JP2845872B2 - Treatment method for heavy oil pyrolysis light fraction - Google Patents

Treatment method for heavy oil pyrolysis light fraction

Info

Publication number
JP2845872B2
JP2845872B2 JP62073471A JP7347187A JP2845872B2 JP 2845872 B2 JP2845872 B2 JP 2845872B2 JP 62073471 A JP62073471 A JP 62073471A JP 7347187 A JP7347187 A JP 7347187A JP 2845872 B2 JP2845872 B2 JP 2845872B2
Authority
JP
Japan
Prior art keywords
fraction
kerosene
light fraction
heavy oil
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62073471A
Other languages
Japanese (ja)
Other versions
JPS63241096A (en
Inventor
統雄 中山
隆之 野
誠一 松岡
宏一 藤江
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koa Oil Co Ltd
Original Assignee
Koa Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koa Oil Co Ltd filed Critical Koa Oil Co Ltd
Priority to JP62073471A priority Critical patent/JP2845872B2/en
Publication of JPS63241096A publication Critical patent/JPS63241096A/en
Application granted granted Critical
Publication of JP2845872B2 publication Critical patent/JP2845872B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は重質油熱分解軽質留分の処理方法に関し、さ
らに詳しくは、重質油熱分解軽質留分中のオレフィン分
を低重合させた後に水添処理して灯軽油を製造する方法
に関する。 〔発明の背景〕 従来、重質油熱分解軽質留分すなわち重質油を熱分解
することによって得られる分解軽質留分は、石油化学用
ナフサとして、あるいはガソリン用基材として利用され
ている。 ところで、重質油熱分解軽質留分はその留分中に20〜
50重量%のオレフィン分と数重量%のジエン分を含有し
ているため、これを石油化学用ナフサとして利用するた
めには重質油熱分解軽質留分中のオレフィン分およびジ
エン分を水素添加処理によりパラフィンに変換する方法
が従来とられている。しかしながら、この方法によれば
20〜50重量%ものオレフィン分を水素化しなければなら
ないため、その処理に要する水素消費量は膨大なものと
なり製造コストの点で必ずしも有利な方法とはいえな
い。また、従来の方法で得られた製品は直鎖状のパラフ
ィンに比較的富むためオクタン価が低くガソリン用成分
としては必ずしも満足のいくものではない。 一方、上記重質油熱分解軽質留分から高オクタン価ガ
ソリン基材を得る方法としては、従来、重質油熱分解軽
質留分を水素化精製した後、接触改質してガソリン基材
とする方法がとられている。しかしながら、この方法に
おいても水添処理によって得られた直鎖状のパラフィン
が接触改質の原料となるため高オクタン価ガソリンへの
転換効率はさほど高くはない。また、この方法における
目的生成物は専らガソリン分であり、灯軽油分の製造に
この方法をそのまま適用することはできない。 〔発明の概要〕 本発明は上述した従来技術に伴う問題点に鑑みてなさ
れたものであり、製造コスト低減化が図られた効率的な
方法により、重質油分解軽質留分から灯軽油を選択的に
得るための処理方法を提供することを目的としている。 このような目的を達成するために、本発明に係る重質
油熱分解軽質留分の処理方法は、重質油熱分解軽質留分
を亜鉛/またはニッケルを担持したシリカアルミナを水
蒸気によって処理したものからなる触媒と接触させて該
留分中に含まれるオレフィン分を低重合させて灯軽油留
分に変換する低重合工程、および前記低重合工程から得
られる灯軽油留分含有流出物を水素添加触媒の存在下に
おいて水添処理する工程を含むことを特徴としている。 また、本発明の方法においては、低重合工程から得ら
れる灯軽油留分含有流出物から分留された未反応軽質留
分あるいは水添処理後の流出物から分留された軽質留分
を低重合工程に再循環させることにより製造効率の一層
の向上を図ることができる。 〔発明の具体的説明〕 以下、本発明をさらに詳細に説明する。 第1図及び第2図の工程図に示すように、本発明にお
いては重質油熱分解軽質留分(重質油を熱分解すること
によって得られる分解軽質留分)を出発原料として、ま
ずこの重質油熱分解軽質留分中のオレフィン分を低重合
させた後水添処理して灯軽油留分に変換する。 本発明で用いる原料としては、蒸留終点が220℃以下
であって、炭素数が13以下のモノオレフィンを20〜50重
量%含有する重質油熱分解軽質留分を用いることができ
る。 上記原料重質油熱分解軽質留分は、低重合工程を行う
前に、原料中の塩基性窒素を除くために酸性吸着材によ
る脱窒素処理を施してもよく、あるいは更に低重合用触
媒に対して劣化原因となる原料中のジエン類を除去する
ことを目的として予め選択水素添加処理を施すこともで
きる。 上記重質油熱分解軽質留分の低重合は、重質油熱分解
軽質留分中のオレフィン類を低重合して灯軽油分を得る
ことを目的として行われる。したがって、この重合工程
では、過度の重合を起こさないことが肝要である。この
ような低重合に関する技術としては、従来たとえば、流
動接触分解(FCC)ガスを原料としたもの(特開昭59−1
08090号)や炭素数2〜6の低炭素数オレフィンを処理
対象とするもの(特開昭61−89292号、同60−16939号、
同59−33391号)が知られているが、これらの技術は重
質油熱分解軽質留分をその処理対象物とするものではな
く、また高収率の灯軽油を得るための技術を開示するも
のではなく、また容易に類推し得るものではない。 本発明の低重合工程においては、特に用いる触媒に留
意すべきである。すなわち、本発明の低重合工程におい
ては、亜鉛および(または)ニッケルを担持したシリカ
アルミナを水蒸気で処理した触媒が好ましく用いられ
る。一般に重合処理にあたっては、オレフィンの転化率
の高い触媒を用いることが好ましいが、本発明者の知見
によれば、重質油熱分解軽質留分を原料として灯軽油分
を得るに際しては、得られる灯軽油留分の品質や選択率
の点で必ずしも良好な結果をもたらすとは限らない。と
いうのも、従来知られている重合用触媒は、たとえ高転
化率を与えるものであっても、その反面過度の重合を引
き起こしやすく、そのため好ましくない高重合物や分解
ガスの発生により目的生成物である灯軽油分の収率が低
下するとともに性状にも悪影響を及ぼすなどの問題があ
るからである。このような点を考慮して、本発明の低重
合工程においては、転化率をある程度犠牲にしても、比
較的選択率にすぐれた上記のような触媒が好ましく用い
られる。 本発明において用いる、亜鉛および(または)ニッケ
ルを担持したシリカアルミナを水蒸気によって処理した
触媒によれば、水蒸気処理により選択率を低下させるこ
となく目的とする灯軽油留分を高選択率で得ることがで
きる。 上記低重合工程によって重質油熱分解軽質留分中のオ
レフィン分を低重合して得られた灯軽油留分含有流出物
を蒸溜して、灯軽油留分と未反応軽質留分に分留する。 この分留工程は、従来公知の方法によって行うことが
できるが、このとき分留される未反応軽質留分は、図示
のように低重合工程に再循環させることができる。この
ように未反応軽質留分を低重合工程に再循環させること
によって、重合反応熱による過度の温度上昇を抑制する
とともに灯軽油の収率を一層向上させることができる。
すなわち、原料中に多量のオレフィン分を含む場合であ
っても、この未反応軽質留分の再循環により、重合反応
熱による過度の温度上昇を避けることができる。また、
上記のように本発明においては、目的生成物の品質向上
のために転化率の比較的低い触媒を敢えて使わざるを得
ない場合があるが、そのような場合であっても上記未反
応軽質留分の再循環工程を組合わせることによって、灯
軽油の収率を増大させることかでき、これにより品質と
収率の双方を向上させることができるという相乗的効果
を得ることができる。 上記分留工程で得られた灯軽油留分に、ひき続いて水
素添加処理を施すことにより、目的成分である灯軽油を
得る。この場合の水添処理は、水素添加触媒を用いて従
来公知の方法で行われ得る。また、水添処理での発熱に
よる温度上昇を避けるために、必要により水添処理して
得られた灯軽油の一部を水添処理工程に再循環させても
よい。 第1図では、低重合工程から得られる灯軽油留分含有
流出物を灯軽油留分と未反応軽質留分とに分留し、分留
された灯軽油留分を水添処理工程に導入して水添処理す
る場合を示したが、低重合における転化率が高い場合に
は、第2図に示すように、低重合工程から得られる灯軽
油留分含有流出物を分留することなく、そのまま水添処
理工程に導入して水添処理を行うこともできる。この場
合、水添処理後の流出物を蒸留して灯軽油留分と軽質留
分とに分留することにより製品灯軽油が得られる。 また、上記工程いづれの場合でも、原料中に多量のオ
レフィン分を含む場合には分留された軽質成分を低重合
工程に再循環することにより重合反応熱による温度上昇
をコントロールすることができる。 本発明の方法によれば、重質油熱分解軽質留分から灯
軽油を得るための経済的で効率的な方法が提供される。
とくに本発明においては、重質油熱分解軽質留分中のオ
レフィン分を亜鉛および(または)ニッケルを担持した
シリカアルミナを水蒸気によって処理した触媒を用いて
低重合させた後、水素添加処理しているので原料重質油
熱分解軽質留分をそのまま水添処理する従来の方法に比
べて水素の消費量を大幅に削減することができる。 さらに本発明の方法においては、さらに分留された未
反応軽質留分等を再循環することによって、反応熱によ
る温度上昇を抑制し品質と収率の双方の向上を図ること
もできる。 〔実施例〕 以下、本発明を、実施例に基づいて更に具体的に説明
するが、本発明はこれら実施例の記載に制限されるもの
ではない。 実施例1 下記第1表に示す触媒40ccが充填され、反応温度が22
0℃、反応圧力が8kg/cm2Gに保持された反応器に、30重
量%の1−オクテンを含むイソオクタン溶液を80cc/時
間の流量で送入した。この条件での反応結果(転化率、
選択率)を第1表に示す。 水蒸気によって処理したB触媒は、水蒸気処理を施さ
ないA触媒と比較して、特に高い灯軽油留分選択率を示
した。 また、A触媒と本発明のB触媒では、転化率に変化は
なく、水蒸気処理による失活(触媒の活性度の減少)が
生じていないことが示された。 さらに、上記いずれの場合でも、高重合物の生成は無
視できる程度であった。 実施例2 実施例1の第1表中のうち触媒Bを40cc充填した反応
器に重質油熱分解軽質留分(オレフィン量30重量%)を
20cc/時間の流量になるように送入した。このときの反
応温度は250℃、圧力は20kg/cm2Gとした。 得られた生成物を分析した結果、73重量%のオレフィ
ンが灯軽油留分に変換されていた。 このようにして得られた生成物を全量にわたって水添
処理するに要する水素の量は、原料重質油熱分解軽質留
分をそのまま水添処理するのに要する水素量の57%であ
り、消費水素量を大幅に削減することができた。 実施例3 重質油熱分解軽質留分1BPSD(オレフィン含量40重量
%)をそのまま水添処理した際の水素消費量は380/hr
であった。これに対して原料1BPSDを触媒Bで250℃、30
kg/cm2Gの条件で処理した上で分留し、得られた灯軽油
(b.p.160゜以上)留分を、通常のCo−Mn−Al2O3触媒を
用いて水添処理したところ、必要水素消費量は150/hr
であり、大幅な消費水素量の削減ができた。 この際、未反応軽質留分0.5BPSDをリサイクルするこ
とで、製品灯軽油留分の収率を90重量%(原料重質油熱
分解軽質留分中のオレフィン留分に対する収量)にする
ことができた。
Description: TECHNICAL FIELD The present invention relates to a method for treating a heavy oil pyrolysis light fraction, and more particularly, to a method of low-polymerizing an olefin component in a heavy oil pyrolysis light fraction. And then hydrogenation to produce kerosene oil. BACKGROUND OF THE INVENTION Conventionally, heavy oil pyrolysis light fractions, that is, cracked light fractions obtained by pyrolyzing heavy oils, have been used as naphtha for petrochemicals or as base materials for gasoline. By the way, the heavy oil pyrolysis light fraction contains 20 ~
Since it contains 50% by weight of olefin and several% by weight of diene, to use it as naphtha for petrochemicals, hydrogenate olefin and diene in heavy oil pyrolysis light fraction. Conventionally, a method of converting into paraffin by processing has been adopted. However, according to this method
Since as much as 20 to 50% by weight of the olefin must be hydrogenated, the amount of hydrogen required for the treatment is enormous, which is not always advantageous in terms of production cost. Further, products obtained by the conventional method are relatively rich in linear paraffin, and therefore have a low octane number, which is not always satisfactory as a gasoline component. On the other hand, as a method of obtaining a high octane number gasoline base material from the heavy oil pyrolysis light fraction, conventionally, a method of hydrorefining the heavy oil pyrolysis light fraction and catalytic reforming to obtain a gasoline base material. Has been taken. However, even in this method, the conversion efficiency to high octane number gasoline is not so high because linear paraffin obtained by hydrogenation is used as a raw material for catalytic reforming. The target product in this method is gasoline only, and this method cannot be directly applied to the production of kerosene and gas oil. [Summary of the Invention] The present invention has been made in view of the problems associated with the conventional technology described above, and selects kerosene oil from heavy oil cracked light fractions by an efficient method with reduced production costs. It is an object of the present invention to provide a processing method for obtaining an objective. In order to achieve such an object, the method for treating a heavy oil pyrolysis light fraction according to the present invention comprises treating the heavy oil pyrolysis light fraction with silica / alumina carrying zinc / or nickel by steam. A low-polymerization step of bringing the olefin component contained in the fraction into low-polymerization and converting it into a kerosene-oil fraction by contact with a catalyst comprising the same, and the kerosene-oil-fraction-containing effluent obtained from the low-polymerization step with hydrogen It is characterized by including a step of hydrogenating in the presence of an added catalyst. Further, in the method of the present invention, the unreacted light fraction fractionated from the kerosene oil fraction-containing effluent obtained from the low polymerization step or the light fraction fractionated from the hydrogenated effluent is reduced. Recycling to the polymerization step can further improve production efficiency. [Specific Description of the Invention] Hereinafter, the present invention will be described in more detail. As shown in the process charts of FIG. 1 and FIG. 2, in the present invention, heavy oil pyrolysis light fraction (cracked light fraction obtained by pyrolyzing heavy oil) is used as a starting material. The olefin component in the heavy oil pyrolysis light fraction is low-polymerized and then hydrogenated to be converted into a kerosene light fraction. As the raw material used in the present invention, a heavy oil pyrolysis light fraction containing 20 to 50% by weight of a monoolefin having a distillation end point of 220 ° C. or less and a carbon number of 13 or less can be used. Prior to performing the low polymerization step, the raw material heavy oil pyrolysis light fraction may be subjected to a denitrification treatment with an acidic adsorbent to remove basic nitrogen in the raw material, or may be further used as a catalyst for low polymerization. On the other hand, selective hydrogenation treatment can be performed in advance for the purpose of removing dienes in the raw material that causes deterioration. The low polymerization of the heavy oil pyrolysis light fraction is performed for the purpose of obtaining a kerosene light oil component by low polymerization of olefins in the heavy oil pyrolysis light fraction. Therefore, it is important not to cause excessive polymerization in this polymerization step. As a technique relating to such a low polymerization, for example, a technique using a fluid catalytic cracking (FCC) gas as a raw material (Japanese Unexamined Patent Publication No.
No. 08090) and low-carbon olefins having 2 to 6 carbon atoms (JP-A-61-89292, JP-A-60-16939,
No. 59-33391), but these technologies do not treat heavy oil pyrolysis light fractions as the target of processing, and also disclose technologies for obtaining high-yield kerosene light oil. It is not something that can be easily analogized. In the low polymerization step of the present invention, particular attention should be paid to the catalyst used. That is, in the low polymerization step of the present invention, a catalyst obtained by treating silica-alumina supporting zinc and / or nickel with steam is preferably used. In general, in the polymerization treatment, it is preferable to use a catalyst having a high conversion of olefins. However, according to the knowledge of the present inventors, when a kerosene gas oil component is obtained from a heavy oil pyrolysis light fraction as a raw material, it can be obtained. Good results are not always obtained in terms of the quality and selectivity of the kerosene oil fraction. This is because conventional polymerization catalysts, even those that provide high conversion rates, are liable to cause excessive polymerization, and therefore undesired high polymers and decomposition gases are generated to produce the desired product. This is because there are problems such as a decrease in the yield of kerosene gas oil and a bad influence on the properties. In view of these points, in the low polymerization step of the present invention, the above-mentioned catalyst having relatively high selectivity is preferably used even if the conversion is sacrificed to some extent. According to the catalyst used in the present invention in which silica and alumina carrying zinc and / or nickel are treated with steam, it is possible to obtain a desired kerosene oil fraction at a high selectivity without decreasing the selectivity by steam treatment. Can be. The kerosene oil fraction-containing effluent obtained by low polymerization of the olefin component in the heavy oil pyrolysis light fraction by the above low polymerization step is distilled and fractionated into a kerosene oil fraction and an unreacted light fraction. I do. This fractionation step can be performed by a conventionally known method, and the unreacted light fraction fractionated at this time can be recycled to the low polymerization step as shown in the figure. By recycling the unreacted light fraction to the low polymerization step in this way, an excessive rise in temperature due to heat of the polymerization reaction can be suppressed, and the yield of kerosene oil can be further improved.
That is, even when the raw material contains a large amount of olefin, an excessive rise in temperature due to polymerization reaction heat can be avoided by recycling the unreacted light fraction. Also,
As described above, in the present invention, it is sometimes necessary to use a catalyst having a relatively low conversion in order to improve the quality of the target product, but even in such a case, the unreacted light fraction By combining the recirculation steps for one minute, it is possible to increase the yield of kerosene gas oil, thereby obtaining a synergistic effect that both the quality and the yield can be improved. The kerosene oil fraction obtained in the fractionation step is subsequently subjected to a hydrogenation treatment to obtain kerosene oil as a target component. The hydrogenation treatment in this case can be performed by a conventionally known method using a hydrogenation catalyst. Further, in order to avoid a rise in temperature due to heat generation in the hydrogenation treatment, a part of the kerosene oil obtained by the hydrogenation treatment may be recirculated to the hydrogenation treatment step if necessary. In FIG. 1, the kerosene oil fraction containing effluent obtained from the low polymerization step is fractionated into a kerosene oil fraction and an unreacted light fraction, and the fractionated kerosene fraction is introduced into a hydrogenation treatment step. In the case where the conversion rate in the low polymerization is high, as shown in FIG. 2, the kerosene gas oil fraction-containing effluent obtained from the low polymerization step is not fractionated. Alternatively, the hydrogenation treatment can be performed by directly introducing into the hydrogenation treatment step. In this case, a product kerosene is obtained by distilling the effluent after the hydrogenation treatment and fractionating it into a kerosene fraction and a light fraction. Also, in any of the above processes, when a large amount of olefin is contained in the raw material, the temperature rise due to the heat of the polymerization reaction can be controlled by recycling the fractionated light components to the low polymerization step. According to the method of the present invention, there is provided an economical and efficient method for obtaining kerosene gas oil from heavy oil pyrolysis light fraction.
In particular, in the present invention, the olefin component in the heavy oil pyrolysis light fraction is subjected to low polymerization using a catalyst obtained by treating silica-alumina carrying zinc and / or nickel with steam, followed by hydrogenation treatment. Therefore, the hydrogen consumption can be greatly reduced as compared with the conventional method of hydrogenating the raw material heavy oil pyrolysis light fraction as it is. Furthermore, in the method of the present invention, by further recirculating the fractionated unreacted light fraction and the like, it is possible to suppress the temperature rise due to the heat of reaction and to improve both the quality and the yield. [Examples] Hereinafter, the present invention will be described more specifically based on examples, but the present invention is not limited to the description of these examples. Example 1 A catalyst shown in Table 1 below was packed with 40 cc and the reaction temperature was 22
An isooctane solution containing 30% by weight of 1-octene was fed at a flow rate of 80 cc / hour into a reactor maintained at 0 ° C. and a reaction pressure of 8 kg / cm 2 G. Reaction results under these conditions (conversion,
Table 1 shows the selectivity. The B catalyst treated with steam showed a particularly high kerosene fraction selectivity as compared to the A catalyst without steam treatment. Further, it was shown that there was no change in the conversion ratio between the A catalyst and the B catalyst of the present invention, and no deactivation (decrease in the activity of the catalyst) due to the steam treatment occurred. Further, in any of the above cases, the formation of a high polymer was negligible. Example 2 From Table 1 in Example 1, a heavy oil pyrolysis light fraction (30% by weight of olefin) was charged into a reactor filled with 40 cc of catalyst B.
It was fed so as to have a flow rate of 20 cc / hour. At this time, the reaction temperature was 250 ° C., and the pressure was 20 kg / cm 2 G. Analysis of the resulting product indicated that 73% by weight of the olefin had been converted to a kerosene oil fraction. The amount of hydrogen required to hydrogenate the entire product thus obtained is 57% of the amount of hydrogen required to hydrogenate the raw heavy oil pyrolysis light fraction as it is, The amount of hydrogen was reduced significantly. Example 3 Hydrogen consumption of the heavy oil pyrolysis light fraction 1BPSD (olefin content 40% by weight) as it was hydrogenated was 380 / hr.
Met. On the other hand, the raw material 1BPSD was mixed with the catalyst B at 250 ° C, 30
kg / cm 2 G and then fractionated, and the obtained kerosene oil (bp 160 ° or more) fraction was hydrogenated using a normal Co-Mn-Al 2 O 3 catalyst. Required hydrogen consumption is 150 / hr
Therefore, the amount of hydrogen consumption was significantly reduced. At this time, by recycling the unreacted light fraction 0.5BPSD, the yield of the product kerosene oil fraction can be made 90% by weight (yield based on the olefin fraction in the raw material heavy oil pyrolysis light fraction). did it.

【図面の簡単な説明】 第1図および第2図は、本発明の処理工程を説明する工
程図である。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 and FIG. 2 are process diagrams for explaining the processing steps of the present invention.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭61−161229(JP,A) 特開 昭55−78089(JP,A) 特開 昭54−133502(JP,A) 特開 昭60−208931(JP,A) 特開 昭60−240792(JP,A)   ────────────────────────────────────────────────── ─── Continuation of front page                   (56) References JP-A-61-161229 (JP, A)                 JP-A-55-78089 (JP, A)                 JP-A-54-133502 (JP, A)                 JP-A-60-208931 (JP, A)                 JP-A-60-240792 (JP, A)

Claims (1)

(57)【特許請求の範囲】 1.重質油熱分解軽質留分を、亜鉛および/またはニッ
ケルを担持したシリカアルミナを水蒸気によって処理し
たものからなる触媒と接触させて該留分中に含まれるオ
レフィン分を低重合させて灯軽油留分に変換する低重合
工程、および 前記低重合工程から得られる灯軽油留分含有流出物を水
素添加触媒の存在下において水添処理する工程を含むこ
とを特徴とする、重質油熱分解軽質留分の処理方法。 2.水添処理工程から得られる流出物を灯軽油留分と軽
質留分とに分留し、さらに分留された軽質留分を低重合
工程に再循環させる、特許請求の範囲第1項に記載の方
法。 3.低重合工程から得られる灯軽油留分含有流出物を灯
軽油留分と未反応軽質留分とに分留し、さらに分留され
た灯軽油留分を水添処理工程に導入して水添処理すると
ともに、分留された未反応軽質留分を低重合工程に再循
環させる、特許請求の範囲第1項に記載の方法。
(57) [Claims] The heavy oil pyrolysis light fraction is brought into contact with a catalyst comprising silica-alumina carrying zinc and / or nickel treated with steam to cause low polymerization of the olefin content contained in the fraction to reduce the light oil fraction. A low-polymerization step of converting the kerosene-oil fraction containing effluent obtained from the low-polymerization step into hydrogen, in the presence of a hydrogenation catalyst. How to treat the fraction. 2. The effluent obtained from the hydrogenation step is fractionated into a kerosene light oil fraction and a light fraction, and the fractionated light fraction is recycled to the low polymerization step. the method of. 3. The kerosene oil fraction-containing effluent obtained from the low polymerization step is fractionated into a kerosene oil fraction and an unreacted light fraction, and the fractionated kerosene fraction is introduced into a hydrogenation treatment step for hydrogenation. 2. A process as claimed in claim 1, wherein the unreacted light fraction which has been distilled off is recycled to the low polymerization step.
JP62073471A 1987-03-27 1987-03-27 Treatment method for heavy oil pyrolysis light fraction Expired - Lifetime JP2845872B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62073471A JP2845872B2 (en) 1987-03-27 1987-03-27 Treatment method for heavy oil pyrolysis light fraction

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62073471A JP2845872B2 (en) 1987-03-27 1987-03-27 Treatment method for heavy oil pyrolysis light fraction

Publications (2)

Publication Number Publication Date
JPS63241096A JPS63241096A (en) 1988-10-06
JP2845872B2 true JP2845872B2 (en) 1999-01-13

Family

ID=13519221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62073471A Expired - Lifetime JP2845872B2 (en) 1987-03-27 1987-03-27 Treatment method for heavy oil pyrolysis light fraction

Country Status (1)

Country Link
JP (1) JP2845872B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01259089A (en) * 1988-03-04 1989-10-16 Res Assoc Util Of Light Oil Treatment of light fraction of thermally cracked heavy oil

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2421157A1 (en) * 1978-03-31 1979-10-26 Inst Francais Du Petrole PROCESS FOR THE CONVERSION OF C4 OLEFINIC CRACKING CUPS INTO ALKYLATE AND GASOLINE
JPS5578089A (en) * 1978-12-09 1980-06-12 Nippon Petrochem Co Ltd Preparation of power transmission fluid
US4538012A (en) * 1984-02-27 1985-08-27 Chevron Research Company Oligomerization of liquid olefin over a nickel-containing silicaceous crystalline molecular sieve
JPS60240792A (en) * 1984-05-16 1985-11-29 Nippon Petrochem Co Ltd Starting material for production of straight-chain paraffin
US4544788A (en) * 1984-12-28 1985-10-01 Mobil Oil Corporation Control system for catalytic conversion of olefins to heavier hydrocarbons

Also Published As

Publication number Publication date
JPS63241096A (en) 1988-10-06

Similar Documents

Publication Publication Date Title
CN1133730C (en) Hydrocarbon conversion process
US4180453A (en) Process for the steam-cracking of heavy feedstocks
EP2130812B1 (en) Process for producing light olefins from a feed containing triglycerides
US2758064A (en) Catalytic reforming of high nitrogen and sulfur content gasoline fractions
US5152883A (en) Process for the production of improved octane numbers gasolines
JPH08301794A (en) Method for conversion of c4 olefin fraction into polyisobutene and propylene and its installation
JP7248400B2 (en) A catalytic cracking process that produces a large amount of gasoline with a low olefin content and a high octane number
JPS5931559B2 (en) Hydrocarbon conversion methods
JP2005520874A (en) Process for multistage conversion of feedstock containing olefins having 4, 5 or more carbon atoms for the purpose of propylene production
JP2000109856A (en) Process for hydrodesulfurization of light oil
JPH01165692A (en) Production of light hydrocarbon fraction by hydrogenating cracking and catalytic cracking
JP3469625B2 (en) Method for producing high octane gasoline
CN115305105A (en) Solvent composition prepared from waste oil and preparation method thereof
JP2010111596A (en) Apparatus and method for treatment of 4c fraction
CN101434867B (en) Suspension bed residual oil hydrogenation-catalytic cracking combined technological process
JP2845872B2 (en) Treatment method for heavy oil pyrolysis light fraction
CN1020623C (en) Process for conversion of hydrocarbonaceous feedstock
GB1523992A (en) Process for hydrotreating of oils
JPH05222382A (en) Process for upgrading hydrocarbon feedstock
GB1323105A (en) Process for preparing oils
CN110643390B (en) Hydrogenation method of high-reactivity oil product
US2409382A (en) Aviation gasoline production
JP2980436B2 (en) Treatment method for heavy hydrocarbon oil
CN114437792A (en) Method and apparatus for processing residual oil
CN104593069B (en) A kind of residual hydrocracking and catalytic cracking combined processing method