Table 1

Claims (1)

【特許請求の範囲】[Claims] 石炭と溶剤を混合加熱し、石炭を可溶化せLめる第1段
反応工程、第1段反応工程生成物の少なくとも1部を水
素化処理する第2段反応工程からなる石炭液化方法に於
て、第1段反応工程生成物を沸点400乃至5 [1[
1’C以下の油分とそれ以上の沸点を有する重質分に分
離し、第2段反応工程を実質的に圧力が等しい複数個か
つ、直列の反応域で構成せしめて、前記重質分は複数個
の反応域の第1番目から供給すると共に前記油分は複数
個の反応域の途中から供給することを特徴とする石炭の
2段液化方法。
In a coal liquefaction method consisting of a first stage reaction step in which coal and a solvent are mixed and heated to solubilize the coal, and a second stage reaction step in which at least a part of the product of the first stage reaction step is hydrotreated. The product of the first stage reaction process has a boiling point of 400 to 5[1[
Separate the oil component with a boiling point of 1'C or less and the heavy component with a boiling point higher than that, and configure the second stage reaction step with a plurality of reaction zones connected in series with substantially equal pressure, and the heavy component is separated. A two-stage coal liquefaction method, characterized in that the oil is supplied from the first of the plurality of reaction zones, and the oil is supplied from the middle of the plurality of reaction zones.
JP16508182A 1982-09-24 1982-09-24 Two-step liquefaction of coal Granted JPS5956487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16508182A JPS5956487A (en) 1982-09-24 1982-09-24 Two-step liquefaction of coal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16508182A JPS5956487A (en) 1982-09-24 1982-09-24 Two-step liquefaction of coal

Publications (2)

Publication Number Publication Date
JPS5956487A true JPS5956487A (en) 1984-03-31
JPH0410517B2 JPH0410517B2 (en) 1992-02-25

Family

ID=15805507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16508182A Granted JPS5956487A (en) 1982-09-24 1982-09-24 Two-step liquefaction of coal

Country Status (1)

Country Link
JP (1) JPS5956487A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0299594A (en) * 1988-10-05 1990-04-11 Sumitomo Metal Ind Ltd coal liquefaction method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52117902A (en) * 1976-03-31 1977-10-03 Mitsubishi Heavy Ind Ltd Heat treatment of coal
JPS5761082A (en) * 1980-09-30 1982-04-13 Kobe Steel Ltd Liquefaction of coal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52117902A (en) * 1976-03-31 1977-10-03 Mitsubishi Heavy Ind Ltd Heat treatment of coal
JPS5761082A (en) * 1980-09-30 1982-04-13 Kobe Steel Ltd Liquefaction of coal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0299594A (en) * 1988-10-05 1990-04-11 Sumitomo Metal Ind Ltd coal liquefaction method

Also Published As

Publication number Publication date
JPH0410517B2 (en) 1992-02-25

Similar Documents

Publication Publication Date Title
FI84620C (en) FOERFARANDE FOER FRAMSTAELLNING AV KOLVAETEHALTIGA VAETSKOR UR BIOMASSA.
JP5174822B2 (en) Production of gasoline, diesel, naphthenes and aromatics from lignin and cellulose waste by one-step hydrocracking
US4374015A (en) Process for the liquefaction of coal
CA1207343A (en) Process for the production of ethylene and propylene
KR20230085164A (en) Methods and systems for treating hydrocarbon-containing mixtures
EP0348400B1 (en) Liquefaction of cellulose
DE3835495A1 (en) TWO-STAGE CATALYTIC CARBOHYDRATION PROCESS UNDER EXTINCTION RECOVERY OF FRACTIONS OF HEAVY LIQUID
DE3835494A1 (en) CATALYTIC TWO-STEP CONFLECTION OF COAL USING CASCADE FROM USED CREEP BED CATALYST
CN105925304B (en) DCL/Direct coal liquefaction cycle solvent and preparation method thereof
JPS5956487A (en) Two-step liquefaction of coal
JPS6129398B2 (en)
CN106673951B (en) A method of cyclopentene is produced by cyclopentadiene
JP3291527B2 (en) Method for hydroconversion of diesel oil
DE3613445C2 (en)
JPS6140716B2 (en)
EP0731828B1 (en) Multi-bed selective hydrogenation of acetylenes
US3388056A (en) Process for the hydrogenation of steam cracked naphtha
US3725239A (en) Hydrogenation catalyst and process
JPH02153992A (en) Method for hydrocracking of hydrocarbon stock
CN116162488B (en) Method for treating ethylene cracking product gasoline
JP2845872B2 (en) Treatment method for heavy oil pyrolysis light fraction
SU1473714A3 (en) Method of producing hydrocarbons from coal
JPS5889688A (en) Coal liquefaction method
CN108504378A (en) A kind of preparation method of coal hydrogenation pyrolysis hydrogen supply dissolvent oil, the hydrogen supply dissolvent oil and application thereof thus prepared
CN111978141B (en) Cracking mixed C 4 Material selective hydrogenation method and application thereof