JPS595611B2 - Method for producing graft copolymer - Google Patents

Method for producing graft copolymer

Info

Publication number
JPS595611B2
JPS595611B2 JP7309081A JP7309081A JPS595611B2 JP S595611 B2 JPS595611 B2 JP S595611B2 JP 7309081 A JP7309081 A JP 7309081A JP 7309081 A JP7309081 A JP 7309081A JP S595611 B2 JPS595611 B2 JP S595611B2
Authority
JP
Japan
Prior art keywords
graft copolymer
organic liquid
copolymer
latex
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP7309081A
Other languages
Japanese (ja)
Other versions
JPS57187308A (en
Inventor
博 萩原
隆夫 岩崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP7309081A priority Critical patent/JPS595611B2/en
Priority to US06/341,701 priority patent/US4401806A/en
Priority to DE8282100522T priority patent/DE3276172D1/en
Priority to EP82100522A priority patent/EP0057408B1/en
Priority to BR8200416A priority patent/BR8200416A/en
Priority to CA000394932A priority patent/CA1181886A/en
Priority to MX191155A priority patent/MX158921A/en
Publication of JPS57187308A publication Critical patent/JPS57187308A/en
Publication of JPS595611B2 publication Critical patent/JPS595611B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Graft Or Block Polymers (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Description

【発明の詳細な説明】 本発明は粉体特性がよく、かつ微粉末含有量の少ない弾
性幹重合体を含むグラフト共重合体の製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a graft copolymer containing an elastic backbone polymer having good powder properties and a low content of fine powder.

弾性幹重合体を含むグラフト共重合体は一般にその性質
上乳化重合で製造され、このグラフト共重合体ラテック
スより共重合体を得る方法としてラテックスに酸や塩等
を添加して凝固させた後、脱水、乾燥することが行なわ
れ通常粉体として得られる。
Graft copolymers containing elastic backbone polymers are generally produced by emulsion polymerization due to their nature, and the method of obtaining a copolymer from this graft copolymer latex is to add an acid or salt to the latex and coagulate it, and then It is usually obtained as a powder by dehydration and drying.

しかしこれらの粉体は、一般に形状が不定で微粉末を含
み流動性が悪く粉末粒子同志が貯蔵中に固まるというブ
ロッキング現象や、流動性不足による輸送ラインが詰ま
る等の取扱上の困難が生じ易い。
However, these powders are generally irregular in shape, contain fine powder, and have poor fluidity, making them prone to handling difficulties such as blocking phenomena in which powder particles solidify together during storage, and transportation lines becoming clogged due to lack of fluidity. .

従つて粉末計量の自動化及び輸送方式の大型化によつて
省力化が進められている今日、このブロッキング、流動
性等に代表されるグラフト共・重合体粒子の粉体特性の
改良が強く要望されている。この粉末特性を改良するた
めの方法はこれ迄種々提案されている。
Therefore, as labor savings are progressing through automation of powder weighing and larger transportation methods, there is a strong demand for improvements in the powder properties of graft copolymer particles, such as blocking and fluidity. ing. Various methods have been proposed to improve the powder properties.

例えば共重合体ラテックスを直接噴霧乾燥し、粉末を球
状化する方法、共重合・体ラテックスを酸や塩によつて
凝固させる条件(塩析条件)を調整する方法、又は共重
合体ラテックスを特定の溶剤中にて分散球状化した後で
凝固する方法等があげられる。しかし、これらの方法で
は粉体特性改良効果が不十分であつたり、或つ いは改
良が認められるけれども重合体固有の性質を損うもので
あつたり、ユーテイリイテイを主とした製造コストが大
となるなどがあり、末だに良い改良法が見出されていな
いのが現状である。例えば噴霧乾燥法の場合は熱安定性
が悪く、且つユ5−テイリイテイ等の運転費が大となる
欠点を有し、またラテックスを特定溶剤中に分散させ球
状化させる方法(特開昭52−68285)は大量の溶
剤を処理する必要があり、且つ球状ラテツクス粒子が外
部から凝固されるため、凝固が不均一となりDロエ時フ
イツシユ・アイを生じるおそれがある。本発明者等は以
上の欠点に鑑み鋭意研究した結果、共重合体ラテツクス
と、水に難溶で且つグラフト共重合体を溶解しないが濡
らし得る有機液体とを凝析剤の存在下に混合し、有機液
体で含浸された凝析共重合体を水中に分散させることに
より流動性のよいグラフト共重合体が得られることを見
出した。この場合、全混合物中、グラフト共重合体と有
機液体の合計量の容積割合が40(f)未満であり、且
つ有機液体/グラフト共重合体二1〜5(容積比)にな
るように混合し、有機液体を含浸した重合体粒子が分散
相として水中に分散する量的割合を上記のようにとるこ
とが重要である。以下、本発明を詳細に説明する。本発
明で使用されるグラフト共重合体は弾性幹重合体をまづ
通常の乳化重合で製造し、次に得られたラテツクスに硬
質重合体を形成する単量体を乳化重合法で後重合して得
られるものである。
For example, a method of directly spray-drying a copolymer latex to form a spheroid, a method of adjusting conditions for coagulating a copolymer latex with an acid or salt (salting-out conditions), or a method of specifying a copolymer latex. Examples include a method in which the particles are dispersed in a solvent, spheroidized, and then solidified. However, with these methods, the effect of improving the powder properties is insufficient, or even though the improvement is recognized, the inherent properties of the polymer are impaired, or the manufacturing costs, mainly for utilities, are high. At present, no good improvement method has been found. For example, in the case of spray drying, there are disadvantages such as poor thermal stability and high operating costs, such as spheroidization of latex in a specific solvent (Japanese Unexamined Patent Application Publication No. 52-111). 68285) requires the treatment of a large amount of solvent, and since the spherical latex particles are coagulated from the outside, the coagulation may be uneven and fish eyes may occur during D-loe. As a result of intensive research in view of the above drawbacks, the inventors of the present invention have mixed a copolymer latex with an organic liquid that is sparingly soluble in water and that does not dissolve the graft copolymer but can wet it, in the presence of a coagulant. discovered that a graft copolymer with good fluidity could be obtained by dispersing a coagulated copolymer impregnated with an organic liquid in water. In this case, the total volume ratio of the graft copolymer and the organic liquid in the entire mixture is less than 40 (f), and the organic liquid/graft copolymer is mixed so that the ratio is 1 to 5 (volume ratio). However, it is important to set the quantitative proportion of the polymer particles impregnated with the organic liquid to be dispersed in water as a dispersed phase as described above. The present invention will be explained in detail below. The graft copolymer used in the present invention is produced by first producing an elastic backbone polymer by conventional emulsion polymerization, and then post-polymerizing monomers that form a hard polymer into the obtained latex by emulsion polymerization. This is what you get.

ここに弾性幹重合体は5〜80重量部更に好ましくは5
0〜80重量部用いられ、硬質重合体を形成する単量体
はグラフト共重合体の全重量が100重量部になるよう
に添加重合される。この場合、幹重合体及びグラフト成
分とも架橋されていてもよいし、架橋されていなくても
よい。これらの共重合体の製法は例えば、特公昭45一
22629号、特公昭46−31462号、特公昭49
−18621号、特公昭50−40142号、特公昭5
2−3667号に詳細に記述されている。
The elastic backbone polymer is preferably 5 to 80 parts by weight, more preferably 5 to 80 parts by weight.
The monomer used to form the hard polymer is added in an amount of 0 to 80 parts by weight so that the total weight of the graft copolymer is 100 parts by weight. In this case, both the backbone polymer and the graft component may or may not be crosslinked. Methods for producing these copolymers are described, for example, in Japanese Patent Publication No. 45-122629, Japanese Patent Publication No. 31462-1972, and Japanese Patent Publication No. 49-1983.
-18621, Special Publication No. 50-40142, Special Publication No. 50
It is described in detail in No. 2-3667.

しかし勿論これらに限定されるものではない。弾性幹重
合体としてはブタジエン、イソプレン、クロロプレン等
のジエン系重合体、ブチルアクリレート、オクチルアク
リレート等のアルキル基の炭素数が4〜10のアクリル
酸アルキルエステル系重合体、及びこれらと共重合可能
な単量体との共重合体をあげることができる。共重合可
能な単量体としてはスチレン、α−メチルスチレン等の
芳香族ビニル、メチルメタアタリレート、エナルメタア
クリレート等のメタアクリル酸アルキルエステル、メチ
ルアクリレート、エチルアクリレート等のアルキル基の
炭素数が1〜3のアクリル酸アルキルエステル、アクリ
ロニトリル、メタアクリロニトリル等のビニルシアン化
合物等をあげることができる。硬質重合体を形成する単
量体としてはスチレン、α−メチルスチレン等の芳香族
ビニル、メチルメタアクリレート、エチルメタアクリレ
ート及びブiチルメタアクリレート等のメタアクリル酸
アルキルエステル、アクリロニトル、メタアクリロニト
リル等のビニルシアン化合物、塩化ビニル、臭化ビニル
等のハロゲン化ビニル等があげられる。
However, it is of course not limited to these. Examples of the elastic backbone polymer include diene polymers such as butadiene, isoprene, and chloroprene, acrylic acid alkyl ester polymers in which the alkyl group has 4 to 10 carbon atoms such as butyl acrylate, and octyl acrylate, and copolymerizable with these. Examples include copolymers with monomers. Copolymerizable monomers include aromatic vinyls such as styrene and α-methylstyrene, methacrylic acid alkyl esters such as methyl methacrylate and enal methacrylate, and methyl acrylate and ethyl acrylate with a carbon number of the alkyl group. Examples include vinyl cyanide compounds such as 1 to 3 acrylic acid alkyl esters, acrylonitrile, methacrylonitrile, and the like. Monomers forming the hard polymer include aromatic vinyls such as styrene and α-methylstyrene, methacrylic acid alkyl esters such as methyl methacrylate, ethyl methacrylate, and butyl methacrylate, acrylonitrile, methacrylonitrile, etc. Examples include vinyl cyanide compounds, vinyl chloride, vinyl halides such as vinyl bromide, and the like.

これらの単量体は単独或いは2種以上の混合単量体つ
として使用される。このようにして作られ、かつ一般に
知られているグラフト共重合体としてはMBS樹脂(メ
チルメタアクリレート−ブタジエン−スチレン樹脂)、
ABS樹脂(アクリロニトリル−ブタジエン−スチレン
樹脂)、ABSM樹5脂(アクリロニトリル−ブタジエ
ン−スチレン−メチルメタアクリレート樹脂)、AAS
樹脂(アクリル酸アル千ルエステルーアクリロニトリル
ースチレン樹脂)等をあげることができる。次に本発明
に使用する有機液体は水に難溶で且1つグラフト共重合
体を溶解しないが濡らすものでぁり、更に液体の表面張
力が重合体の臨界表面張力より低く、即ち好ましくは常
温での表面張力が35dyne/?以下であることが必
要である。
These monomers may be used alone or as a mixture of two or more monomers.
used as. Graft copolymers produced in this way and generally known include MBS resin (methyl methacrylate-butadiene-styrene resin);
ABS resin (acrylonitrile-butadiene-styrene resin), ABSM resin 5 resin (acrylonitrile-butadiene-styrene-methyl methacrylate resin), AAS
Examples include resins (acrylic acid althyl ester-acrylonitrile styrene resin) and the like. Next, the organic liquid used in the present invention is sparingly soluble in water and does not dissolve but wets the graft copolymer, and furthermore, the surface tension of the liquid is lower than the critical surface tension of the polymer, that is, preferably The surface tension at room temperature is 35 dyne/? It is necessary that the following is true.

このような有機液体は使用する共重合体により.異なる
が、一般にペンタン、ヘキサン、ヘプタン等のパラフイ
ン系溶剤、シクロペンタン、シクロヘキサン、メチルシ
クロペンタン、メチルシクロヘキサン等の脂環族炭化水
素及びそのアルキル置換体等が使用される。これらの有
機液体は単独でも又は適当に組合わせた混合物であつて
もよい。尚、上記の該有機液体と相溶性があつて且つ上
述の条件を満足する限り、メタノール、エタノール等の
水溶性液体を小量混合することもできる。本発明におい
ては上述の有機液体と上述のグラフト共重合体ラテツク
スを凝析剤の存在において混合し、有機液体を含浸した
凝析された共重合体を水中に分散させるのであり、その
態様として種種の方法がある。例えば凝析剤水溶液中に
有機液体と共重合体ラテツクスの混合物を攪拌下に添加
するとか、逆に有機液体と共重合ラテツクスの混合物中
に凝析剤水溶液を添加してゆく方法がある。
These organic liquids vary depending on the copolymer used. Although different, generally used are paraffinic solvents such as pentane, hexane, and heptane, alicyclic hydrocarbons such as cyclopentane, cyclohexane, methylcyclopentane, and methylcyclohexane, and alkyl substituted products thereof. These organic liquids may be used alone or in a suitable combination. Incidentally, a small amount of water-soluble liquid such as methanol or ethanol may be mixed as long as it is compatible with the above-mentioned organic liquid and satisfies the above-mentioned conditions. In the present invention, the organic liquid described above and the graft copolymer latex described above are mixed in the presence of a coagulant, and the coagulated copolymer impregnated with the organic liquid is dispersed in water. There is a method. For example, there is a method in which a mixture of an organic liquid and a copolymer latex is added to an aqueous coagulant solution under stirring, or conversely, an aqueous coagulant solution is added to a mixture of an organic liquid and a copolymer latex.

また凝析剤水溶液中に有機液体と共重合体ラテツクスを
同時に或いは別々に添加してもよいし、又は凝析剤水溶
液と有機液体を混合しておいて共重合体ラテツクスを添
加してもよい。またはその逆にラテツクス中に凝析剤水
溶液と有機液体の混合物を同時に加えてもよい。更に、
これらを連続的に行うこともできる。何れにせよ、ラテ
ツクスは水中に分散した有機液体の存在下に凝析され、
凝析した共重合体は有機液体に含浸され、最終的に有機
液体を含浸した共重合体が水中に分散する。
Further, the organic liquid and the copolymer latex may be added to the aqueous coagulant solution simultaneously or separately, or the aqueous coagulant solution and the organic liquid may be mixed before the copolymer latex is added. . Or, conversely, a mixture of an aqueous coagulant solution and an organic liquid may be added to the latex at the same time. Furthermore,
These steps can also be performed continuously. In either case, the latex is coagulated in the presence of an organic liquid dispersed in water;
The coagulated copolymer is impregnated with an organic liquid, and finally the copolymer impregnated with the organic liquid is dispersed in water.

本発明で使用される凝析剤としては例えば塩酸、硫酸、
酢酸、酒石酸等の無機若しくは有機の酸又は食塩、塩化
カルシウム、硫酸アルミニウム、芒硝等の塩が好ましく
使用される。
Examples of coagulants used in the present invention include hydrochloric acid, sulfuric acid,
Inorganic or organic acids such as acetic acid and tartaric acid, or salts such as common salts, calcium chloride, aluminum sulfate, and Glauber's salt are preferably used.

凝析剤は一般に任意の濃度の水溶液の形で用いられる。
本発明に特徴的なのは有機液体とグラフト共重合体の合
計量が有機液体、グラフト共重合体、水及び凝析剤の混
合物全量に対して40容積%未満であり、且つ有機液体
/グラフト共重合体の容積比が1〜5になるように混合
することにある。
Coagulants are generally used in the form of aqueous solutions of any concentration.
The present invention is characterized in that the total amount of the organic liquid and the graft copolymer is less than 40% by volume based on the total amount of the mixture of the organic liquid, the graft copolymer, water, and the coagulant; The purpose is to mix so that the combined volume ratio is 1 to 5.

有機液体量と共重合体量の合計量が全混合物の40容量
%以上であり、また有機液体/グラフト共重合体の容量
比が5以上であると、有機液体を含浸した共重合体を水
中に分散することが困難となり、逆に有機液体中にラテ
ツクスが分散する形となり本発明の目的を達成すること
ができない。有機液体/グラフト共重合体の容量比は1
〜5であり、1〜3の範囲が好ましく使用される。
When the total amount of organic liquid and copolymer is 40% by volume or more of the total mixture, and the volume ratio of organic liquid/graft copolymer is 5 or more, the copolymer impregnated with organic liquid is mixed in water. This makes it difficult to disperse the latex in the organic liquid, and on the contrary, the latex becomes dispersed in the organic liquid, making it impossible to achieve the object of the present invention. The volume ratio of organic liquid/graft copolymer is 1
-5, and the range of 1-3 is preferably used.

容量比が1以下或いは5以上になると球状粒子を得るこ
とが困難となる。グラフト共重合体ラテツクスは重合後
そのま\使用してもよいし、適当に水で稀釈して使用し
てもよいが、一般にラテツクス中の共重合濃度は10〜
50重量%のものが用いられる。
When the capacity ratio is less than 1 or more than 5, it becomes difficult to obtain spherical particles. The graft copolymer latex may be used as it is after polymerization, or may be diluted with water appropriately, but generally the copolymer concentration in the latex is 10 to 10.
50% by weight is used.

有機液体とグラフト共重合体ラテツクスが凝析剤の存在
下に混合され、且つ有機液体量とグラフト共重合体量と
の合計量が全混合物量に比して小であるため、何れの方
法をとつても最終的には凝析された微粒グラフト共重合
体粒子が有機液体にぬれ、十分に有機液体を含浸した重
合微細粒子同志がさらに凝集し合い、有機液体と水との
界面張力により球状化され水中に分散されるものと考え
られる。
Since the organic liquid and the graft copolymer latex are mixed in the presence of a coagulant, and the total amount of the organic liquid and the graft copolymer is small compared to the total amount of the mixture, which method is used? Eventually, the coagulated fine graft copolymer particles will get wet with the organic liquid, and the polymerized fine particles sufficiently impregnated with the organic liquid will further aggregate with each other, forming a spherical shape due to the interfacial tension between the organic liquid and water. It is thought that it is converted into water and dispersed in the water.

本発明では有機液体量が少なくて経済上有利であり、し
かも共重合体ラテツクスが有機液体中にフυ 分散された状態で凝析されるのでないため、凝析が均一
に行なわれ、加工時フイツシユ・アイ等が少ないという
利点を有している。
The present invention is economically advantageous because the amount of organic liquid is small, and since the copolymer latex is not coagulated in a dispersed state in the organic liquid, coagulation is uniformly carried out during processing. It has the advantage of having fewer fish and eyes.

共重合体ラテツクスを有機液体と凝析剤の存在下に混合
するに際し、適度な攪拌、振盪は均一な球状粒子を得る
ために必要である。
When mixing a copolymer latex in the presence of an organic liquid and a coagulant, appropriate stirring and shaking are necessary to obtain uniform spherical particles.

また該有機液体又は有機液体を含浸した共重合体の水中
への分散を促進する意味で公知の界面活性剤、例えばア
ルキルベンゼンスルフオン酸塩、高級脂肪酸塩、アルキ
ルコハク酸塩、ゾルビタン高級脂肪酸エステル等を共重
合物に対し0.01〜0.59t)添加することができ
る。更に該有機液体によりほゾ球状形となつた粒子が互
いに合一して団塊を作らないように、懸濁保護剤例えば
メチルセルローズ、部分鹸化ポリビニルアルコール等を
共重合物に対し0.005〜0.50t)添加すること
もできる。このようにして得られたほゾ球形の該有機液
体含浸共重合体粒子を含むスラリーから該有機液体を除
去後、共重合体粒子は常法により脱水、水洗、乾燥され
る。該有機液体の除去は常圧で沸点付近に加熱する外、
減圧、加圧下で沸点に相当する温度で除去することがで
きる。50〜100℃の温度に加熱し、該有機液体を除
去することは熱処理により凝集粒子の凝着を強め、見掛
比重を大とする点で好ましい。
In addition, known surfactants are used to promote dispersion of the organic liquid or the copolymer impregnated with the organic liquid in water, such as alkylbenzene sulfonates, higher fatty acid salts, alkyl succinates, sorbitan higher fatty acid esters, etc. (0.01 to 0.59 t) can be added to the copolymer. Furthermore, in order to prevent particles formed into spherical shapes by the organic liquid from coalescing with each other and forming agglomerates, a suspending agent such as methyl cellulose, partially saponified polyvinyl alcohol, etc. is added to the copolymer at a concentration of 0.005 to 0. .50t) can also be added. After removing the organic liquid from the thus obtained slurry containing the spherical copolymer particles impregnated with an organic liquid, the copolymer particles are dehydrated, washed with water, and dried by a conventional method. The organic liquid is removed by heating near the boiling point at normal pressure,
It can be removed at a temperature corresponding to the boiling point under reduced or increased pressure. Heating to a temperature of 50 to 100° C. and removing the organic liquid is preferable because the heat treatment strengthens the cohesion of the aggregated particles and increases the apparent specific gravity.

本発明の共重合体粒子は微細粒子が適度に凝着して球状
を保持し、以後脱水、水洗、乾燥行程においても球形が
破壊され微粉を生じることがなく、流動性がよく、かさ
比重が大な共重合体粒子を容易に得ることができる。
The copolymer particles of the present invention maintain a spherical shape through moderate cohesion of fine particles, and the spherical shape is not destroyed during subsequent dehydration, water washing, and drying processes to produce fine powder, and the particles have good fluidity and a low bulk specific gravity. Large copolymer particles can be easily obtained.

従つて貯蔵中のプロツキング現象、輸送ラインが詰まる
等のトラブルの発生を極めて少くするばかりでなく、貯
蔵構造の簡素化、貯槽及び輸送の大型化を可能にする。
更に共重合体粒子の形状が揃い、微粉末が少ないことか
ら、スラリーの脱水性がよく遠心分離、吸引濾過等の方
法で得られるウエツトケーキの含水率も従来のものに比
し20〜50%程度も少なく、乾燥工程においてその負
荷を大巾に軽減し得る。また微粉の発生が少ないことか
ら共重合体が燃焼し易い場合でも、粉塵爆発の危険を極
めて少くすることができる。本発明の凝集共重合体はも
とのラテツクス共重合体粒子が適度に凝集したもので、
加工時の混練により容易にもとのラテツクス粒子状態に
もどり、例えばこれらのグラフト共重合体を耐衝撃強化
斉として使用する場合でも、その衝撃強度付与効牙を損
なうことがないことも本発明の大きな利点てある。
Therefore, not only the occurrence of troubles such as blocking phenomenon and clogging of transportation lines during storage can be extremely reduced, but also the storage structure can be simplified and the storage tank and transportation can be made larger.
Furthermore, because the shape of the copolymer particles is uniform and there is less fine powder, the slurry has good dehydration properties, and the moisture content of wet cake obtained by methods such as centrifugation and suction filtration is about 20 to 50% compared to conventional products. The load on the drying process can be greatly reduced. Furthermore, since less fine powder is generated, even if the copolymer is easily combustible, the risk of dust explosion can be extremely reduced. The agglomerated copolymer of the present invention is obtained by appropriately aggregating the original latex copolymer particles.
Another feature of the present invention is that it easily returns to its original latex particle state by kneading during processing, and that even when these graft copolymers are used, for example, as an impact-strengthening agent, the effect of imparting impact strength is not impaired. There are big advantages.

以下実施例をあげて本発明を説明する。The present invention will be explained below with reference to Examples.

尚粉件特性の測定法を第1表にまとめて示す。実施例
1 ジビニルベンゼン1.5(Ff)、ブタジエン76%、
スチレン22.5%からなる架橋幹重合体70部を乳化
重合により裂造しその存在下でスチレン14部、メチル
メタアクリレート8.5部、ジビニルベンゼン0.3部
をグラフト重合せしめ更にメチルメタアクリレート7.
5部、ジビニルベンゼン0.15部をグラフト重合させ
た。
The methods for measuring the powder properties are summarized in Table 1. Example
1 divinylbenzene 1.5 (Ff), butadiene 76%,
70 parts of a crosslinked backbone polymer consisting of 22.5% styrene was prepared by emulsion polymerization, and in the presence of the crosslinked polymer, 14 parts of styrene, 8.5 parts of methyl methacrylate, and 0.3 parts of divinylbenzene were graft-polymerized, followed by methyl methacrylate. 7.
5 parts and 0.15 parts of divinylbenzene were graft-polymerized.

各ステージの重合率はほぼ100%でありこのグラフト
共重合体ラテツクス中の固形分は35重量%であつた。
(比重1.0)内径約120fL、内容積211のガラ
ス容器にPH約2の塩酸水を570m1,入れ301!
Llの水に溶解したつポリオキシエチレンゾルビタンモ
ノステアレート0.07gを添加した後、n−ヘキサン
140d(比重0.66、表面張力18.4dyne/
(177!At2O℃)を加え充分なる攪拌下において
n−ヘキサンを分散する。
The polymerization rate at each stage was approximately 100%, and the solid content in the graft copolymer latex was 35% by weight.
(Specific gravity 1.0) Pour 570 ml of hydrochloric acid water with a pH of about 2 into a glass container with an inner diameter of about 120 fL and an internal volume of 211 301!
After adding 0.07 g of polyoxyethylene sorbitan monostearate dissolved in Ll of water, 140 d of n-hexane (specific gravity 0.66, surface tension 18.4 dyne/
(177!At20°C) and disperse n-hexane under sufficient stirring.

次いで前記のラテツクス200dを添加すると1〜3分
後に系の粘度が急激に増加し再び粘度が低下するととも
に150〜200μを平均粒径としたほぼ球状の粒子を
生成し、攪拌を停止しても粒子は球状を保持していた。
この場合n−ヘキサン量とグラフト共重合体量の合計は
全混合物に対し22.3容積%となりグラフト共重合体
に対するn−ヘキサンは容積比で2である。
Next, when 200 d of the above-mentioned latex was added, the viscosity of the system increased rapidly after 1 to 3 minutes, and the viscosity decreased again, producing almost spherical particles with an average particle size of 150 to 200μ, and even after stopping the stirring, The particles retained their spherical shape.
In this case, the total amount of n-hexane and graft copolymer is 22.3% by volume based on the total mixture, and the ratio of n-hexane to graft copolymer is 2 by volume.

次に球状粒子のスラリーとなつた系を65℃に加熱し、
n−ヘキサンを分離後脱水乾燥して重合体粒子を得た。
Next, the system that became a slurry of spherical particles was heated to 65°C,
After separating n-hexane, it was dehydrated and dried to obtain polymer particles.

この共重合体粒子の樹脂粉末を第1表の方法に基づいて
測定した諸性質を第2表に示した。
Table 2 shows the properties of the resin powder of this copolymer particle measured based on the method shown in Table 1.

また錫安定剤2部、滑剤1部を含む重合度700のポリ
塩化ビニル87.5部に上述のグラフト共重合体を12
.5部を添加混合した。
In addition, 12 parts of the above-mentioned graft copolymer was added to 87.5 parts of polyvinyl chloride with a degree of polymerization of 700 containing 2 parts of a tin stabilizer and 1 part of a lubricant.
.. 5 parts were added and mixed.

このコンパウンドを160℃ロールで3分間混練後、1
95℃で7分間プレス成形し、厚み6m11Lの試験片
を作製し、アイゾツト衝撃強度を測定し第2表に示した
。実施例2,3,4 実施例1で使用したグラフト共重合体ラテツクスを使用
しn−ヘキサン使用量を100m1,200d,300
m11と変えそれ以外は実施例1と同様にしてグラフト
共重合体凝集粒子を得た。
After kneading this compound for 3 minutes with a roll at 160°C,
Press molding was carried out at 95°C for 7 minutes to prepare a test piece with a thickness of 6m11L, and the Izod impact strength of the test piece was measured and shown in Table 2. Examples 2, 3, 4 Using the graft copolymer latex used in Example 1, the amount of n-hexane used was 100ml, 200d, 300ml.
Graft copolymer aggregated particles were obtained in the same manner as in Example 1 except that m11 was used.

その粉体特性ならびにアイゾツト衝撃強度を第2表に示
した。実施例5,6 実施例1で使用したグラフト共重合体ラテツクスを使用
し、有機液体の種類をn−ヘプタン、シクロヘキサンに
変えた以外は実施例1と同様にして共重合体粒子を得た
The powder properties and Izot impact strength are shown in Table 2. Examples 5 and 6 Copolymer particles were obtained in the same manner as in Example 1, except that the graft copolymer latex used in Example 1 was used and the type of organic liquid was changed to n-heptane or cyclohexane.

その粉体特性並びにアイゾツト衝撃強度を第2表に示し
た。比較例 1 実施例1のラテツクスを実施例と同様攪拌しつつPH約
2の塩酸水600a中に投入後スラリーを約90℃に加
熱した。
The powder properties and Izot impact strength are shown in Table 2. Comparative Example 1 The latex of Example 1 was poured into 600a of hydrochloric acid water with a pH of about 2 while stirring as in the example, and the slurry was heated to about 90°C.

そのまま脱水濾過乾燥して共重合体粒子を得、その粉体
特性及びアィゾツト衝鴛舶し水迎1中1圭9魂1r;i
占比較例 2 実施例1で使用し7たグラフト共重合体ラテツクスJ近
5ν、勇1−】?惑7む゛使用量を500m1と変え、
それ以外は実施例1と同様に行つた。
The copolymer particles were obtained by dehydration, filtration, and drying, and their powder characteristics and Izotsu-Shiroshu Mizuei 1 Chu 1 Kei 9 Soul 1r;i
Comparative Example 2 The graft copolymer latex used in Example 1 was 5ν, 1-? Change the usage amount to 500ml,
Other than that, the same procedure as in Example 1 was carried out.

共重合体ラテツクスが添加されると混合物全体が塊状に
凝固してしまい、粒状粒子を得ることができなかつた。
この時のn−ヘキサンと共重合体の合計量の全混合物に
対する容積割合は43.8%であり、n−ヘキサンと共
重合体の容積比は7.14であつた。実施例 7 実施例1で使用した装置にPH約2の塩酸水600m1
を入れポリオキシエチレンゾルビタンモノステアレート
0.079を溶解した。
When the copolymer latex was added, the entire mixture coagulated into lumps, making it impossible to obtain granular particles.
At this time, the volume ratio of the total amount of n-hexane and copolymer to the entire mixture was 43.8%, and the volume ratio of n-hexane and copolymer was 7.14. Example 7 Add 600 ml of hydrochloric acid water with a pH of approximately 2 to the equipment used in Example 1.
and dissolved 0.079% of polyoxyethylene sorbitan monostearate.

次いでn−ヘキサン140m1と実施例1で用いたグラ
フト共重合体ラテツクス200m1の混合液を1200
r.p.m.の攪拌下に投入した。投入後1〜3分後に
系の粘度が急激に増加しさらに1〜2分後再び粘度が低
下すると共に150〜200μの平均粒径を有すほぼ球
状の凝集粒子が得られ攪拌を停止しても粒子はその形状
を保持していた。次に球状粒子のスラリーとなつた系を
65℃に加熱しn−ヘキサンを分離後、脱水、乾燥によ
り重合体凝集粒子を得た。その粉体特性並びにアイゾツ
ト衝撃強度を第3表に示した。実施例 8 実施例1で使用した装置を用い、実施例1で使用したグ
ラフト共重合体ラテツクスのかわりにオクチルアクリレ
ート53.8%、ブタジエン30.7%、メチルメタア
クリレート15.5%からなる重合体65部を乳化重合
により製造し、その存在下スチレン11部、メチルメタ
アクリレート5部、アクリロニトリル4部をグラフト重
合せしめ、更にメチヌメタアクリレート15部を乳化重
合させる事により得られたラテツクスを用い、他は実施
例1と同様の手順で・\キサン140m1を添加する事
により造粒を行なつた。
Next, a mixture of 140 ml of n-hexane and 200 ml of the graft copolymer latex used in Example 1 was heated to 1200 ml.
r. p. m. The mixture was added under stirring. The viscosity of the system increases rapidly 1 to 3 minutes after addition, and after another 1 to 2 minutes, the viscosity decreases again and almost spherical aggregated particles with an average particle size of 150 to 200 μ are obtained, and the stirring is stopped. The particles also retained their shape. Next, the system which became a slurry of spherical particles was heated to 65° C. to separate n-hexane, and then dehydrated and dried to obtain polymer aggregate particles. The powder properties and Izot impact strength are shown in Table 3. Example 8 Using the equipment used in Example 1, a polymer consisting of 53.8% octyl acrylate, 30.7% butadiene, and 15.5% methyl methacrylate was used instead of the graft copolymer latex used in Example 1. Using a latex obtained by producing 65 parts of the combined product by emulsion polymerization, graft polymerizing 11 parts of styrene, 5 parts of methyl methacrylate, and 4 parts of acrylonitrile in the presence of the combined product, and then emulsion polymerizing 15 parts of methine methacrylate. Other than that, granulation was carried out in the same manner as in Example 1 by adding 140 ml of xane.

この時の共重合体ラテツクスの固形分は30重量%であ
つた。この製造された共重合体も実施例1で得られた重
合体同様に粒度分布、かさ比重、流動性の著しい改良を
示した。
The solid content of the copolymer latex at this time was 30% by weight. Like the polymer obtained in Example 1, this produced copolymer also showed significant improvements in particle size distribution, bulk specific gravity, and fluidity.

その結果を第3表に示した。比較例 3実施例1で使用
した装置及びグラフト共重合体ラテツクスを使用し有機
液体としてこのグラフト共重合体を溶解しうる液体であ
る四塩化炭素をヘキサンのかわりに使用したところ、グ
ラフト共重合体ラテツクスの添加と同時に共重合体の溶
解がおこり、凝集粒子は3〜10m77!の粗大で且つ
不定形のものとなり、粉体性状を改良することはできな
かつた。
The results are shown in Table 3. Comparative Example 3 Using the apparatus and graft copolymer latex used in Example 1, carbon tetrachloride, a liquid capable of dissolving the graft copolymer, was used as an organic liquid in place of hexane. The copolymer dissolves at the same time as the latex is added, resulting in aggregated particles of 3 to 10 m77! The resulting powder was coarse and irregular in shape, and the powder properties could not be improved.

Claims (1)

【特許請求の範囲】 1 弾性幹重合体に硬質重合体を形成する単量体をグラ
フト重合することによつて得られたグラフト共重合体ラ
テックスと、水に難溶で該グラフト共重合体を溶解しな
いが濡らし得る有機液体とを凝析剤の存在下に混合する
に際し、全混合物中グラフト共重合体と有機液体の合計
量の容積割合が40%未満であり、且つ有機液体/グラ
フト共重合体=1〜5(容積比)になるように混合し、
有機液体を含浸した該グラフト共重合体を水中に分散さ
せることを特徴とする粉体特性に優れたグラフト共重合
体の製造方法。 2 水に難溶で且つ該共重合体を溶解しないが濡らし得
る有機液体の表面張力が常温で35dyne/cm以下
であることを特徴とする特許請求の範囲第1項記載のグ
ラフト共重合体の製造方法。 3 凝析剤水溶液と有機液体の混合物にグラフト共重合
体ラテックスを混合することを特徴とする特許請求の範
囲第1項又は第2項記載のグラフト共重合体の製造方法
。 4 凝析剤水溶液に有機液体とグラフト共重合体ラテッ
クスを混合することを特徴とする特許請求の範囲第1項
又は第2項記載のグラフト共重合体の製造方法。
[Claims] 1. A graft copolymer latex obtained by graft polymerizing a monomer that forms a hard polymer onto an elastic backbone polymer, and a graft copolymer latex that is sparingly soluble in water. When mixing an insoluble but wettable organic liquid in the presence of a coagulant, the volume ratio of the total amount of graft copolymer and organic liquid in the entire mixture is less than 40%, and the organic liquid/graft copolymer Mix so that coalescence = 1 to 5 (volume ratio),
A method for producing a graft copolymer having excellent powder properties, which comprises dispersing the graft copolymer impregnated with an organic liquid in water. 2. The graft copolymer according to claim 1, which is sparingly soluble in water and has a surface tension of 35 dyne/cm or less at room temperature of an organic liquid that does not dissolve but can wet the copolymer. Production method. 3. The method for producing a graft copolymer according to claim 1 or 2, which comprises mixing a graft copolymer latex with a mixture of an aqueous coagulant solution and an organic liquid. 4. The method for producing a graft copolymer according to claim 1 or 2, which comprises mixing an organic liquid and a graft copolymer latex in an aqueous coagulant solution.
JP7309081A 1981-01-27 1981-05-15 Method for producing graft copolymer Expired JPS595611B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP7309081A JPS595611B2 (en) 1981-05-15 1981-05-15 Method for producing graft copolymer
US06/341,701 US4401806A (en) 1981-01-27 1982-01-22 Process for producing graft copolymer
DE8282100522T DE3276172D1 (en) 1981-01-27 1982-01-26 Process for producing graft copolymer
EP82100522A EP0057408B1 (en) 1981-01-27 1982-01-26 Process for producing graft copolymer
BR8200416A BR8200416A (en) 1981-01-27 1982-01-26 PROCESS TO PRODUCE A GRAFT COPOLYMER
CA000394932A CA1181886A (en) 1981-01-27 1982-01-26 Process for producing graft copolymer
MX191155A MX158921A (en) 1981-01-27 1982-01-26 PROCEDURE TO PRODUCE GRAFT COPOLYMERS

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7309081A JPS595611B2 (en) 1981-05-15 1981-05-15 Method for producing graft copolymer

Publications (2)

Publication Number Publication Date
JPS57187308A JPS57187308A (en) 1982-11-18
JPS595611B2 true JPS595611B2 (en) 1984-02-06

Family

ID=13508286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7309081A Expired JPS595611B2 (en) 1981-01-27 1981-05-15 Method for producing graft copolymer

Country Status (1)

Country Link
JP (1) JPS595611B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1989002905A1 (en) * 1987-09-25 1989-04-06 Mitsubishi Rayon Co., Ltd. Process for continuously producing granular polymer and process for controlling particle size of said polymer
JPH035468B2 (en) * 1984-07-12 1991-01-25 Nippon Biso Kk

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH035468B2 (en) * 1984-07-12 1991-01-25 Nippon Biso Kk
WO1989002905A1 (en) * 1987-09-25 1989-04-06 Mitsubishi Rayon Co., Ltd. Process for continuously producing granular polymer and process for controlling particle size of said polymer

Also Published As

Publication number Publication date
JPS57187308A (en) 1982-11-18

Similar Documents

Publication Publication Date Title
JP5185534B2 (en) Method for producing coagulated latex particles
JP2890387B2 (en) Method for producing granular polymer
JPS5821644B2 (en) ABS type resin manufacturing method
EP0057408B1 (en) Process for producing graft copolymer
CA1279745C (en) Compacted agglomerates of polymer latex particles
US5064938A (en) Continuous production process of particulate polymer and control method of the particle size of said polymer
JPS595611B2 (en) Method for producing graft copolymer
EP0203511B1 (en) Method for producing rubber modified thermoplastic resins
JPS595610B2 (en) Method for producing graft copolymer
KR100231012B1 (en) Process for producing a thermoplastic resin powder having improved heatresistance
JPH0329812B2 (en)
JP3505870B2 (en) Spherical polymer particles
JP2888937B2 (en) Method for producing a powdery mixture of thermoplastic polymers
JP2559833B2 (en) Continuous production method of powdery and granular polymer and method of controlling particle size of the polymer
JPS5984922A (en) Method for coagulating thermoplastic resin latex
KR101862323B1 (en) manufacturing method of resin powder using synthetic latex
JPH0459010B2 (en)
JPH0151483B2 (en)
JP2687537B2 (en) Method for producing vinyl chloride resin
JP3009321B2 (en) Method for producing polymer aggregate
JPH0212496B2 (en)
DE3855199T2 (en) METHOD FOR CONTINUOUSLY PRODUCING POLYMER GRANULES AND METHOD FOR REGULATING THE POLYMER PARTICLE SIZE
JPH07138314A (en) Method for coagulating polymeric latex
JPH0655833B2 (en) Method for improving powder properties of synthetic resin powder
JPH07233214A (en) Recovery of polymer