JPH0410517B2 - - Google Patents
Info
- Publication number
- JPH0410517B2 JPH0410517B2 JP57165081A JP16508182A JPH0410517B2 JP H0410517 B2 JPH0410517 B2 JP H0410517B2 JP 57165081 A JP57165081 A JP 57165081A JP 16508182 A JP16508182 A JP 16508182A JP H0410517 B2 JPH0410517 B2 JP H0410517B2
- Authority
- JP
- Japan
- Prior art keywords
- solvent
- coal
- reaction
- stage
- component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000006243 chemical reaction Methods 0.000 claims description 36
- 239000002904 solvent Substances 0.000 claims description 35
- 239000003245 coal Substances 0.000 claims description 27
- 238000000034 method Methods 0.000 claims description 18
- 238000009835 boiling Methods 0.000 claims description 11
- 239000003921 oil Substances 0.000 description 13
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 11
- 239000001257 hydrogen Substances 0.000 description 11
- 229910052739 hydrogen Inorganic materials 0.000 description 11
- 239000003054 catalyst Substances 0.000 description 10
- 230000000052 comparative effect Effects 0.000 description 8
- 238000005984 hydrogenation reaction Methods 0.000 description 6
- 239000007795 chemical reaction product Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 238000000354 decomposition reaction Methods 0.000 description 4
- DDTIGTPWGISMKL-UHFFFAOYSA-N molybdenum nickel Chemical compound [Ni].[Mo] DDTIGTPWGISMKL-UHFFFAOYSA-N 0.000 description 4
- 125000003367 polycyclic group Chemical group 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 238000004821 distillation Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 230000008859 change Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000004817 gas chromatography Methods 0.000 description 2
- -1 hydrogenated polycyclic aromatic compounds Chemical class 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000003381 solubilizing effect Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 238000005979 thermal decomposition reaction Methods 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- WHDPTDWLEKQKKX-UHFFFAOYSA-N cobalt molybdenum Chemical compound [Co].[Co].[Mo] WHDPTDWLEKQKKX-UHFFFAOYSA-N 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 150000004678 hydrides Chemical class 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Landscapes
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Description
【発明の詳細な説明】
本発明は石炭液化法に係るものであり、特に溶
剤と石炭を混合加熱し石炭を可溶化する第1段反
応工程、第1段反応工程生成物を触媒およびガス
状水素の存在下で水素化する第2段反応工程から
構成される2段液化方法の改良に関するものであ
る。
近年エネルギー源の多様化に伴ない、石炭の液
化プロセスの開発が加速推進されており、数多く
の研究が行なわれている。
その中で、石炭を先ず溶剤の能力を利用して比
較的温和な条件下で可溶化させ、その後可溶化成
分を触媒作用を用いて、水素の存在下で分解軽質
化する2段液化法は、水素の消費量の低減、製品
の多様化に対する自由度の増大等から優れた方法
である。
一方、2段液化法は、第1段反応が溶剤の能力
に支配されているため、溶剤の性状をいかに保つ
かが重要な課題となる。
第1段反応では石炭は高温条件下で熱分解さ
れ、プレアスフアルテン、アスフアルテンと呼ば
れる高分子成分に転換され可溶化する。この熱分
解時に生成するラジカルは水素供与性溶剤、およ
び、又は石炭の水素リツチな部分から水素を受け
とり、容易に水素を渡しそうになつた溶剤(この
現象は溶剤のシヤトリング効果と呼ばれており、
多環の芳香族類にこの効果があるといわれてい
る)から水素を受け取り安定化すると考えられて
いる。
従つて、第1段反応に供給する溶剤は上記機能
に優れた溶剤でなくてはならず、もしそうでない
場合は、熱分解で生じた活性なプレアスフアルテ
ン、アスフアルテンは再結合し、極めて分解しに
くい巨大分子に転換することになる。
上記条件に適合した良質の溶剤としては、本発
明者ら、他研究者らにより2〜5環の多環芳香族
の部分水素化物が挙げられている。従つてこの溶
剤を石炭液化プロセス内でいかに合理的に製造す
るかが2段液化法の成否を左右する。
多環芳香族の部分水素化物を製造するには、多
環芳香族を触媒(例えばニツケル・モリブデン
系、コバルト・モリブデン系触媒)およびガス状
水素の存在下で水素化すれば良いが、この反応は
300℃以上、100Kg/cm2G以上の高温、高圧反応で
あり、高圧反応器を必要とする上、高圧下へ水素
を供給するための圧縮機、反応余剰水素を回収循
環するための装置、高圧下に原料を供給するポン
プ、反応液からガスを分離し常圧まで減圧する装
置等諸々の周辺機器を必要とする。
又、溶剤の取り扱い量も、第1段反応工程での
溶剤/石炭比が1.5〜3.0であることから本来の石
炭処理量の1.5〜3.0倍となり、石炭液化プラント
の建設費、運転費の可成りの部分を占めることと
なる。
また、石炭の可溶化物を触媒、水素の存在下で
分解軽質化を行なわせるための第2段反応工程で
同時に溶剤成分の水素化を行なわせる方法も従来
行なわれている。
この場合、ここで重要な問題は可溶化物の分解
軽質化条件と溶剤の有効成分を適度に水素化する
条件が一致しないところにある。すなわち、可溶
化物の分解軽質化条件の方が溶剤の有効成分の水
素化条件より厳いため、条件を分解主体にすると
溶剤の有効成分が過水素化され、溶剤能力が極度
に低下するし、溶剤の水素化主体にすると分解率
が不足する。
本発明は上記の従来法の難点を克服した新しい
石炭の2段液化法であり、石炭の可溶化物の分解
軽質化と溶剤の有効成分の適度な水素化を第2段
反応工程内で合理的に行なう方法を提供するもの
である。
すなわち、本発明は石炭と溶剤を混合加熱し、
石炭を可溶化せしめる第1段反応工程、第1段反
応工程生成物の少なくとも1部を水素化処理する
第2段反応工程からなる石炭液化方法に於て、第
1段反応工程生成物を沸点400乃至500℃以下の油
分とそれ以上の沸点を有する重質分に分離し、第
2段反応工程を実質的に圧力が等しい複数個か
つ、直列の反応域で構成せしめて、前記重質分は
複数個の反応域の第1番目から供給すると共に前
記油分は複数個の反応域の途中から供給すること
を特徴とする石炭の2段液化方法を要旨とするも
のである。
本発明によれば先ず、第1段反応工程で生成す
る溶剤成分を含む混合物を蒸留操作により沸点
400〜500℃以下の油分とそれ以上の沸点を有する
重質分に分離する。この場合溶剤としての有効成
分(水素化された多環芳香族と水素化されていな
い多環芳香族)は油分中に回収されるように蒸留
カツト温度の設定すべきであるが4環および5環
の芳香族の沸点から400〜500℃の範囲が好まし
い。
次いで第2段反応工程を、実質的に圧力が等し
い複数個かつ直列の反応域で構成せしめ、重質分
を第1番目の反応域から供給するのに対し、油分
を途中から供給する。
このように重質分と油分を別々に供給すること
により各々の反応器内での滞留時間をほぼ任意に
変化させることができ、前記の重質分の軽質化と
溶剤の水素化処理を一連の反応装置で行なうこと
が可能となる。
具体的な実施態様例としては、固定床、流動
床、懸濁床等の反応器を直列に接続し、その途中
の接続部から油分(溶剤成分)を供給することは
勿論の事、一つの固定床反応器に触媒層と不活性
充填物の層を交互に多重に充填し、途中の触媒層
から油分を供給する方法が挙げられる。
また、油分の供給については全てを途中から供
給する方法には限定されず、その一部を重質分と
一緒に第1番目の反応域に供給しても良い。
以下実施例をもつて本発明を具体的に説明する
〔比較例〕
多環芳香族が多量に含まれる石炭系重質油をニ
ツケル・モリブデン系触媒(1.6φ押出形成品、組
成MoO319.8wt%、NiO3.4wt%、Al2O376.8wt
%)を用いて水素化処理して得た溶剤と石炭を、
450℃、15Kg/cm2G、の条件下で7分保持し、石
炭を可溶化させた。
その後、高温遠心分離機および蒸留操作により
固形分含有量0.3wt%、沸点450℃以上の石炭の可
溶化物質(以下SC と略記する)と沸点300〜
450℃の範囲の溶剤留分を回収し、水素化試験の
原料とした。溶剤留分中には昇温式ガスクロマト
グラフイーで顕著なピークとして認められる代表
的な3,4環の多環芳香族(以下PA成分と略記)
が42.9wt%、それらの部分水素化物(2水素化物
および4水素化物、以下HPA成分と略記)が
4.2wt%存在していた。
次に、上記SCを1000g、油分3300gの混合物
を250g/hrの供給速度で固定床式反応器に供給
し、380℃、150Kg/cm2Gの条件で水素化反応を行
なわせた。
固定床式反応器は、No.1反応器、No.2反応器が
直列に接続されており、その各々には250mlのニ
ツケル・モリブデン系触媒(同上)が充填されて
いる。
反応生成物については蒸留分離、ガスクロマト
グラフイーによる測定を原料と同様に行なつた。
この比較例の結果を第1表に示す。
SC量の変化は供給側の1000gに対し生成物側
が537gであり、46.3%の転換率であり良好な結
果を得た。
しかしながら、PA成分量の大幅な減少の割に
はHPA成分量の増加が少なく良質の溶剤製造に
は適していないことがわかる。
〔実施例〕
比較例と同じSC1000g、溶剤留分3300gを試
験原料とし、比較例と同じ固定床反応器を用い
た。
SC1000gと溶剤留分700gの混合物を170g/
hrの供給速度でNo.1反応器に供給し、それらの反
応生成物に残りの溶剤留分2600gを260g/hrの
供給速度で圧入混合し、No.2反応器に供給した。
No.1,No.2いずれの反応器にもニツケル・モリ
ブデン系触媒(比較例と同一)250mlが充填され
ており、反応温度380℃、圧力150Kg/cm2Gであ
る。
反応生成物は比較例と同様の分析を行ない、第
1表に示す結果を得た。
本実施例では比較例に較べSC溶剤留分のいず
れも処理速度が増大している。
又、PA成分量の減少に対応してHPA成分量の
増加が生じており、良質な溶剤が製造されてい
る。
更にSC量の変化からみても比較例と同等であ
る。
【表】DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a coal liquefaction method, and in particular, a first reaction step in which a solvent and coal are mixed and heated to solubilize the coal, and the first reaction step product is treated with a catalyst and a gaseous state. The present invention relates to an improvement in a two-stage liquefaction method comprising a second stage reaction step of hydrogenation in the presence of hydrogen. In recent years, with the diversification of energy sources, the development of coal liquefaction processes has been accelerated, and numerous studies are being conducted. Among them, the two-stage liquefaction method involves first solubilizing coal under relatively mild conditions using the ability of a solvent, and then using a catalytic action to decompose and lighten the solubilized components in the presence of hydrogen. This is an excellent method because it reduces hydrogen consumption, increases flexibility in product diversification, etc. On the other hand, in the two-stage liquefaction method, since the first stage reaction is controlled by the ability of the solvent, an important issue is how to maintain the properties of the solvent. In the first stage reaction, coal is thermally decomposed under high temperature conditions and converted into polymeric components called preasphaltenes and asphaltenes, which are then solubilized. The radicals generated during this thermal decomposition receive hydrogen from hydrogen-donating solvents and/or hydrogen-rich parts of the coal, and the solvents that are about to easily transfer hydrogen (this phenomenon is called the solvent shuttling effect). ,
Polycyclic aromatics are said to have this effect) and are thought to receive hydrogen from them to stabilize them. Therefore, the solvent supplied to the first stage reaction must be a solvent with excellent functions as described above. If not, the active pre-asphaltenes and asphaltenes generated during thermal decomposition will recombine and cause extremely high decomposition. This results in the conversion to macromolecules that are difficult to digest. As a high-quality solvent that meets the above conditions, the present inventors and other researchers have suggested partially hydrogenated polycyclic aromatic compounds having 2 to 5 rings. Therefore, the success or failure of the two-stage liquefaction method depends on how to rationally produce this solvent within the coal liquefaction process. In order to produce a partially hydrogenated polycyclic aromatic, it is sufficient to hydrogenate the polycyclic aromatic in the presence of a catalyst (for example, a nickel-molybdenum-based catalyst or a cobalt-molybdenum-based catalyst) and gaseous hydrogen. teeth
It is a high-temperature, high-pressure reaction of 300℃ or higher and 100Kg/cm 2 G or higher, which requires a high-pressure reactor, a compressor to supply hydrogen under high pressure, a device to collect and circulate surplus hydrogen from the reaction, Various peripheral equipment is required, such as a pump that supplies raw materials under high pressure and a device that separates gas from the reaction solution and reduces the pressure to normal pressure. In addition, since the solvent/coal ratio in the first stage reaction process is 1.5 to 3.0, the amount of solvent handled will be 1.5 to 3.0 times the original amount of coal processed, which will reduce the construction and operating costs of the coal liquefaction plant. It will become a part of the future. Furthermore, a method has also been used in which the solvent component is simultaneously hydrogenated in the second reaction step for decomposing and lightening the solubilized coal in the presence of a catalyst and hydrogen. In this case, the important problem is that the conditions for decomposing and lightening the solubilized material and the conditions for appropriately hydrogenating the effective components of the solvent do not match. In other words, the decomposition and lightening conditions for the solubilized material are more severe than the hydrogenation conditions for the active component of the solvent, so if the conditions are made to mainly decompose, the active component of the solvent will be overhydrogenated, and the solvent capacity will be extremely reduced. If the solvent is mainly hydrogenated, the decomposition rate will be insufficient. The present invention is a new two-stage coal liquefaction method that overcomes the difficulties of the conventional methods described above, and streamlines the decomposition and lightening of coal solubilized materials and the appropriate hydrogenation of the active components of the solvent within the second stage reaction process. It provides a method to do so. That is, the present invention mixes and heats coal and a solvent,
In a coal liquefaction method consisting of a first reaction step for solubilizing coal and a second reaction step for hydrotreating at least a part of the first reaction step product, the first step reaction product is heated to a boiling point. The heavy fraction is separated into an oil component with a boiling point of 400 to 500°C or less and a heavy component with a boiling point higher than that, and the second stage reaction step is configured with a plurality of reaction zones connected in series with substantially equal pressure. The gist is a two-stage coal liquefaction method characterized in that the oil is supplied from the first of a plurality of reaction zones and the oil is supplied from a middle of the plurality of reaction zones. According to the present invention, first, the mixture containing the solvent component produced in the first reaction step is distilled to a boiling point.
Separates into oil component with boiling point below 400-500℃ and heavy component with boiling point above. In this case, the distillation cut temperature should be set so that the active ingredients as a solvent (hydrogenated polycyclic aromatics and non-hydrogenated polycyclic aromatics) are recovered in the oil. The range is preferably 400 to 500°C from the aromatic boiling point of the ring. Next, the second stage reaction step is composed of a plurality of reaction zones connected in series with substantially the same pressure, and the heavy component is supplied from the first reaction zone, while the oil component is supplied from the middle. By feeding the heavy components and oil components separately in this way, the residence time in each reactor can be changed almost arbitrarily, and the above-mentioned lightening of the heavy components and hydrogenation of the solvent can be carried out in a series. The reaction can be carried out using a reactor. As a specific embodiment, reactors such as a fixed bed, a fluidized bed, and a suspended bed may be connected in series, and oil (solvent component) may be supplied from a connection in the middle of the reactors, or one reactor may be connected in series. One example is a method in which a fixed bed reactor is alternately filled with catalyst layers and layers of inert fillers, and oil is supplied from the intermediate catalyst layers. Furthermore, the method of supplying the oil is not limited to the method in which all of the oil is supplied from the middle, and a portion of the oil may be supplied to the first reaction zone together with the heavy components. The present invention will be specifically explained below with reference to Examples. [Comparative Example] Coal-based heavy oil containing a large amount of polycyclic aromatics was treated with a nickel-molybdenum catalyst (1.6φ extrusion product, composition: MoO 3 19.8wt). %, NiO3.4wt%, Al 2 O 3 76.8wt
%) of the solvent and coal obtained by hydrotreating the
The coal was maintained at 450° C. and 15 kg/cm 2 G for 7 minutes to solubilize the coal. Then, by using a high-temperature centrifuge and distillation operation, a solubilized substance of coal with a solid content of 0.3wt% and a boiling point of 450℃ or higher (hereinafter abbreviated as SC) and a boiling point of 300℃ or higher are used.
The solvent fraction in the range of 450°C was collected and used as the raw material for the hydrogenation test. In the solvent fraction, there are typical 3- and 4-ring polycyclic aromatic compounds (hereinafter abbreviated as PA components) that are recognized as prominent peaks in temperature-programmed gas chromatography.
is 42.9wt%, and their partial hydrides (dihydrides and tetrahydrides, hereinafter abbreviated as HPA components)
It was present at 4.2wt%. Next, a mixture of 1000 g of the above SC and 3300 g of oil was supplied to a fixed bed reactor at a feed rate of 250 g/hr, and a hydrogenation reaction was carried out at 380° C. and 150 Kg/cm 2 G. The fixed bed reactor has a No. 1 reactor and a No. 2 reactor connected in series, each of which is filled with 250 ml of the nickel-molybdenum catalyst (same as above). The reaction products were separated by distillation and measured by gas chromatography in the same manner as for the raw materials. The results of this comparative example are shown in Table 1. The change in SC amount was 537 g on the product side compared to 1000 g on the feed side, giving a conversion rate of 46.3%, giving good results. However, it can be seen that the increase in the amount of HPA component is small compared to the large decrease in the amount of PA component, which is not suitable for producing high-quality solvents. [Example] The same fixed bed reactor as in the comparative example was used, using the same SC 1000 g and solvent fraction 3300 g as the test raw materials as in the comparative example. 170g/mixture of 1000g SC and 700g solvent distillate
The reaction products were fed to the No. 1 reactor at a feed rate of 260 g/hr, and 2600 g of the remaining solvent fraction was mixed under pressure with the reaction products at a feed rate of 260 g/hr, and the mixture was fed to the No. 2 reactor. Both reactors No. 1 and No. 2 were filled with 250 ml of a nickel-molybdenum catalyst (same as the comparative example), and the reaction temperature was 380° C. and the pressure was 150 Kg/cm 2 G. The reaction product was analyzed in the same manner as in the comparative example, and the results shown in Table 1 were obtained. In this example, the processing speed of all SC solvent fractions is increased compared to the comparative example. In addition, the amount of HPA component increases in response to the decrease in the amount of PA component, and a high-quality solvent is produced. Furthermore, the change in SC amount is also equivalent to that of the comparative example. 【table】
Claims (1)
める第1段反応工程、第1段反応工程生成物の少
なくとも1部を水素化処理する第2段反応工程か
らなる石炭液化方法に於て、第1段反応工程生成
物を沸点400乃至500℃以下の油分とそれ以上の沸
点を有する重質分に分離し、第2段反応工程を実
質的に圧力が等しい複数個かつ、直列の反応域で
構成せしめて、前記重質分は複数個の反応域の第
1番目から供給すると共に前記油分は複数個の反
応域の途中から供給することを特徴とする石炭の
2段液化方法。1. In a coal liquefaction method consisting of a first reaction step in which coal and a solvent are mixed and heated to solubilize the coal, and a second reaction step in which at least a part of the product of the first reaction step is hydrotreated, The product of the first stage reaction process is separated into an oil component with a boiling point of 400 to 500°C or less and a heavy component with a boiling point higher than that, and the second stage reaction process is performed in multiple reaction zones in series with substantially equal pressure. A two-stage liquefaction method for coal, characterized in that the heavy component is supplied from a first of a plurality of reaction zones, and the oil component is supplied from a middle of the plurality of reaction zones.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16508182A JPS5956487A (en) | 1982-09-24 | 1982-09-24 | Two-step liquefaction of coal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16508182A JPS5956487A (en) | 1982-09-24 | 1982-09-24 | Two-step liquefaction of coal |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5956487A JPS5956487A (en) | 1984-03-31 |
JPH0410517B2 true JPH0410517B2 (en) | 1992-02-25 |
Family
ID=15805507
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16508182A Granted JPS5956487A (en) | 1982-09-24 | 1982-09-24 | Two-step liquefaction of coal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5956487A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0299594A (en) * | 1988-10-05 | 1990-04-11 | Sumitomo Metal Ind Ltd | coal liquefaction method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52117902A (en) * | 1976-03-31 | 1977-10-03 | Mitsubishi Heavy Ind Ltd | Heat treatment of coal |
JPS5761082A (en) * | 1980-09-30 | 1982-04-13 | Kobe Steel Ltd | Liquefaction of coal |
-
1982
- 1982-09-24 JP JP16508182A patent/JPS5956487A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52117902A (en) * | 1976-03-31 | 1977-10-03 | Mitsubishi Heavy Ind Ltd | Heat treatment of coal |
JPS5761082A (en) * | 1980-09-30 | 1982-04-13 | Kobe Steel Ltd | Liquefaction of coal |
Also Published As
Publication number | Publication date |
---|---|
JPS5956487A (en) | 1984-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2697749B2 (en) | Process for producing a high-grade lubricating base oil feedstock from unconverted oil in a fuel oil hydrocracking process operated in a recycling manner | |
US7708877B2 (en) | Integrated heavy oil upgrading process and in-line hydrofinishing process | |
DE69703217T2 (en) | METHOD FOR INCREASING THE REPLACEMENT OF OLEFINS FROM HEAVY CARBON CARTRIDGES | |
JP3776163B2 (en) | Conversion method of heavy crude oil and distillation residue oil to distillate | |
US4183801A (en) | Process for preparing hydrocarbons | |
CN108884396A (en) | Process for the production of olefins using aromatics saturation | |
KR20090020079A (en) | Manufacturing method of high grade base oil feedstock using unconverted oil | |
KR20120042687A (en) | The method for producing valuable aromatics and light paraffins from hydrocarbonaceous oils derived from oil, coal or wood | |
KR20190082126A (en) | Wax Oil Hydrocracking Method and System | |
JPS6230189A (en) | Improvement in yield of distillable component in cracking ofhydrogen donating diluent | |
US4201659A (en) | Process for the preparation of gas oil | |
KR20230085164A (en) | Methods and systems for treating hydrocarbon-containing mixtures | |
US3117921A (en) | Production of hydrogen-enriched liquid fuels from coal | |
DE1770575A1 (en) | Process for the hydrogenation of hydrocarbons | |
CN105925304B (en) | DCL/Direct coal liquefaction cycle solvent and preparation method thereof | |
JPH0410517B2 (en) | ||
JP5349475B2 (en) | Method for producing high-grade lubricating base oil feedstock from coker gas oil | |
EP0084776B1 (en) | Process for producing pitch for using as raw material for carbon fibers | |
DE69805977T2 (en) | METHOD FOR PRODUCING DISTILLED FUEL PRODUCTS WITH A MULTI BED CATALYTIC REACTOR | |
JPS6129398B2 (en) | ||
DE2646220C2 (en) | ||
GB2104544A (en) | Centre ring hydrogenation and hydrocracking of poly-nuclear aromatic compounds | |
US4595488A (en) | Multistage process for the direct liquefaction of coal | |
DE2808309C2 (en) | ||
EP0354626B1 (en) | Process for the hydrocracking of a hydrocarbonaceous feedstock |