JPS5956479A - Radiation image conversion - Google Patents

Radiation image conversion

Info

Publication number
JPS5956479A
JPS5956479A JP16632082A JP16632082A JPS5956479A JP S5956479 A JPS5956479 A JP S5956479A JP 16632082 A JP16632082 A JP 16632082A JP 16632082 A JP16632082 A JP 16632082A JP S5956479 A JPS5956479 A JP S5956479A
Authority
JP
Japan
Prior art keywords
phosphor
image conversion
radiation image
radiation
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16632082A
Other languages
Japanese (ja)
Other versions
JPS6230237B2 (en
Inventor
Kenji Takahashi
健治 高橋
Takashi Nakamura
隆 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP16632082A priority Critical patent/JPS5956479A/en
Publication of JPS5956479A publication Critical patent/JPS5956479A/en
Publication of JPS6230237B2 publication Critical patent/JPS6230237B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Conversion Of X-Rays Into Visible Images (AREA)
  • Luminescent Compositions (AREA)

Abstract

PURPOSE:To form an image with a good conversion efficiency by exciting with near-IR rays and allowing to emit in near UV rays with the high luminance, by using a particular accumulative phosphor in the radiation image conversion utilizing a stimulative phosphor. CONSTITUTION:By irradiating an object 12 with light from a radiation source 11, a latent image is formed on a radiation image conversion panel 13. Then the fluorescence corresponding to said latent image is produced by light emitted from a light source 14 and displayed through a filter 18, a photoelectric convertor 15, and an image regenerator 16 on an image display device 17. In said method, an accumulative phosphor contg. an Eu<2+>-activated compound halide phosphor of the formula (wherein X, X' are each Cl, Br; x, a are each 0-2) (e.g., BaFBr.10<-3>NaBr:10<-3>Eu<2+>) is used and the latent image formed is excited by light of 450-1,100nm in wavelength.

Description

【発明の詳細な説明】 本発明は放射線像変換方法、さらに詳しくは輝尽性螢光
体を利用した放射線像変換方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a radiation image conversion method, and more particularly to a radiation image conversion method using a photostimulable phosphor.

従来放射線像を画像として得るのには、銀塩感光材料か
らなる乳剤層を有する写真フィルムとX線増感紙を用い
る、いわゆる放射線写真法が利用されているが、この方
法で得られる放射線像よりも画像の鮮鋭度や解像力が優
れた放射線像を得ることのできる放射線像変換方法の1
つとして、米国特許第3゜859.527号、同4,2
36,264号明細書、特開昭55−163472号、
同55−116340号公報等に記載されている方法が
注目されている。
Conventionally, a so-called radiographic method has been used to obtain radiographic images using a photographic film having an emulsion layer made of a silver salt photosensitive material and an X-ray intensifying screen. One of the radiographic image conversion methods that can obtain radiographic images with superior image sharpness and resolution.
As one example, U.S. Pat.
Specification No. 36,264, JP-A-55-163472,
The method described in Publication No. 55-116340 and the like is attracting attention.

この放射線像変換方法は蓄積性螢光体(放射線を照射し
た後、可視光線および赤外線から選ばれる電磁波で励起
すると発光を示す螢光体。ここで放射線とはX線、α線
、β線、γ線、高エネルギー中性子線、電子線、真空紫
外線、紫外線等の電磁波あるいは粒子線をいう。)を利
用するもので、被写体を透過した放射線を蓄積性螢光体
に吸収せしめ、しかる後蓄積性螢光体を可視光線および
赤外線から選ばれる電磁波で励起し、輝尽性螢光体が蓄
積している放射線エネルギーを螢光(輝尽発光)として
放出せしめ、この螢光を検出して画像化するものである
This radiation image conversion method uses a storage phosphor (a phosphor that emits light when excited with electromagnetic waves selected from visible light and infrared rays after being irradiated with radiation. Here, radiation refers to X-rays, α-rays, β-rays, It uses electromagnetic waves or particle beams such as gamma rays, high-energy neutron beams, electron beams, vacuum ultraviolet rays, and ultraviolet rays.) The radiation that passes through the subject is absorbed by a stimulable phosphor, and then The phosphor is excited with electromagnetic waves selected from visible light and infrared rays, and the radiation energy accumulated in the photostimulable phosphor is emitted as fluorescence (stimulated luminescence), and this fluorescence is detected and imaged. It is something to do.

従来、弗化ハロゲン化物螢光体の1種として次式、Ba
FX:aEu2+ (但しXはCJ、Brおよび■のうちの少なくとも1種
であり、aはQ<a≦0.2なる条件を満たす数である
。) で表される2価のユーロピウム付活弗化ハロゲン化バリ
ウム螢光体が知られている。この螢光体はX線、紫外線
、電子線等で励起されると高輝度の近紫外発光(瞬時発
光)を示し、特にX線増感紙用螢光体として実用に供さ
れているが、この螢光体はまた高輝度の輝尽発光を示す
。すなわち、この螢光体は放射線の照射を受けた後45
0乃至1l100nの波長領域の電磁波で励起されると
高輝度の近紫外発光を示す。従ってこの螢光体は上記放
射線像変換方法に使用することができる(米国特許第4
. 239. 968号参照)。
Conventionally, as a type of fluorohalide phosphor, the following formula, Ba
FX: aEu2+ (However, X is at least one of CJ, Br, and ■, and a is a number that satisfies the condition Q<a≦0.2.) Barium halide phosphors are known. This phosphor emits high-intensity near-ultraviolet light (instantaneous light emission) when excited by X-rays, ultraviolet rays, electron beams, etc., and is used in practical applications, especially as a phosphor for X-ray intensifying screens. This phosphor also exhibits high brightness stimulated luminescence. In other words, this phosphor has a temperature of 45% after being irradiated with radiation.
When excited by electromagnetic waves in the wavelength range of 0 to 1l100n, it emits near-ultraviolet light with high brightness. Therefore, this phosphor can be used in the radiation image conversion method described above (U.S. Pat.
.. 239. 968).

ところで上記放射線像変換方法が 医療診断を目的とす
るX線像変換に用いられる  場合には、患者の被曝線
量を少なくするためにその方法はできるだけ高感度であ
るのが望ましく、従ってその方法に用いられる蓄積性螢
光体は輝尽による発光輝度ができるだけ高いのが望まし
い。このような点から、上記BaFX:Eu2+螢光体
を使用する放射線像変換方法についてもその感度の向上
が望まれており、従ってBaFX:Eu2+螢光体の輝
尽による発光輝度の向上が望まれている。
By the way, when the above-mentioned radiation image conversion method is used for X-ray image conversion for the purpose of medical diagnosis, it is desirable that the method be as sensitive as possible in order to reduce the patient's exposure dose. It is desirable that the stimulable phosphor has as high a luminance as possible due to stimulation. From this point of view, it is desired to improve the sensitivity of the radiation image conversion method using the BaFX:Eu2+ phosphor, and therefore, it is desired to improve the luminance of light emission through the stimulation of the BaFX:Eu2+ phosphor. ing.

本発明は上述のような状況の下で行われたものであり、
上記BaFX:Eu2+螢光体よりも輝尽による発光輝
度の高い螢光体を蓄積性螢光体として使用することによ
り、BaFX:Eu2+螢光体を使用する放射線像変換
方法よりも感度の高い放射線像変換方法を提供すること
を目的とする。
The present invention was made under the above-mentioned circumstances,
By using a phosphor with higher emission brightness due to stimulation than the BaFX:Eu2+ phosphor as the stimulable phosphor, the radiation sensitivity is higher than that of the radiation image conversion method using the BaFX:Eu2+ phosphor. The purpose of this invention is to provide an image conversion method.

本発明者等は上記目的を達成するためにBaFX:Eu
2+螢光体の輝尽による発光輝度の改良について種々の
研究を行ってきた。その結果、BaFX:Eu2+螢光
体の母体である弗化ハロゲン化バリウム(13a F 
X)と、ハロゲン化ナトリウム(NaX’、但しX′は
C7!、Brおよび■のうちの少なくとも1種である)
とからなる複合ハロゲン化物を母体とし、この母体を2
価のユーロピウムで付活した新規な螢光体は、放射線の
照射を受けた後450乃至1l100nの波長領域の電
磁波で励起されると従来のBaFX:Eu2+螢光体よ
りも高輝度の近紫外発光を示すことを見出し本発明を完
成させるに至9た。
In order to achieve the above object, the present inventors have developed BaFX:Eu
Various studies have been conducted on improving the luminance of 2+ phosphors through photostimulation. As a result, BaFX: barium fluoride halide (13a F
X) and sodium halide (NaX', where X' is at least one of C7!, Br, and ■)
A complex halide consisting of is used as a matrix, and this matrix is
The new fluorophore activated with valent europium emits near-ultraviolet light with higher brightness than the conventional BaFX:Eu2+ fluorophore when excited by electromagnetic waves in the wavelength range of 450 to 1l100n after being irradiated with radiation. The present invention was completed based on the discovery that the following is true.

本発明の放射線像変換方法は、次式、 BaFX  −xNaX’  :  aEu2+(但し
XおよびX′はいずれもCI、BrおよびIのうちの少
なくとも1種であり、Xおよびaはそれぞれ0<x≦2
および0<a≦0.2なる条件を満たす数である) で表される2価のユーロピウム付活複合ハロゲン化物螢
光体を含む蓄積性螢光体に被写体を透過した放射線を吸
収せしめ、しかる後この螢光体を450乃至1l100
nの波長領域の電磁波で励起して螢光体が蓄積している
放射線エネルギーを螢光として放出せしめ、この螢光体
を検出することを特徴とする。
The radiation image conversion method of the present invention has the following formula: BaFX -xNaX' : aEu2+ (where X and X' are both at least one of CI, Br and I, and X and a are each 0<x≦ 2
and 0<a≦0.2) A stimulable phosphor containing a divalent europium-activated composite halide phosphor is made to absorb the radiation transmitted through the subject, and then After that, add 450 to 1l100 of this phosphor.
It is characterized in that the phosphor is excited by electromagnetic waves in the wavelength range of n to emit the radiation energy accumulated in the phosphor as fluorescence, and then the phosphor is detected.

本発明の放射線像変換方法に使用される上記2価のユー
ロピウム付活複合ハロゲン化物螢光体は従来のBaFX
:EuZ+螢光体と同様にX線等の放射線の照射を受け
た後450乃至1l100nの波長領域の電磁波で励起
されると近紫外発光を示すが、この輝尽による発光の輝
度はBaFX:Eu2+螢光体よりも高い。
The divalent europium-activated composite halide phosphor used in the radiation image conversion method of the present invention is a conventional BaFX
:EuZ+ Similar to fluorophores, it emits near-ultraviolet light when excited by electromagnetic waves in the wavelength range of 450 to 1l100n after being irradiated with radiation such as X-rays, but the brightness of the emitted light due to this stimulation is lower than that of BaFX:Eu2+ Higher than phosphor.

従って本発明の放射線像変換方法はBaFX:Eu2+
螢光体を使用する放射線像変換方法よりも高感度である
。なお上記2価のユーロピウム付活複合ハロゲン化物螢
光体のうちでも上記式のX値が10−5≦X≦5X10
−1の範囲にある螢光体は輝尽による発光輝度が特に高
く、従ってX値がこの範囲にある螢光体を使用する本発
明の放射線像変換方法は特に高感度である。また、Na
X’のうちではNaIとNaBrが輝尽による発光輝度
を特に高く、更にNaIを用いれば蓄積された放射線エ
ネルギーが励起前の経時によって減少する度合(以下フ
ェーディングという)が少なくできるので特に好ましい
Therefore, the radiation image conversion method of the present invention is based on BaFX:Eu2+
It is more sensitive than radiation image conversion methods that use fluorophores. In addition, among the above divalent europium-activated composite halide phosphors, the X value of the above formula is 10-5≦X≦5X10
A phosphor having an X value in the range of -1 has a particularly high luminance due to photostimulation, and therefore the radiation image conversion method of the present invention using a phosphor having an X value in this range has particularly high sensitivity. Also, Na
Of X', NaI and NaBr are particularly preferable because they provide particularly high emission brightness due to stimulation, and furthermore, NaI can reduce the degree to which the accumulated radiation energy decreases over time before excitation (hereinafter referred to as fading).

また上記式の好ましいa値の範囲は10−5≦a≦10
−1である。
Further, the preferable range of a value in the above formula is 10-5≦a≦10
-1.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

本発明の放射線像変換方法に使用される2価のユ−ロピ
ウム付活複合ハロゲン化物螢光体は例えば以下に述べる
製造方法によって製造される。
The divalent europium-activated composite halide phosphor used in the radiation image conversion method of the present invention is manufactured, for example, by the manufacturing method described below.

まず螢光体原料としては 1)弗化バリウム(B a F2 )、ii)塩化バリ
ウム(B a Cj! 2) 、臭化バリウム(BaB
r2)および沃化バリウム(BaI2)のうちの少なく
とも1種、 iii )塩化ナトリウム(NaCj2)、’臭化ナト
リウム(NaBr)および沃化ナトリウム(NaI)の
うちの少なくとも1種、および iv)ハロゲン化物、酸化物、硝酸塩、硫酸塩等の3価
ユーロピウムの化合物 が用いられる。この4つの螢光体原料を用いて化学量論
的に BaFX−xNaX’ : aEu” (但しx、x’、Xおよびaは前述と同じ意義を有する
) なる式で表される螢光体原料混合物を調製する。螢光体
原料混合物は上記4つの螢光体原料を単に混合すること
によって調製してもよいし、あるいは上記i〉のBaF
2と上記ii)のハロゲン化バリウムを用いてあらかじ
めBaFXを生成せしめ、しかる後このBaFXに上記
iti )のハロゲン化ナトリウムおよび上記iv)の
付活剤原料を混合することによって調製してもよい。後
者の螢光体原料混合物調製方法において、B a F2
 とハロゲン化バリウムからBaFXを生成せしめるの
には公知の種々の方法が採用される。例えばBaFXは
BaF2とハロゲン化バリウムとを混合し、得られる混
合物を100℃以上の温度で数時間加熱することによっ
て容易に生成せしめることができる(乾式法、特公昭5
1−28591号参照)。またBaFXはBaF2の懸
濁液に 。
First, the phosphor raw materials are 1) barium fluoride (B a F2 ), ii) barium chloride (B a Cj! 2), barium bromide (BaB
r2) and barium iodide (BaI2), iii) at least one of sodium chloride (NaCj2), sodium bromide (NaBr) and sodium iodide (NaI), and iv) a halide. Compounds of trivalent europium such as , oxides, nitrates, and sulfates are used. Using these four phosphor raw materials, a phosphor raw material stoichiometrically represented by the formula BaFX-xNaX': aEu'' (where x, x', X and a have the same meanings as above) A mixture is prepared.The phosphor raw material mixture may be prepared by simply mixing the above four phosphor raw materials, or the BaF
It may be prepared by first generating BaFX using the barium halide described in 2 and ii) above, and then mixing this BaFX with the sodium halide described in iti) above and the activator raw material in iv) described above. In the latter phosphor raw material mixture preparation method, B a F2
Various known methods can be employed to generate BaFX from barium halide. For example, BaFX can be easily produced by mixing BaF2 and barium halide and heating the resulting mixture at a temperature of 100°C or higher for several hours (dry method,
1-28591). Also, BaFX is made into a suspension of BaF2.

ハロゲン化バリウムの溶液を加え、好ましくは減圧下、
加温しながら攪拌し、水分を徐々に蒸発乾固せしめる操
作によっても容易に生成せしめることができる(湿式法
、特開昭51−61499号参照)。
Add a solution of barium halide, preferably under reduced pressure.
It can also be easily produced by stirring while heating and gradually evaporating water to dryness (wet method, see JP-A-51-61499).

なお上記乾式法および湿式法のいずれにおいても、反応
系中に付活剤原料を介在させることによってBaFXの
生成と同時にBaFXと付活剤原料との均一な混合をも
達成することができる。いずれの螢光体原料混合物調製
方法においても、BaF2、ハロゲン化バリウム、ハロ
ゲン化ナトリウムおよび付活剤原料、あるいはBaFX
、ハロゲン化ナトリウムおよび付活剤原料は充分に混合
される。混合は乳鉢、ボールミル、ロンドミル等の通常
の混合機によって行われる。
In both the dry method and the wet method, by interposing the activator raw material in the reaction system, uniform mixing of BaFX and the activator raw material can be achieved simultaneously with the production of BaFX. In any method for preparing a phosphor raw material mixture, BaF2, barium halide, sodium halide and activator raw material, or BaFX
, sodium halide, and activator raw materials are thoroughly mixed. Mixing is performed using a conventional mixer such as a mortar, ball mill, or rondo mill.

次に得られた螢光体原料混合物を石英ボート、アルミナ
ルツボ、石英ルツボ等の耐熱性容器に充填して電気炉中
で焼成を行なう。焼成温度は600乃至1000℃が適
当である。焼成時間は螢光体原料混合物の充填量、焼成
温度等によって異なるが、一般にはl乃至6時間が適当
である。焼成雰囲気として少量の水素ガスを含む窒素ガ
ス雰囲気、少量の一酸化炭素を含む二酸化炭素雰囲気等
の弱還元性雰囲気を使用し、それによって焼成過程にお
いて3価のユーロピウムを2価のユーロピウムに還元す
る。なお、上記の焼成条件で一度焼成した後、焼成物を
電気炉から取り出して放冷後粉砕し、しかる後焼成物粉
末を再び耐熱性容器に充填して電気炉に入れ、上記と同
じ焼成条件で再焼成を行なってもよい。この場合、焼成
雰囲気として弱還元性雰囲気の代わりに窒素ガス雰囲気
、アルゴンガス雰囲気等の中性雰囲気を使用してもよい
。焼成後、得られる焼成物をほぐし、篩分は等螢光体製
造において一般に採用される各種操作によって処理して
本発明の螢光体を得る。
Next, the obtained phosphor raw material mixture is filled into a heat-resistant container such as a quartz boat, an alumina crucible, or a quartz crucible, and fired in an electric furnace. A suitable firing temperature is 600 to 1000°C. The firing time varies depending on the filling amount of the phosphor raw material mixture, the firing temperature, etc., but generally 1 to 6 hours is appropriate. A weakly reducing atmosphere such as a nitrogen gas atmosphere containing a small amount of hydrogen gas or a carbon dioxide atmosphere containing a small amount of carbon monoxide is used as the firing atmosphere, thereby reducing trivalent europium to divalent europium during the firing process. . After firing once under the above firing conditions, the fired product is taken out of the electric furnace, left to cool, and pulverized.The fired product powder is then filled into a heat-resistant container again, placed in the electric furnace, and fired under the same firing conditions as above. Re-firing may be performed. In this case, a neutral atmosphere such as a nitrogen gas atmosphere or an argon gas atmosphere may be used instead of the weakly reducing atmosphere as the firing atmosphere. After firing, the resulting fired product is loosened, and the sieved material is processed by various operations commonly employed in the production of homofluorescent materials to obtain the phosphor of the present invention.

以上説明した製造方法などによって得られる次式、Ba
  FX  −xNa  X /  :  a  E1
12+(但しXおよびX′はいずれもC7!、Brおよ
び■のうちの少なくとも1種であり、Xおよびaはそれ
ぞれO<X≦2およびQ<a≦0.2なる条件を満たす
数である) で表される2価のユーロピウム付活複合ハロゲン化物螢
光体は、従来のBaFX:Eu2+螢光体と同様にX線
等の放射線の照射を受けた後450乃至1l100nの
波長領域の電磁波で励起されると近紫外線発光を示す。
The following formula obtained by the manufacturing method explained above, Ba
FX −xNa X / : a E1
12+ (However, X and X' are both at least one of C7!, Br, and ■, and X and a are numbers that satisfy the conditions O<X≦2 and Q<a≦0.2, respectively. The divalent europium-activated composite halide phosphor represented by When excited, it emits near-ultraviolet light.

そしてその輝尽による発光の輝度はBaFX:Eu2+
螢光体よりも高い。従ってこの螢光体を使用する本発明
の放射線像変換方法はBaFX:Eu2+螢光体を使用
する放射線像変換方法よりも高感度である。第1図は本
発明の放射線像変換方0 法に使用される2価のユーロピウム付活複合ハロゲン化
物螢光体の励起スペクトルを例示するものであり、管電
圧aoKvpのX線が照射された試料を用いて測定した
BaFBr −10−”NaBr : 10−”Bu2
+螢光体の励起スペクトルである。第1図から明らかな
ように、BaFBr ・10−’NaBr : 10”
Eu2+螢光体の励起可能な波長範囲は450乃至1l
100nであり、特に450乃至750nmが最適励起
波長範囲である。本発明の放射線像変換方法に使用され
る2価のユーロピウム付活複合ハロゲン化物螢光体の励
起可能な波長範囲は螢光体の組成によっても若干界なる
が、一般には第1図に示された結果とほぼ同じ450乃
至1l100nであり、最適励起波長範囲は450乃至
750nmである。
And the luminance of light emission due to the exhaustion is BaFX:Eu2+
Higher than phosphor. Therefore, the radiation image conversion method of the present invention using this phosphor has higher sensitivity than the radiation image conversion method using the BaFX:Eu2+ phosphor. Figure 1 illustrates the excitation spectrum of the divalent europium-activated composite halide phosphor used in the radiation image conversion method of the present invention. BaFBr measured using -10-"NaBr: 10-"Bu2
+ This is the excitation spectrum of the fluorophore. As is clear from Fig. 1, BaFBr ・10-'NaBr: 10''
The excitation wavelength range of Eu2+ fluorophore is 450 to 1l.
100 nm, and especially 450 to 750 nm is the optimum excitation wavelength range. The excitable wavelength range of the divalent europium-activated composite halide phosphor used in the radiation image conversion method of the present invention varies slightly depending on the composition of the phosphor, but is generally as shown in FIG. The optimum excitation wavelength range is 450 to 1l100n, which is almost the same as the result obtained above, and the optimum excitation wavelength range is 450 to 750nm.

この範囲では螢光体の温度を実質的に上昇させることな
く励起できる。この励起可能な波長範囲および最適励起
波長範囲はBaFX:Bu2+螢光体の励起可能な波長
範囲および最適励起波長範囲にほぼ一致する。
In this range, the phosphor can be excited without substantially increasing its temperature. The excitable wavelength range and the optimum excitation wavelength range approximately correspond to the excitable wavelength range and the optimum excitation wavelength range of the BaFX:Bu2+ fluorophore.

第2図は本発明の放射線像変換方法に使用される1 2価のユーロピウム付活複合ハロゲン化物螢光体の輝尽
による発光スペクトルを例示するものであり、BaFB
r ・10−’NaBr : 10−’EuZ+螢光体
に管電圧80KVpのX線を照射した後、該螢光体をH
e−Neレーザー光(633nm)で励起することによ
って測定した発光スペクトルである。螢光体の組成によ
っても若干界なるが、本発明の放射線像変換方法に使用
される2価のユーロピウム付活複合ハロゲン化物螢光体
は輝尽によって第2図に示されるような近紫外発光を示
す。そして該複合ハロゲン化物螢光体の輝尽による発光
スペクトルはBaFX:Eu2+螢光体の輝尽による発
光スペクトルとほぼ同じである。
FIG. 2 illustrates the emission spectrum due to stimulation of the divalent europium-activated composite halide phosphor used in the radiation image conversion method of the present invention.
r ・10-'NaBr: 10-'EuZ+ After irradiating the phosphor with X-rays with a tube voltage of 80 KVp, the phosphor was
This is an emission spectrum measured by excitation with e-Ne laser light (633 nm). Although it varies somewhat depending on the composition of the phosphor, the divalent europium-activated composite halide phosphor used in the radiation image conversion method of the present invention emits near-ultraviolet light as shown in Figure 2 through photostimulation. shows. The emission spectrum due to stimulation of the composite halide phosphor is almost the same as the emission spectrum due to stimulation of the BaFX:Eu2+ phosphor.

第3図および第4図はそれぞれBaFBr−xN” B
 r : 10−’Eu2+Eu2+螢光Ba FC7
! ・xNaBr : 10−’Eu2+Eu2+螢光
圧80KVpのX線を照射した後、それら螢光体をHe
−Neレーザー(633nm)で励起した時の螢光体の
母体構成成分であるNaBr0量X値(横軸)と輝尽に
よる発光輝度(縦軸)との関係を示すグラフであり、2 第3図の縦軸はBaFBr : 10−3Eu2+螢光
体の輝尽による発光輝度を100としたときの相対値で
表わし、第4図の縦軸はBaFC# : 10−3Eu
2+螢光体の輝尽による発光輝度を100としたときの
相対値で表している。第3図および第4図から明らかな
ように、X値がQ<x≦2の範囲にある本発明の放射線
像変換方法に使用されるBaFBr−xNaBr : 
10−″Eu2+Eu2+螢光BaFCjl −xNa
 B r : 10−’Eu2+Eu2+螢光ぞれX値
が0であるB a FB r : 10−’Eu2+E
u2+螢光BaFCβ:to−3Eu2+螢光体よりも
高輝度の輝尽発光を示す。またBaFBr−xNaBr
:10−’Euz+螢光体およびBaFC# ・xNa
Br : 10−’Eu2+Eu2+螢光れにおいても
X値が10−5≦X≦5X10−1の範囲にある螢光体
は特に発光輝度が高い。なお、第3図および第4図はそ
れぞれBaFBr−xNaBr:10−’Eu2+Eu
2+螢光BaFCjl −xNaBr : 10−’E
u2+Eu2+螢光てのX値と輝尽による発光輝度との
関係を示すものであるが、母体構成成分であるハロゲン
化ナトリウム3 の異なるBaFBr −xNa I : 10−”Eu
Z+螢光体Ba FC/ −xNa I : 10−’
EuZ+螢光体についてもX値と輝尽による発光輝度と
の関係はそれぞれ第3図および第4図とほぼ同じであっ
た。またBBaFBr−xNacjl  :  1 0
−”Eu2+、 BaFCjl−xNacll:10’
″”E uZ+螢光体のX値と輝尽による発光輝度との
関係は第3図または第4図の各曲線はど上に凸ではない
が、10−’〜2で輝尽発光輝度が改良される関係を示
した。さらに第3図および第4図はいずれもEu2+i
la値が10−3である螢光体についてのX値と輝尽に
よる発光輝度との関係を示すものであるが、a値が変化
した螢光体についてもX値と輝尽による発光輝度との関
係は第3図および第4図と同様の傾向にあることが確認
された。
Figures 3 and 4 are BaFBr-xN''B, respectively.
r: 10-'Eu2+Eu2+fluorescence Ba FC7
!・xNaBr: 10-'Eu2+Eu2+After irradiating X-rays with a fluorescence pressure of 80KVp, the fluorophores were exposed to He
- It is a graph showing the relationship between the amount X value of NaBr0 (horizontal axis), which is a matrix component of the phosphor, and the luminescence luminance due to photostimulation (vertical axis) when excited with a Ne laser (633 nm). The vertical axis of the figure is expressed as a relative value when the emission brightness due to stimulation of BaFBr: 10-3Eu2 + phosphor is taken as 100, and the vertical axis of Fig. 4 is BaFC#: 10-3Eu.
It is expressed as a relative value when the emission brightness due to exhaustion of the 2+ phosphor is set to 100. As is clear from FIG. 3 and FIG. 4, BaFBr-xNaBr used in the radiation image conversion method of the present invention whose X value is in the range of Q<x≦2:
10-″Eu2+Eu2+fluorescent BaFCjl -xNa
B r: 10-'Eu2+Eu2+fluorescence, each of which has an X value of 0 B a FB r: 10-'Eu2+E
u2+ fluorescent BaFCβ: exhibits stimulated luminescence with higher brightness than to-3Eu2+ fluorescent material. Also, BaFBr-xNaBr
:10-'Euz+fluorophore and BaFC# xNa
Even in the case of Br: 10-'Eu2+Eu2+fluorescence, a phosphor having an X value in the range of 10-5≦X≦5X10-1 has particularly high luminance. In addition, FIGS. 3 and 4 respectively show BaFBr-xNaBr:10-'Eu2+Eu
2+fluorescent BaFCjl -xNaBr: 10-'E
This shows the relationship between the X value of u2+Eu2+fluorescence and the luminescence brightness due to photostimulation.
Z + fluorophore Ba FC/ -xNa I: 10-'
Regarding the EuZ+ phosphor, the relationship between the X value and the emission brightness due to photostimulation was almost the same as in FIGS. 3 and 4, respectively. Also BBaFBr-xNacjl: 1 0
-”Eu2+, BaFCjl-xNacll:10'
``''E uZ + The relationship between the X value of the phosphor and the luminescence luminance due to stimulation is that the curves in Figure 3 or 4 are not convex upwards, but the luminance stimulated luminance is from 10-' to 2. An improved relationship is shown. Furthermore, both Figs. 3 and 4 show Eu2+i
This shows the relationship between the X value and the luminescence brightness due to photostimulation for a phosphor with an la value of 10-3, but it also shows the relationship between the X value and the luminescence brightness due to photostimulation for a phosphor whose a value has changed. It was confirmed that the relationship is similar to that shown in FIGS. 3 and 4.

本発明の放射線像変換方法を概略図を用いて具体的に説
明する。第5図において11は放射線発生装置、12は
被写体、13は上記2価のユーロピウム付活複合ハロゲ
ン化物螢光体を含有する蓄積性螢光体層を有する放射線
像変換パネル、14は該放射線像変換パネル中に蓄積さ
れた放射線潜像を螢光とし4 て放射させるための励起源としての光源、15は該放射
線像変換パネルより放射された螢光を検出する光電電変
換装置、16は15で検出された光電変換信号を画像と
して再生する装置、17は再生された画像を表示する装
置、18は光源14からの反射光をカントし、放射線像
変換パネル13より放射された光のみを透過させるため
のフィルターである。15以降は13からの光情報を何
らかの形で画像として再生できるものであればよく、上
記に限定されるものではない。
The radiation image conversion method of the present invention will be specifically explained using schematic diagrams. In FIG. 5, 11 is a radiation generating device, 12 is a subject, 13 is a radiation image conversion panel having a stimulable phosphor layer containing the divalent europium-activated composite halide phosphor, and 14 is the radiation image. A light source as an excitation source for emitting the latent radiation image accumulated in the radiation image conversion panel as fluorescence; 15 is a photoelectric conversion device for detecting the fluorescence emitted from the radiation image conversion panel; 16 is a photoelectric conversion device for detecting the fluorescence emitted from the radiation image conversion panel; 17 is a device for displaying the reproduced image; 18 is a device for canting the reflected light from the light source 14 and transmitting only the light emitted from the radiation image conversion panel 13; This is a filter that allows you to From 15 onwards, it is sufficient that the optical information from 13 can be reproduced as an image in some form, and is not limited to the above.

第5図に示されるように、被写体12を放射線発生装置
11と放射線像変換パネル13の間に配置し、放射線を
照射すると、放射線は被写体12の各部の放射線透過率
の変化に従って透過し、その透過像(すなわち放射線の
強弱の像)が放射線像変換パネル13に入射する。この
入射した透過像は放射線像変換パネル13の蓄積性螢光
体層に吸収され、これによって該螢光体層中に吸収した
放射線量に比例した数の電子または正孔が発生し、これ
が蓄積性螢光体のトラップレベルに蓄積される。すなわ
ち放射線量5 過像の蓄積像(一種の潜像)が形成される。次にこの潜
像を光エネルギーで励起して顕在化する。
As shown in FIG. 5, when the subject 12 is placed between the radiation generator 11 and the radiation image conversion panel 13 and irradiated with radiation, the radiation passes through each part of the subject 12 according to changes in radiation transmittance. A transmitted image (that is, an image of the intensity of radiation) enters the radiation image conversion panel 13 . This incident transmitted image is absorbed by the stimulable phosphor layer of the radiation image conversion panel 13, thereby generating a number of electrons or holes proportional to the absorbed radiation dose in the phosphor layer, which accumulates. It accumulates at the trap level of the fluorophore. That is, an accumulated image (a kind of latent image) of radiation dose 5 is formed. This latent image is then excited with light energy to become visible.

すなわぢ、光源14から放射される励起光で放射線像変
換パネル13の蓄積性螢光体を走査してトラップレベル
に蓄積された電子または正孔を追出し、蓄積像を螢光と
して放射せしめる。先に述べたように、放射線像変換パ
ネル3の蓄積性螢光体層に用いられる2価のユーロピウ
ム付活複合ハロゲン化物螢光体の励起可能な波長範囲は
450乃至1l100nであり、最適励起波長範囲は4
50乃至750nmであるので、励起光としては450
乃至1l100n。
That is, the excitation light emitted from the light source 14 scans the stimulable phosphor of the radiation image conversion panel 13 to expel the electrons or holes accumulated at the trap level, causing the accumulated image to be emitted as fluorescing. As mentioned above, the excitable wavelength range of the divalent europium-activated composite halide phosphor used in the stimulable phosphor layer of the radiation image conversion panel 3 is 450 to 1l100n, and the optimum excitation wavelength is The range is 4
Since the wavelength is 50 to 750 nm, the excitation light is 450 nm.
〜1l100n.

好ましくは450乃至750nmの波長を有する電磁波
が用いられる。この範囲(450〜750nm)ならば
蓄積性螢光体層の温度を実質的に上昇させることなく励
起できるので螢光体および螢光体層の温度変化による劣
化が未然に防止できる。
Preferably, electromagnetic waves having a wavelength of 450 to 750 nm are used. In this range (450 to 750 nm), the stimulable phosphor layer can be excited without substantially increasing its temperature, so deterioration of the phosphor and phosphor layer due to temperature changes can be prevented.

上記励起光による励起によって蓄積性螢光体層から放射
される螢光の強弱は蓄積された電子または正孔の数すな
わち放射線像変換パネル13の蓄積性螢光体層に吸収さ
れた放射線エネルギーの強弱に比例6 しており、この光信号を例えば光電子増倍管等の光電変
換装置15で電気信号に変換し、画像再生装置16によ
って画像として再生し画像表示装置17によってこの画
像を表示する。
The intensity of the fluorescence emitted from the stimulable phosphor layer due to excitation by the excitation light is determined by the number of accumulated electrons or holes, that is, the radiation energy absorbed by the stimulable phosphor layer of the radiation image conversion panel 13. This optical signal is converted into an electrical signal by a photoelectric conversion device 15 such as a photomultiplier tube, reproduced as an image by an image reproducing device 16, and this image is displayed by an image display device 17.

上記本発明の放射線像変換方法において用いられる放射
線像変換パネルは上記2価のユーロピウム付活複合ハロ
ゲン化物螢光体を適当な結合剤中に分散して含有する蓄
積性螢光体層を有する。蓄積性螢光体層が自己支持性の
ものである場合には蓄積性螢光体層自体が放射線像変換
パネルとなり得るが、一般には蓄積性螢光体層は適当な
支持体上に設けられて放射線像変換パネルが構成される
。さらに通常は蓄積性ち螢光体層の片面(支持体が設け
られる面とは反対側の面)に該螢光体層を物理的にある
いは化学的に保護するための保護膜が設けられる。また
蓄積性螢光体層と支持体とをより密接に接着させる目的
で螢光体層と支持体との間に下塗り層が設けられる場合
もある。なお、上記のような構造を有する放射線像変換
方法パネルは特開昭55−163500号に開示されて
いるように着色剤によって着色されて7 いてもよい(蓄積性螢光体層が着色される場合には励起
光入射側からその反対側に向って着色度が次第に高くな
るように着色されるのが好ましい)また放射線像変換パ
ネルの蓄積性螢光体層には本発明の式BaFX−xNa
X’ :aEu2÷螢光体の他に、所望により公知の蓄
積性螢光体のうちで450〜1l100nの波長領域の
電磁波で輝尽による発光を示す蓄積性螢光体が併用され
てもよい。併用されるに好ましい公知の蓄積性螢光体と
しては特開昭55−12144号に記されている希土類
付活ランタンオキシハライド螢光体、米国特許第4,2
36.078号、特開昭55−12143号、同55−
12145号、同55−84389号、同56−238
5号、同56−2386号、同56−74175号等に
記されている希土類付活アルカリ土類金属フルオロハラ
イド螢光体などがある。
The radiation image conversion panel used in the radiation image conversion method of the present invention has a stimulable phosphor layer containing the divalent europium-activated composite halide phosphor dispersed in a suitable binder. If the stimulable phosphor layer is self-supporting, the stimulable phosphor layer itself can serve as a radiation image storage panel, but generally the stimulable phosphor layer is provided on a suitable support. A radiation image conversion panel is constructed. Furthermore, a protective film is usually provided on one side of the stimulable phosphor layer (the side opposite to the side on which the support is provided) for physically or chemically protecting the phosphor layer. Further, an undercoat layer may be provided between the phosphor layer and the support for the purpose of more closely adhering the stimulable phosphor layer and the support. Note that the radiation image conversion method panel having the above structure may be colored with a coloring agent as disclosed in JP-A-55-163500 (the stimulable phosphor layer is colored). In some cases, it is preferable that the degree of coloring is gradually increased from the excitation light incident side to the opposite side).
X': aEu2÷In addition to the phosphor, a stimulable phosphor that emits light by stimulation with electromagnetic waves in the wavelength range of 450 to 1l100n among known stimulable phosphors may be used in combination, if desired. . Preferred known stimulable phosphors to be used in combination include the rare earth activated lanthanum oxyhalide phosphor described in JP-A-55-12144, and U.S. Pat. No. 4,2
No. 36.078, JP-A-55-12143, JP-A-55-12143
No. 12145, No. 55-84389, No. 56-238
Examples include rare earth-activated alkaline earth metal fluorohalide phosphors described in No. 5, No. 56-2386, and No. 56-74175.

また放射線像変換パネルの蓄積性螢光体層中に特開昭5
5−146447号に開示されているように白色粉体が
分散されていてもよい。さらに、放射線像変換パネルは
特開昭56−11393号あるいは8 特開昭56−12600号に開示されているように蓄積
性螢光体層の励起光入射側とは反対の側に金属反射層あ
るいは白色顔料反射層が設けられていてもよい。このよ
うに着色剤あるいは白色粉末を使用することによって、
また光反射層を設けることによって、鮮鋭度の高い画像
を与える放射線像変換パネルを得ることができる。
In addition, in the stimulable phosphor layer of the radiation image conversion panel,
A white powder may be dispersed as disclosed in No. 5-146447. Furthermore, the radiation image conversion panel has a metal reflective layer on the side opposite to the excitation light incident side of the stimulable phosphor layer, as disclosed in JP-A No. 56-11393 or 8 JP-A-56-12600. Alternatively, a white pigment reflective layer may be provided. By using colorants or white powder in this way,
Further, by providing a light reflecting layer, a radiation image conversion panel that provides images with high sharpness can be obtained.

本発明の放射線像変換方法において上記放射線像変換パ
ネルの蓄積性螢光体層を励起する光エネルギーの光源と
しては、450乃至1l100nの波長領域にバントス
ペクトル分布をもった光を放射する光源の他にHe−N
eレーザー光(633nm)、YAGレーザー光(10
64nm)、ルビーレーザー光(694nm)、アルゴ
ンレーザー(488nm)等の単一波長の光を放射する
光源が使用される。
In the radiation image conversion method of the present invention, the light source for the light energy that excites the stimulable phosphor layer of the radiation image conversion panel may be other than a light source that emits light with a banded spectral distribution in the wavelength range of 450 to 1l100n. niHe-N
e laser light (633 nm), YAG laser light (10
A light source that emits light of a single wavelength is used, such as a ruby laser beam (64 nm), a ruby laser beam (694 nm), or an argon laser beam (488 nm).

特にレーザー光を用いる場合には高い励起エネルギーを
得ることができる。レーザー光の中でも特にHe−Ne
レーザー光を用いるのがより好ましい。
Particularly when using laser light, high excitation energy can be obtained. Among laser beams, especially He-Ne
More preferably, laser light is used.

先に説明したように、本発明の放射線像変換方法に使用
される2価のユーロピウム付活複合ハロゲン9 化物螢光体は従来のBaFX:Bu2+螢光体よりも輝
尽による発光輝度が高い。従って本発明の放射線像変換
方法はBaFX:Eu2+螢光体のみを使用する放射線
像変換方法よりも高感度である。
As explained above, the divalent europium-activated composite halogen 9-ride phosphor used in the radiation image conversion method of the present invention has higher emission brightness due to stimulation than the conventional BaFX:Bu2+ phosphor. Therefore, the radiation image conversion method of the present invention has higher sensitivity than the radiation image conversion method using only BaFX:Eu2+ fluorophore.

次に実施例によって本発明を説明する。Next, the present invention will be explained by examples.

実施例1゜ BaF2175.5g (1モル)、BaBr2297
、Ig (1モル)、NaBr0.206g (2×1
01モル)およびEuBr3 o、783g (2XI
O−3モル)を秤取し、ボールミルを用いて充分に混合
した。得られた螢光体原料混合物を石英ボートに充填し
てチューブ炉に入れ焼成を行なった。焼成は1容量%の
水素ガスを含む窒素ガスを流速280ccZ分で流しな
がら900℃で2時間行なった。
Example 1゜BaF2175.5g (1 mol), BaBr2297
, Ig (1 mol), NaBr0.206g (2×1
01 mol) and EuBr3 o, 783 g (2XI
0-3 mol) was weighed out and thoroughly mixed using a ball mill. The obtained phosphor raw material mixture was filled into a quartz boat, placed in a tube furnace, and fired. Firing was performed at 900° C. for 2 hours while flowing nitrogen gas containing 1% by volume of hydrogen gas at a flow rate of 280 cc/min.

焼成後、石英ボートをチューブ炉から取り出し室温まで
放冷した。得られた焼成物をボールミルを用いて粉砕し
た後、焼成物粉末を再び石英ボートに充填してチューブ
炉に入れて2次焼成を行なった。2次焼成は窒素ガスを
流速280cc/分で流しながら700℃で1時間行な
った。2次焼成後、石英ボート0 をチューブ炉から取り出して室温まで放冷し、得られた
焼成物をほぐして篩にかけた。このようにしてBaFB
r−10’−’NaBr:10−’Eu2+螢光体を得
た。
After firing, the quartz boat was taken out of the tube furnace and allowed to cool to room temperature. After the obtained fired product was pulverized using a ball mill, the fired product powder was again filled into a quartz boat and placed in a tube furnace for secondary firing. The secondary firing was performed at 700° C. for 1 hour while flowing nitrogen gas at a flow rate of 280 cc/min. After the secondary firing, the quartz boat 0 was taken out from the tube furnace and allowed to cool to room temperature, and the resulting fired product was loosened and passed through a sieve. In this way, BaFB
An r-10'-'NaBr:10-'Eu2+ phosphor was obtained.

また、NaBrの代わりにNaC10,117g(2X
10−”モル)およびNa10.30g (2X10−
3モル)をそれぞれ使用すること以外は上述と同様にし
てBaFBrlO−’NaCj!:10−”Euz÷螢
光体およびBaFBr ・10−”Na I : 10
−3 E u2÷螢光体を製造した。さらにNaBrを
使用しないこと以外は上述と同様にしてBaFBr・1
0″3Eu2+螢光体を製造した。
Also, instead of NaBr, 10,117 g of NaC (2X
10-” mol) and 10.30 g Na (2X10-
BaFBrlO-'NaCj! :10-"Euz÷fluorophore and BaFBr・10-"NaI: 10
-3 E u2 ÷ phosphor was produced. Furthermore, BaFBr・1 was prepared in the same manner as above except that NaBr was not used.
A 0″3Eu2+ phosphor was produced.

次に上記4種類の螢光体を用いて放射線像変換パネルを
製造した。いずれの放射線像変換パネルも以下のように
して製造した。
Next, a radiation image storage panel was manufactured using the four types of phosphors described above. Both radiation image storage panels were manufactured as follows.

まず螢光体8重量部と硝化綿(結合剤)1重量部とを溶
剤(アセトン、酢酸エチルおよび酢酸ブチルの混液)を
用いて混合し、粘度がおよそ50センチストークスの塗
布液を調製した。次にこの塗布液を水平に置いたポリエ
チレンテレフタレートフィルム1 (支持体)上に均一塗布し、−昼夜放置して自然乾燥す
ることによって層厚が約300μの螢光体層を形成し、
放射線像変換パネルとした。
First, 8 parts by weight of the phosphor and 1 part by weight of nitrified cotton (binder) were mixed using a solvent (mixture of acetone, ethyl acetate, and butyl acetate) to prepare a coating solution having a viscosity of about 50 centistokes. Next, this coating solution was uniformly coated on a horizontally placed polyethylene terephthalate film 1 (support), and left to dry naturally day and night to form a phosphor layer with a layer thickness of about 300 μm,
It was used as a radiation image conversion panel.

次に得られた4種類の放射線像変換パネルの輝尽による
発光輝度を測定した。この輝尽による発光輝度の測定は
放射線像変換パネルに管電圧80KVpのX線を照射し
た後、これをHe−Noレーザー光(633nm)で励
起し、その螢光体層から放射される螢光を受光器(分光
感度S−5の光電子増倍管)で受光することによって行
なった。
Next, the luminescence brightness due to stimulation of the four types of radiation image conversion panels obtained was measured. To measure the luminance due to this stimulation, the radiation image conversion panel is irradiated with X-rays with a tube voltage of 80 KVp, and then excited with He-No laser light (633 nm), and the fluorescent light emitted from the phosphor layer is measured. This was carried out by receiving light with a photoreceiver (photomultiplier tube with spectral sensitivity S-5).

BaFBr・10−’NaBr: 10−”Eu2+螢
光体、BaFBr ・10−”NaCj2 : 10−
jEu2+螢光体およびBaFBr・10−’NaI螢
光体を用いた放射線像変換パネルはいずれも輝尽による
発光輝度が13aFBr:10−’EuZ+螢光体を用
いた放射線像変換パネルの約2倍であった。なお、詳し
い数値を下記第1表に示す。従ってそれら放射線像変換
パネルを使用する本発明の放射線像変換方法はBaFB
 r : 10−’Eu2+螢光体のみを用いた放射線
像変換パネルを使用する放射線像変換方法に比べて約2 2倍高感度である。
BaFBr・10-'NaBr: 10-"Eu2+fluorophore, BaFBr・10-"NaCj2: 10-
Both of the radiation image conversion panels using jEu2+ phosphor and BaFBr/10-'NaI phosphor have luminance due to stimulation that is about twice that of the radiation image conversion panel using 13aFBr:10-'EuZ+ phosphor. Met. The detailed numerical values are shown in Table 1 below. Therefore, the radiation image conversion method of the present invention using these radiation image conversion panels is based on BaFB.
r: approximately 22 times more sensitive than a radiation image conversion method using a radiation image conversion panel using only 10-'Eu2+ phosphors.

実施例2゜ 螢光体原料としてBa F2 175. 3 g (1
モル)、BaC#220B、2g (1!ル) 、Na
Cj!0.117g (2xlO−3モル)およびEu
C#a0.517g (2xlO−”モル)を用いるこ
と以外は実施例1と同様にし7BaFCj210−’N
aCJ:10″” E u 2+螢光体を製造した。ま
たNaCj!の代わりにNaBr0.206g (2X
10−’モル)およびNa I O,30g (2X 
10−’%ル)をそれぞれもちいること以外は上記と同
様にしてBaFCl −10−’Na B r : 1
0−’Eu2+Eu2+螢光BaFCIl・10−”N
a I : 10−’Bu2+螢光体を製造した。ざら
にNaC7!を使用しないこと以外は上記と同様にして
Ba FCIl : l O−”Eu2+螢光体を製造
した。
Example 2 Ba F2 175. 3 g (1
mole), BaC#220B, 2g (1!mol), Na
Cj! 0.117 g (2xlO-3 mol) and Eu
7BaFCj210-' N
aCJ: A 10"" E u 2+ fluorophore was produced. NaCj again! NaBr0.206g (2X
10-' mol) and Na I O, 30 g (2X
BaFCl -10-'Na B r : 1 in the same manner as above except that 10-'%
0-'Eu2+Eu2+fluorescent BaFCIl・10-"N
aI: A 10-'Bu2+ fluorophore was produced. Zarani NaC7! A BaFCIl:lO-''Eu2+ phosphor was produced in the same manner as above except that BaFCIl:lO-''Eu2+ was not used.

次に得られた4Naの螢光体を用いて実施例1と同様に
して放射線像変換パネルを製造した。その後得られた4
種類の放射線像変換パネルの輝尽による発光輝度を実施
例1と同様にして測定した。
Next, a radiation image conversion panel was manufactured in the same manner as in Example 1 using the obtained 4Na phosphor. Then obtained 4
The emission brightness due to stimulation of each type of radiation image conversion panel was measured in the same manner as in Example 1.

3 BaFC# ・10−”NaCj! : 10−’Eu
2+Eu2+螢光FCIl ・10−’NaBr : 
10−’Eu2+Eu2+螢光Ba FCJ −10−
’Na r : 10−’Euz+螢光体を用いた放射
線像変換パネルはいずれgも輝尽による発光輝度がBa
FCIl : 10−”Eu2+螢光体を用いた放射線
像変換パネルの2倍強であった。
3 BaFC# ・10-”NaCj!: 10-’Eu
2+Eu2+fluorescent FCIl ・10-'NaBr:
10-'Eu2+Eu2+fluorescent Ba FCJ -10-
'Nar: 10-' Euz
FCIl: Slightly more than twice that of a radiation image conversion panel using a 10-''Eu2+ phosphor.

なお、詳しい数値は下記第1表に示す。従ってそれら放
射線像変換パネルを使用する本発明の放射線像変換方法
はBa FCIl: 10−’Eu2+Eu2+螢光用
いた放射線像変換パネルを使用する放射線像変換方法に
比べて2倍強高感度である。
The detailed numerical values are shown in Table 1 below. Therefore, the radiation image conversion method of the present invention using these radiation image conversion panels is more than twice as sensitive as the radiation image conversion method using a radiation image conversion panel using BaFCIl: 10-'Eu2+Eu2+fluorescence.

実施例3 NaBrをそれぞれ61.7g (0,6モル)、24
7.0g (2,4モル)および493.9g (4,
8モル)用いること以外は実施例1と同様にしてBaF
Br ・0.3NaBr : 10−’EuZ+螢光体
、BaFBrl、2NaBr:10−’Eu2+Eu2
+螢光BaFBr −2,4NaBr : 10−’E
(12+螢光体を製造した。
Example 3 61.7 g (0.6 mol) of NaBr, 24
7.0 g (2,4 mol) and 493.9 g (4,
BaF was prepared in the same manner as in Example 1 except that BaF
Br ・0.3NaBr: 10-'EuZ+fluorophore, BaFBrl, 2NaBr: 10-'Eu2+Eu2
+ Fluorescent BaFBr -2,4NaBr: 10-'E
(12+ phosphors were produced.

次に得られた3種類の螢光体を用いて実施例1と4 同様にして放射線像変換パネルを製造した。その後得ら
れた3種類の放射線像変換パネルの輝尽による発光輝度
を実施例1と同様にして測定した。
Next, radiation image conversion panels were manufactured in the same manner as in Examples 1 and 4 using the three types of phosphors obtained. Thereafter, the luminescence brightness due to stimulation of the three types of radiation image conversion panels obtained was measured in the same manner as in Example 1.

下記第1表に示されるように、BaFBr・0゜3Na
Br : 10−’Eu2+Eu2+螢光BaFBr・
1.2NaBr : 10−’Eu2+Eu2+螢光た
放射線像変換パネルは輝尽による発光輝度が実施例1の
Ba FB r : l O−”Eu2+螢光体を用い
た放射線像変換パネルのそれぞれ約1.7倍および約1
.2倍であったが、Na B rilがより多いBaF
Br・2.4NaBr : l O−’Eu2+Eu2
+螢光た放射線像変換パネルは輝尽による発光輝度が実
施例1のBaFBr : 10−”Eu2+螢光体を用
いた放射線像変換パネルの約0.7倍であった。従って
BaFBr・0.3NaBr:1O−3Eu2+螢光体
およびBa FB r ・1. 2Na B r : 
10−3Eu2+螢光体を用いた放射線像変換パネルを
使用する本発明の放射線像変換方法はBaFBr ! 
10−”Eu針針先光体みを用いた放射線像変換パネル
を使用する放射線像変換方法に比べてそれぞれ約1.7
倍および約1゜5 2倍高感度であるが、BaFBr2.4NaBr:1O
−3F、u2+2+螢光用いた放射線像変換パネルを使
用する放射線像変換方法はBaFBr:1O−3EuE
u光体のみを用いた放射線像変換パネルを使用する放射
線像変換方法に比べて約30%感度が低い。
As shown in Table 1 below, BaFBr・0°3Na
Br: 10-'Eu2+Eu2+fluorescent BaFBr・
The radiation image conversion panel using 1.2 NaBr: 10-'Eu2+Eu2+ fluorescein has a luminance due to stimulation that is about 1.2% compared to the radiation image conversion panel using BaFBr:lO-''Eu2+ phosphor of Example 1. 7 times and approx.
.. BaF had twice as much, but more Na B ril.
Br・2.4NaBr: l O−'Eu2+Eu2
The emission brightness due to photostimulation of the +fluorescent radiation image conversion panel was about 0.7 times that of the radiation image conversion panel using the BaFBr:10-"Eu2+ phosphor of Example 1. Therefore, the BaFBr.0. 3NaBr: 1O-3Eu2+ fluorophore and Ba FB r ・1. 2Na Br :
The radiation image conversion method of the present invention using a radiation image conversion panel using a 10-3Eu2+ phosphor is BaFBr!
10-” compared to a radiation image conversion method using a radiation image conversion panel using only a Eu needle tip light body, each approximately 1.7
BaFBr2.4NaBr:1O
-3F, u2+2+ A radiation image conversion method using a radiation image conversion panel using fluorescence is BaFBr:1O-3EuE
The sensitivity is about 30% lower than that of a radiation image conversion method using a radiation image conversion panel using only a u light body.

6 第1表 276 Table 1 27

【図面の簡単な説明】[Brief explanation of the drawing]

第1図および第2図はそれぞれ本発明の放射線像変換方
法に使用されるBaFBr ・10””NaBr:1O
−3Bu2+螢光体の励起スペクトルおよび輝尽床によ
る発光スペクトルである。 第3図および第4図はBaFBr−xNaBr:1O−
3Eu2+およびBaFCIl−xNaBr : 10
−3 Eu針針先光体おけるNaBr量X値と輝尽によ
る発光輝度との関係を示すグラフである。 第5図は本発明の放射線像変換方法の概略説明図である
。 11・・−放射線発生装置、12・・−被写体、13・
−放射線像変換パネル、14・−光源、15・−光電変
換装置、16・・・画像再生装置、17−・画像表示装
置、18− フィルター。 特許出願人 富士写真フィルム株式会社8 4策か損が聾
FIG. 1 and FIG. 2 respectively show BaFBr・10""NaBr:1O used in the radiation image conversion method of the present invention.
-3Bu2+ fluorophore excitation spectrum and stimulable bed emission spectrum. Figures 3 and 4 show BaFBr-xNaBr:1O-
3Eu2+ and BaFCIl-xNaBr: 10
-3 It is a graph showing the relationship between the NaBr amount X value in the Eu needle tip light body and the luminescence luminance due to photostimulation. FIG. 5 is a schematic explanatory diagram of the radiation image conversion method of the present invention. 11...-Radiation generating device, 12...-Subject, 13.
-Radiation image conversion panel, 14--Light source, 15--Photoelectric conversion device, 16--Image reproduction device, 17--Image display device, 18--Filter. Patent applicant: Fuji Photo Film Co., Ltd. 8 Four strategies or loss is deafening

Claims (1)

【特許請求の範囲】 次式 %式% 夏のうちの少なくとも1種であり、Xおよびaはそれぞ
れ0<x≦2およびQ<a≦0.2なる条件を満たす数
である) で表される2価のユーロピウム付活複合ハロゲン化物螢
光体を含む蓄積性螢光体に被写体を透過した放射線を吸
収せしめ、しかる後この螢光体を450乃至1l100
nの波長領域の電磁波で励起して螢光体が蓄積している
放射線エネルギーを螢光として放出せしめ、この螢光を
検出することを特徴とする放射線像変換方法。
[Claims] At least one of the following formula % formula % summer, where X and a are numbers satisfying the conditions 0<x≦2 and Q<a≦0.2, respectively) The radiation transmitted through the object is absorbed by a storage phosphor containing a divalent europium-activated composite halide phosphor, and then this phosphor is
1. A radiation image conversion method characterized in that a phosphor is excited by electromagnetic waves in a wavelength range of n to emit accumulated radiation energy as fluorescence, and this fluorescence is detected.
JP16632082A 1982-09-24 1982-09-24 Radiation image conversion Granted JPS5956479A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16632082A JPS5956479A (en) 1982-09-24 1982-09-24 Radiation image conversion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16632082A JPS5956479A (en) 1982-09-24 1982-09-24 Radiation image conversion

Publications (2)

Publication Number Publication Date
JPS5956479A true JPS5956479A (en) 1984-03-31
JPS6230237B2 JPS6230237B2 (en) 1987-07-01

Family

ID=15829162

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16632082A Granted JPS5956479A (en) 1982-09-24 1982-09-24 Radiation image conversion

Country Status (1)

Country Link
JP (1) JPS5956479A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0148507A2 (en) 1983-12-28 1985-07-17 Fuji Photo Film Co., Ltd. Phosphor and radiation image storage panel employing the same
JPS60217287A (en) * 1984-04-11 1985-10-30 Konishiroku Photo Ind Co Ltd Conversion of radiographic image
JPS60217288A (en) * 1984-04-12 1985-10-30 Konishiroku Photo Ind Co Ltd Conversion of radiographic image
US4694171A (en) * 1984-11-29 1987-09-15 Fuji Photo Film Co., Ltd. Electron microscope image focusing using instantaneous emission of stimulable phosphor sheet
US4695725A (en) * 1984-12-10 1987-09-22 Fuji Photo Film Co., Ltd. Method of detecting a focus defect of an electron microscope image
US4889990A (en) * 1984-07-19 1989-12-26 Fuji Photo Film Co., Ltd. Method and apparatus for recording and reproducing electron microscope image
EP0684581A2 (en) 1994-05-20 1995-11-29 Fuji Photo Film Co., Ltd. Image analyzing apparatus
US5635727A (en) * 1994-07-19 1997-06-03 Fuji Photo Film Co., Ltd. Method for forming neutron images
US5672514A (en) * 1995-02-01 1997-09-30 Fuji Photo Film Co., Ltd. Chemiluminescent detecting method and apparatus
US6531073B1 (en) 1999-12-24 2003-03-11 Konica Corporation Rare earth activated alkali earth metal fluorohalide stimulable phosphor, preparation method thereof and radiation image conversion panel
US6744056B1 (en) 1998-12-28 2004-06-01 Fuji Photo Film Co., Ltd. Radiation image conversion panel and method of manufacturing radiation image conversion panel
US7170078B2 (en) 2001-05-11 2007-01-30 Fuji Photo Film Co., Ltd. Biochemical analysis data producing method and scanner used therefor
US7220389B2 (en) 2001-05-21 2007-05-22 Fujifilm Corporation Biochemical analysis unit and method of producing thereof
US7368026B2 (en) 2002-01-31 2008-05-06 Fujifilm Corporation Biochemical analysis unit and method for producing thereof
US7531057B2 (en) 2002-01-31 2009-05-12 Fujifilm Corporation Method for producing biochemical analysis unit
JP2010164592A (en) * 2010-05-06 2010-07-29 Japan Atomic Energy Agency Radiation and neutron image detector

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008297505A (en) * 2007-06-04 2008-12-11 Mitsui Mining & Smelting Co Ltd White phosphor for electron beam excitation and white light-emitting element and device

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0148507A2 (en) 1983-12-28 1985-07-17 Fuji Photo Film Co., Ltd. Phosphor and radiation image storage panel employing the same
JPS60217287A (en) * 1984-04-11 1985-10-30 Konishiroku Photo Ind Co Ltd Conversion of radiographic image
JPH0563517B2 (en) * 1984-04-11 1993-09-10 Konishiroku Photo Ind
JPS60217288A (en) * 1984-04-12 1985-10-30 Konishiroku Photo Ind Co Ltd Conversion of radiographic image
US4889990A (en) * 1984-07-19 1989-12-26 Fuji Photo Film Co., Ltd. Method and apparatus for recording and reproducing electron microscope image
US4694171A (en) * 1984-11-29 1987-09-15 Fuji Photo Film Co., Ltd. Electron microscope image focusing using instantaneous emission of stimulable phosphor sheet
US4695725A (en) * 1984-12-10 1987-09-22 Fuji Photo Film Co., Ltd. Method of detecting a focus defect of an electron microscope image
EP0684581A2 (en) 1994-05-20 1995-11-29 Fuji Photo Film Co., Ltd. Image analyzing apparatus
US5635727A (en) * 1994-07-19 1997-06-03 Fuji Photo Film Co., Ltd. Method for forming neutron images
US5852301A (en) * 1994-07-19 1998-12-22 Fuji Photo Film Co., Ltd. Method for forming neutron images
US5672514A (en) * 1995-02-01 1997-09-30 Fuji Photo Film Co., Ltd. Chemiluminescent detecting method and apparatus
US6744056B1 (en) 1998-12-28 2004-06-01 Fuji Photo Film Co., Ltd. Radiation image conversion panel and method of manufacturing radiation image conversion panel
US6531073B1 (en) 1999-12-24 2003-03-11 Konica Corporation Rare earth activated alkali earth metal fluorohalide stimulable phosphor, preparation method thereof and radiation image conversion panel
US7170078B2 (en) 2001-05-11 2007-01-30 Fuji Photo Film Co., Ltd. Biochemical analysis data producing method and scanner used therefor
US7220389B2 (en) 2001-05-21 2007-05-22 Fujifilm Corporation Biochemical analysis unit and method of producing thereof
US7368026B2 (en) 2002-01-31 2008-05-06 Fujifilm Corporation Biochemical analysis unit and method for producing thereof
US7531057B2 (en) 2002-01-31 2009-05-12 Fujifilm Corporation Method for producing biochemical analysis unit
JP2010164592A (en) * 2010-05-06 2010-07-29 Japan Atomic Energy Agency Radiation and neutron image detector

Also Published As

Publication number Publication date
JPS6230237B2 (en) 1987-07-01

Similar Documents

Publication Publication Date Title
US5198679A (en) Phosphor and image storage panel
EP0107192A1 (en) Radiation image recording and reproducing method and radiation image storage panel employed for the same
JPS5944333B2 (en) Radiographic image conversion method
JPS5956479A (en) Radiation image conversion
JPS6014786B2 (en) A phosphor and a radiation image conversion panel using the phosphor
EP0144772B1 (en) Phosphor, radiation image recordng and reproducing method and radiation image storage panel employing the same
JPH0784588B2 (en) Radiation image conversion method and radiation image conversion panel used in the method
JPS6090286A (en) Method for converting radiation image
EP0083085B1 (en) Radiation image recording and reproducing method
JPS6121499B2 (en)
US4948696A (en) Radiation image recording and reproducing method
JPH0784589B2 (en) Radiation image conversion method and radiation image conversion panel used in the method
EP0146974B1 (en) Phosphor and radiation image storage panel employing the same
EP0143301B1 (en) Phosphor, radiation image recording and reproducing method and radiation image storage panel employing the same
JPH089716B2 (en) Phosphor, radiation image conversion method and radiation image conversion panel
JPH0629412B2 (en) Fluorescent body and radiation image conversion panel using the same
EP0168057B1 (en) Phosphor, radiation image recording and reproducing method and radiation image storage panel
JPH0475951B2 (en)
JP3249947B2 (en) Rare earth fluoride based phosphor and radiographic intensifying screen
JPH0644080B2 (en) Radiation image conversion method
JPH0526838B2 (en)
JP2902228B2 (en) Radiation image conversion panel and radiation image recording / reproducing method
US5332907A (en) Method for recording and reproducing a radiation image, apparatus using said method, photostimulable phosphor panel for storing said radiation image
EP0151494B1 (en) Phosphor, radiation image recording and reproducing method and radiation image storage panel
JPS60217354A (en) Process for converting image of radiation