JPS5955924A - Excavating working vehicle - Google Patents

Excavating working vehicle

Info

Publication number
JPS5955924A
JPS5955924A JP16727382A JP16727382A JPS5955924A JP S5955924 A JPS5955924 A JP S5955924A JP 16727382 A JP16727382 A JP 16727382A JP 16727382 A JP16727382 A JP 16727382A JP S5955924 A JPS5955924 A JP S5955924A
Authority
JP
Japan
Prior art keywords
packet
boom
tip
detection
axis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16727382A
Other languages
Japanese (ja)
Other versions
JPS6337212B2 (en
Inventor
Kazushige Ikeda
一繁 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP16727382A priority Critical patent/JPS5955924A/en
Publication of JPS5955924A publication Critical patent/JPS5955924A/en
Publication of JPS6337212B2 publication Critical patent/JPS6337212B2/ja
Granted legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Operation Control Of Excavators (AREA)

Abstract

PURPOSE:To exactly confirm the depth of excavation by a method in which the tip of a bucket is contacted with a sloped ground to obtain the inclination angle, and from the inclination angle and the length and angle of each boom, the penetration depth of the bucket is calculated in an arithmetical unit. CONSTITUTION:The tip of a bucket 9 is contacted with a sloped ground to be excavated at different points A(x1, y1) and B(x2, y2) in the inclinded direction. From the angle and lengths L1-L3 of each boom, the inclination angle 4 is determined in arithmetical unit. The penetration depth of the tip of the bucket 9 is orderly calculated from the formula D=H'-L1cos(alpha-phi)+L2cos(alpha-phi+beta)-L3cos (alpha-phi+beta+gamma) in arithmetical unit 16 and then displayed on a displayer 17. Operators can confirm exact depth of excavation and therefore, the excavating operation can be performed excellently and safely.

Description

【発明の詳細な説明】 不発明に、走行装#全備えた走行機体に、第1枢支軸芯
周りで上下揺動自在にブームを枢支連結すると共に、そ
のブームに第2枢支軸芯周りで揺動自在にアームを枢支
連結し、かつ、前記アームに第8枢支軸芯問りで揺動自
在にパケットTh枢支連結した掘削作業車に関する。
Detailed Description of the Invention Inventively, a boom is pivotally connected to a traveling aircraft fully equipped with traveling equipment so as to be able to swing up and down about a first pivot axis, and a second pivot axis is attached to the boom. This invention relates to an excavation work vehicle in which an arm is pivotally connected to be swingable around a center, and a packet Th is pivotally connected to the arm to be swingable about an eighth pivot axis.

上記掘削作業車で所定深さの掘削4行うに、従来一般に
、作条車上から掘削1”A:i所を監視し〜その掘削深
さ全目測VCJ:つて確認1−るようにしている。とこ
ろが、掘削深さが大の場合には掘削箇所が見にくく、又
、見えたとしても目測によるがために不正確であり、作
輩者が経験に伴う勘に頼って掘削しているのが実情であ
り、溝深さに狂いが生じやすくて作業精度が低く、又、
水道とかガス等の配管が地中の所定深さに埋設さ几てい
る工うな箇所で掘削全行う場合に、誤って配管を破損す
る危険性も有り、殊に、傾斜地で掘削ケ行う場合に、平
担地の場合と感覚的に異なり、所デ深さの掘削を行う上
で困難極まりの無いものであった。
When excavating to a predetermined depth with the above-mentioned excavation work vehicle, conventionally, generally, the excavation 1" A:i location is monitored from the top of the excavation vehicle and the entire excavation depth is visually measured and confirmed. However, when the excavation depth is large, it is difficult to see the excavated spot, and even if it is visible, it is inaccurate because it is based on visual estimation, and the excavation is performed by the farmer relying on his intuition based on experience. This is the actual situation, and the groove depth tends to be inconsistent, resulting in low work accuracy.
When excavating in places where water, gas, etc. piping is buried at a certain depth underground, there is a risk of accidentally damaging the piping, especially when excavating on sloped land. However, it was different from the case of flat land, and it was extremely difficult to excavate to a certain depth.

本発明は、上記の点に鑑み、掘削箇所の傾斜状態のい力
・んに力・力・わらず、パケットの掘削深さを精度良く
かつ容易に知り、掘削作業を安全かつ良好に行えるよう
にすることを目的とする。
In view of the above points, the present invention enables to accurately and easily know the excavation depth of the packet regardless of the force or force of the inclined state of the excavation location, and to perform excavation work safely and efficiently. The purpose is to

不発明に、上記目的の達成のために、胃記した掘削作業
車において、走行機体に対する前記ブームの揺動角度?
検出する第1検出装置縦、前記ブームに対する前記アー
ム、及び、前記アームに対する前記パケット夫々の揺動
角度を検出する第2及び纂3検出装置りを夫々設け、前
記第1ないし第8検出装置夫々からの検出角度に基き、
傾斜地におけるその傾斜面からの法線方向でのパケット
先端の突っ込み深さを求める下記式 %式%) ) 但、LI:第1軸芯から第2軸芯までのブーム長さ Lパ第2軸芯から第3軸芯までのアーム長さ り、 : 、48軸芯から爪先端までのパケット長さ α、β、γ:傾斜地にパケットヲ抑削突入させた時点に
おいて第1 ないし第3検出装置夫々で 検出した角度 X1=LI(シロ呼ヨ(α寡−−二’)−L、(−コ(
1(α8+β、−二 )2 −l−Lacrs (α1+β、+r!−二〕y、−H
−L、預α、+L2魚(α、十β1)−Llcas (
α、+A−t−r+、)Xl ”=I4鴨α、−÷)−
り、帆α、+β8−÷)+L、鳴(α1+β冨十r諺−
−) 3’s −H−L、魚α、十り焦(α1+β、)−IA
囲(α、+β、+γ、) H:走行装置の接地面から、その法線方向におけるml
枢支軸芯までの長さ α5.β1.γ、:傾斜面上の任意の点A (x、、 
’i1)にパケットの先端を接地させた 状態での第1ないし第3検出装 置去々の検出角度 α3.β雪、γ、:傾斜面上の前記点Aと異なる任意の
点B (Xs、 y□)にパケットの先端を接地させた
状態での第 1ないし用3検出装置夫々の検 出角度 會プログラムした演算処理装置を設けて、前記第1ない
し第3検出装置からの情報を入力するように構成すると
共に、前記演算処理装置で求めらnた前記パケットの突
っ込み深さ’kff示させる表示装置を付設しである事
を特徴とする。
Uninventively, in order to achieve the above object, in the excavation work vehicle described above, the swing angle of the boom with respect to the traveling body is determined.
A first detecting device vertically detecting, a swinging angle of the arm relative to the boom, and a second and third detecting device vertically detecting the swing angle of each of the packets relative to the arm are provided, respectively, and the first to eighth detecting devices are respectively provided. Based on the detection angle from
The following formula (%) calculates the plunge depth of the tip of the packet in the normal direction from the slope on a slope.) However, LI: Boom length from the first axis to the second axis L PA Second axis Arm length from the core to the third axis: , 48Packet length from the axis to the tip of the claw α, β, γ: At the time when the packet is pressed into the slope, each of the first to third detection devices Detected angle
1 (α8+β, -2)2 -l-Lacrs (α1+β, +r!-2]y, -H
−L, deposit α, +L2 fish (α, ten β1) −Llcas (
α, +A-t-r+,)Xl ”=I4duckα,-÷)-
ri, sail α, +β8-÷)+L, sound (α1+βfujur proverb-
-) 3's -H-L, Fish α, Jurikyo (α1+β,)-IA
Range (α, +β, +γ,) H: ml in the normal direction from the ground plane of the traveling device
Length to pivot axis α5. β1. γ,: Any point A (x,,
'i1) The detection angle α3 of the first to third detectors with the tip of the packet grounded. β Snow, γ: The detection angles of each of the first to third detection devices were programmed with the tip of the packet touching the ground at an arbitrary point B (Xs, y□) different from the point A on the slope. An arithmetic processing device is provided, configured to input information from the first to third detection devices, and a display device is attached to display the penetration depth 'kff of the packet determined by the arithmetic processing device. It is characterized by being

つまり、パケットの先端を、掘削しようとする傾斜地の
傾斜方向で異なる2点に接地させ、夫々の時点での第1
ないし第8検出装置による検出角度に基いて、傾斜地の
傾斜角度を演算処理装置で算出し、そして、その傾斜地
の掘削に際し、第1ないし第3検出角度を演算処理装置
首に入力し、上述の算出傾斜角度とからノ(ケラト先端
の突っ込み深さを算出してその算出結果を表示装置によ
り作業者に知らせるのである。”従って、掘削地の傾斜
状態のいかんにかかわらず、ブーム、アーム及び)くケ
ラトの駆動上下揺動に伴って刻々と変化するパケット先
端の突っ込み深さ、即ち、傾斜面に対する掘削深さ全表
示装置によって一目で容易に、しかも精確に知ることが
でき、各種配管が埋設さ12ている場合でも、その配管
理設深さがわがってさえいれば、不測にパケットで破損
するといった事無く安全に掘削作業を行え、又、所定深
さの溝をも精確かつ良好に掘削でき、作業精度を向上で
きるようになった。
In other words, the tip of the packet is grounded at two different points in the slope direction of the slope to be excavated, and the first
The inclination angle of the slope is calculated by the arithmetic processing unit based on the detected angles by the to eighth detection devices, and when excavating the slope, the first to third detected angles are input to the arithmetic processing unit head and the above-mentioned The depth of penetration of the tip of the kerato is calculated from the calculated inclination angle, and the calculation result is notified to the operator on a display device. Therefore, regardless of the inclination of the excavated site, the depth of penetration of the tip of the kerat is calculated. The depth of penetration of the tip of the packet, which changes every moment as the kerato moves up and down, i.e., the depth of excavation into the slope, can be easily and accurately determined at a glance by the full display device, and it is possible to easily and accurately determine the depth of penetration of the tip of the packet into the slope. 12 Even if the trench is deep, as long as the depth of the distribution is known, the excavation work can be carried out safely without being accidentally damaged by packets, and it is also possible to excavate trenches of a specified depth accurately and well. This made it possible to improve work accuracy.

以下、不発明の実施例を例示図に基いて詳述するq クローラ走行装置!(1)’に備えた走行車体に縦軸芯
(PI)周りで回動自在に旋回台(2)ヲ設け、その旋
回台(2)に操rIf部(3)ヲ設けると共にその前′
f!Aに縦軸芯(Pg)周りで回動自在に旋回ブラケッ
ト(4)を設け、旋回ブラケット(4)に掘削装置(5
)全取付け、他方、走行磯体に排土装置(6)全駆動上
下揺動自在に設け、1台でありながら対地掘削と排土の
両作業を行えるように掘削作業車を構成しである。
Hereinafter, embodiments of the invention will be described in detail based on illustrative drawings.q Crawler traveling device! (1) A swivel base (2) is provided on the traveling vehicle body prepared for `` to be able to rotate freely around the vertical axis (PI), and a steering rIf section (3) is provided on the swivel base (2) and in front of it.
f! A is provided with a swing bracket (4) that is rotatable around the vertical axis (Pg), and the excavator (5) is attached to the swing bracket (4).
) is fully installed, and on the other hand, the earth removal device (6) is installed on the traveling rocky body so that it can swing freely up and down, and the excavation work vehicle is configured so that it can perform both ground excavation and earth removal work with one machine. .

前記掘削装置(5) Th構成するに、旋回ブラケット
(4)に第1枢支軸芯(Ql)周りで上下揺動自在にブ
ーム(7)を枢支連結すると共に、ブーム(7)に第2
枢支軸芯(Q、)周りで揺動自在にアーム(8)を、か
つ、アーム(8) K第8枢支軸芯(Qの周りで揺動自
在にバケツ) (9) ’Th、夫々枢支連結し、そし
て、前記旋回ブラケット(4)とブーム(7)、ブーム
(7)とアーム(8)、及び、アーム(8)とパケット
(9)夫々間に第1ないしょ3油圧シリンダOn 、 
(11) 、(2)全介装し、ブーム(7)、アーム(
8)及びパケット(9)夫々を駆動揺動して対地掘削作
業を行うように構成しである。
To configure the excavation equipment (5), a boom (7) is pivotally connected to the swing bracket (4) so as to be able to swing vertically around a first pivot axis (Ql), and a 2
Arm (8) swings freely around the pivot axis (Q,), and arm (8) K eighth pivot axis (bucket swings freely around Q) (9) 'Th, A first to three hydraulic cylinders are pivotally connected to each other, and between the swing bracket (4) and the boom (7), the boom (7) and the arm (8), and the arm (8) and the packet (9), respectively. On,
(11), (2) Fully equipped, boom (7), arm (
8) and the packet (9) are respectively driven and moved to perform ground excavation work.

前記第1枢支軸芯(Q、)に、走行装置(1)の接地揺
動角度((1’lを電圧変化で検出するボリューム型の
第1検出装街03を付設し、前記第2及び第8枢支軸芯
(Q、) 、 (Q、)夫々に、ブーム(7)の前記第
1仮想直線に対するアーム(8)の第2枢支軸芯(Q8
)と第8枢支軸芯(Q、)とを結ぶ第2仮想直線の揺動
角度(ロ)、及び、アーム(8)の前記第2仮想直線に
対するパケット(9)の第8枢支軸芯(Q、)とバケの ット(9)の爪先端とを結ぶ兜8仮憩直面勤角度(r)
夫々全電圧変化によって検出する第・2及び第3検出装
置(14) 、 a5を付設しである。
A volume-type first detection device 03 for detecting the ground swing angle ((1'l) of the traveling device (1) by a voltage change is attached to the first pivot axis (Q,), and the second and an eighth pivot axis (Q,), (Q,), respectively, a second pivot axis (Q8) of the arm (8) with respect to the first virtual straight line of the boom (7).
) and the eighth pivot axis (Q, ), and the swing angle (b) of the second imaginary straight line connecting the eighth pivot axis (Q, ), and the eighth pivot axis of the packet (9) with respect to the second imaginary straight line of the arm (8). Kabuto 8 temporary rest surface working angle (r) connecting the core (Q,) and the tip of the nail of the bucket (9)
Second and third detection devices (14), a5, are attached to each detect the total voltage change.

前記操縦ViIls (3)に演算処理装置(16+と
表示装置α力とを設け、前記第1ないし紀3検出装置a
、i 、 (14)、 (151からの信号を演算処理
装置αQに入力してパケット(tり先端の地表面からの
突っ込み深さ、即ち、掘削深さ?算出し、そのW出結果
を表示装置をaηに表示させるように構成してあり、次
に、演算処理装置00にプログラムさ几た、バケット(
9)先端の突っ込み深さσ〕)ヲ求める計算式について
説明する。
The control ViIls (3) is provided with an arithmetic processing unit (16+) and a display device α, and the first to third detection devices a
, i , (14), (Inputs the signal from 151 to the arithmetic processing unit αQ, calculates the penetration depth of the tip of the tip from the ground surface, that is, the excavation depth?, and displays the W output result. The device is configured to display on aη, and then the processor 00 is programmed to display the bucket (
9) The calculation formula for calculating the tip penetration depth σ]) will be explained.

第2図に示すように、走行装置(1)の接地面を基準線
としてx−y座標系で考えnば、パケット(9)先端の
位置(x、y)に、 x−==L4rm((1−’ )−Ltcos(cl+
β−二)−)−L、cos(α+β2 十γ−1)−(1) y=H−l4asct −1−L、cas (a+β)
 −L、fm (cl+β+r)−(2) となる。
As shown in Fig. 2, if we consider the x-y coordinate system with the ground plane of the traveling device (1) as the reference line, then at the position (x, y) of the tip of the packet (9), x-==L4rm( (1-')-Ltcos(cl+
β-2)-)-L, cos (α+β2 1γ-1)-(1) y=H-l4asct-1-L, cas (a+β)
−L, fm (cl+β+r)−(2).

ここでり、1第1軸芯(Qθから第2軸芯(Q、)まで
のブーム(7)長さ L2:第2軸芯(Q、)から第3軸芯(Q、)までのア
ーム(8)長さ り、 : i 3軸芯(Q、)から爪(9a)先端1で
のパケット(9)長さ H:走行装置(1)の接地面からその法線方向における
第1軸芯(Qθまでの長さ 上記(1)及び(2)式に基いて、掘削しようとする傾
斜面に刈し、その傾斜方向で異なる2点A(X+、 3
’t) 、 B (Xl、 yりにパケット(9)の先
端を接地させた場合全力えnば、夫々の接地状態でのブ
ーム(7) 、 +s) 、 (9)夫々の検出揺動角
度をA(α1.β1、γ+)、B(α?、β*、 rx
)として代入することにエリ、X H=L 1房(α−
1)−L2房(α□+β□−二)2 +L邸(α1+β1+γ1−二)−−−(3)yl w
 H−L1aysα、−4−IAcos(α□+β1)
−L、部(α1+β1+γ1)         −−
−(4)Xg”” LH幀α8−÷)−L;帆α、+β
、−憂)+L房(α富+β2+γ、−二)      
−(5)yx−H−I4広α雪+L(・μs(α、+β
3)−I4μs(α、+βi+ rt )      
   (+3)として数値が特定さfLる。
Here, 1 Boom (7) from the first axis (Qθ to the second axis (Q,)) Length L2: Arm from the second axis (Q,) to the third axis (Q,) (8) Length: i From the 3rd axis (Q, ) to the packet (9) at the tip 1 of the claw (9a) Length H: From the ground plane of the traveling device (1) to the 1st axis in its normal direction (Length up to Qθ) Based on the above formulas (1) and (2), cut the slope on the slope where you are going to excavate, and cut two points A (X+, 3) that are different in the slope direction.
't), B (Xl, y) If the tip of the packet (9) is in contact with the ground, the detection swing angle of the boom (7), +s), (9) in each grounded state is A(α1.β1, γ+), B(α?, β*, rx
), X H=L 1 bunch (α−
1) -L2 house (α□+β□-2) 2 +L house (α1+β1+γ1-2)---(3)yl w
H-L1aysα, -4-IAcos (α□+β1)
−L, part (α1+β1+γ1) --
-(4)
, - sorrow) + L bunch (α wealth + β2 + γ, -2)
-(5)yx-H-I4 wide α snow +L(・μs(α, +β
3) −I4μs (α, +βi+ rt )
A numerical value is specified as (+3) fL.

そして、上記2点A(x、、yυ* B (Xl、 y
s) i>ら掘削地の傾斜角度(ψ)が [、J:つて求められ、(3)〜(6)式から傾斜角度
(ψ)が定められる。
Then, the above two points A(x,, yυ* B (Xl, y
s) The inclination angle (ψ) of the excavated area is determined from [, J:], and the inclination angle (ψ) is determined from equations (3) to (6).

次に、掘削地の傾斜面を基準線とするx/  y/座標
系に変換し、パケット(9)先端の突っ込み深さD)を
y′成分で考える。
Next, it is converted to an x/y/coordinate system with the slope of the excavated area as the reference line, and the penetration depth D) of the tip of the packet (9) is considered in terms of the y' component.

前記第1枢支軸芯(Qθと前記A(xl、yl)点とを
結ぶ直線とy軸との角度0、及びy′軸に対するブーム
(7)の仰角(ロ)について求めれば、α′−α−ψ 
          □(9)となる。
If we calculate the angle 0 between the y-axis and the straight line connecting the first pivot axis (Qθ and the point A(xl, yl)) and the elevation angle (b) of the boom (7) with respect to the y'-axis, α' −α−ψ
□(9).

そして、第1枢支軸芯(Q、)からX′輪軸上下ろした
垂線の長さく)F)に、 H’ =  x−”+ (Vt−H)’*cos(18
0°−e−cp )−−ムr”+ (yx−H)”・μ
s(θ+α)−01となジ、(7)及び(8)式を代入
してとなる。そして、パケット(9)先端の突っ込み深
さ0は、 D=H’−L、cosa’−1−I−ccs(a ′+
β) −L@as (α’+β十r)で求められ、(9
)式を代入して整理すれば、り −H’ −L、cO!
+ ((Z −9+ ) +Lz囲(a −9++β)
 −1,acos (α−ψ+β+r) となり、(7)及び0])式から、深さO)が、α、β
及びγに基き、演算処理装置a呻によって刻々と算出さ
れるのである。そして、こうして算出された深さD)が
表示% Wt Q7)によって刻々と表示されるのであ
る。
Then, the length of the perpendicular line drawn from the first pivot axis (Q, ) above the X' wheel axis (F) is given by H' =
0°−e−cp )−−μr”+ (yx−H)”・μ
By substituting equations (7) and (8), we obtain s(θ+α)−01. Then, the penetration depth 0 of the tip of the packet (9) is D=H'-L, cosa'-1-I-ccs(a'+
β) -L@as (α'+β0r), (9
) By substituting and rearranging the equation, we get ri -H' -L, cO!
+ ((Z -9+) +Lz area (a -9++β)
-1, acos (α-ψ+β+r), and from equations (7) and 0]), the depth O) is α, β
and γ, and are calculated every moment by the arithmetic processing unit a. Then, the depth D) calculated in this way is displayed moment by moment using the display % Wt Q7).

伺、深さを表示させるに、掘削しようとする深さを適宜
設定すると共にその設定深さから上記深さυ)を減算し
、設定深さに到達するまでの残余深さを表示させるよう
にしても良い0又、表示装waηの画面に、上記深さと
共に、掘削地の断面形状と掘削作業車、並びに、ブーム
(7)、アーム(8)及びパケット(9)の動作夫々を
モニター表示させ、その掘削状況を視覚的にエリわがり
やすいようにでることも可能である。
To display the depth, set the depth to be excavated as appropriate, subtract the above depth υ) from the set depth, and display the remaining depth until the set depth is reached. Additionally, on the screen of the display device waη, the cross-sectional shape of the excavated area, the excavation work vehicle, and the operations of the boom (7), arm (8), and packet (9) are displayed on the screen of the display device waη. It is also possible to display the excavation situation in a way that makes it easy to visually understand the excavation situation.

前記第1ないし第8検出装置α:1 、 Q4) 、 
<15夫々としては、第1ないし第3シリンダQす、0
υ、(2)夫々の伸縮量を検出することにJ:、0ブー
ム(7)、アーム(8)及びパケット(9)夫々の揺動
角度全検出するように構成しても良い。
The first to eighth detection devices α:1, Q4),
<15, respectively, the first to third cylinders Q, 0
In addition to detecting the amount of expansion and contraction of each of υ and (2), the configuration may be such that the entire swing angle of each of the boom (7), arm (8), and packet (9) is detected.

不発明によれば、パケット(9)の爪先端を2点A(X
l、yI)、B(X茸、yl)VC接地させ、それによ
り、走行機体に対する掘削地の傾斜角度(q))場合と
か、第3図の(ロ)に示すように、走行機体の接地面に
連なる同一傾斜角の傾斜面を掘削する場合いずfLにお
いても、求めら’f’lた傾斜角度が零となり、実質的
に何ら支障無く適用でき、又、第8図の(/つに示すよ
うに、走行装置(1)が隆起部や石等に乗り上げ、走行
様体側が掘削地に対して傾斜したような場合でも良好に
使用でき、その掘削地あるいは走行機体の傾斜状態いか
んにかかわらず良好に適用できる。
According to the invention, the tip of the claw of the packet (9) is connected to two points A (X
l, yI), B (X mushroom, yl) VC, thereby reducing the angle of inclination of the excavated ground with respect to the traveling machine (q)), as shown in (b) of Figure 3, the contact of the traveling machine When excavating a sloped surface with the same slope that is connected to the ground, the slope angle determined by 'f'l becomes zero at any time fL, and it can be applied practically without any problem. As shown in Fig. 2, it can be used well even when the traveling device (1) runs aground on a bump or stone, and the traveling body side is inclined with respect to the excavated ground. It can be applied well regardless of the situation.

【図面の簡単な説明】[Brief explanation of drawings]

図面は不発明に係る掘削作業車の実施例を示し、第1図
に全体側面図、第2図に掘削深さ算出方法の原理図であ
る。第8図の(イ)、(ロ)及び(jに、夫々各錘の使
用形態を示す説明図である。 (1)・・・・・・走行装置、(7)・・・・・・ブー
ム、(8)・・・・・・アーム、(9)・・・・・・バ
ケツ)、(13・・・・・・第1検出装置、04)・・
・・・・第2検出装置、aQ・・・・・・第8検出装置
、aQ・・・・・・演算処理装置、αの・・・・・・表
示装置、(Q、)・・・・・・第1枢支軸芯、(Q、)
・・・・・・第2枢支軸芯、(Q、)・・・・・・第3
枢支軸芯。
The drawings show an embodiment of the excavation work vehicle according to the invention, and FIG. 1 is an overall side view, and FIG. 2 is a diagram showing the principle of an excavation depth calculation method. (A), (B), and (J in FIG. 8) are explanatory diagrams showing the usage forms of each weight, respectively. (1)... Traveling device, (7)... Boom, (8)...arm, (9)...bucket), (13...first detection device, 04)...
...Second detection device, aQ...Eighth detection device, aQ...Arithmetic processing unit, α...Display device, (Q,)... ...first pivot axis, (Q,)
...Second pivot axis, (Q,)...Third
Pivot axis.

Claims (1)

【特許請求の範囲】 走行装置(1)全備えた走行機体に、第1枢支軸芯(Q
、)周りで上下揺動自在にブーム(7)全枢支連結する
と共に、そのブーム(7)に第2枢支軸芯(Q、)周り
で揺動自在にアーム(8)全枢支連結し、かつ、前記ア
ーム(8)に第8枢支軸芯(Q、)周りで揺動自在にパ
ケット(9) Th枢支連結した掘削作朶車であって、
走行機体に対する前記ブーム(7)の揺動角度全検出す
る第1検出装置@、前記ブーム(7) K対する前記ア
ーム(8)、及び、前記アーム(8)に対する前記パケ
ット(9)夫々の揺ル′D角度を検出する第2及び第3
検出装置α4) 、 Or9?夫々設け、油記第1ない
し第3検出装置α3.(l褐、a時夫々からの検出角#
π基き、傾斜地におけるその傾斜面からの法線方向での
パケット(9)先端の突っ込み深さく−を求める下記式 %式%) ) 但、LI:第1輛芯(Q、)から第2軸芯(Q、)!で
のブーム(7)長さ Ll:第2 、’1jlll芯(Q、)から第3軸芯(
Q、)捷でのアーム(8)畏さ り、:f8軸芯(Qs)71)ら爪先端までのパケット
(9)長さ α、β、γ:傾斜地にパケット(9) ’に掘削突入さ
せた時点において第 1ないし第3検出装置(1場。 (14) 、 Qυ夫々で検出した角度凶=L、房四−
二)−L…(α、+A−二)2 +Lμ(偽十μ+11−二) yt−H−Li魚偽+L冨四(肴十β)−り墨μs(偽
+β+γ□) 為−り郵(Q −’ ) −L、cos (偽十μm二
)2 −)−L 5txs (%+A+ 1m−二)2 yx=f(−L Icos α、+L、C05(αま+
β諺)−L、缶(α2+β、+γ、) H:走行装置(1)の接地面から、その法線方向におけ
る第1枢支軸芯(Q、)までの長さα1.β+、it:
lt、fi斜而上の任意の点A (面XI、 yl)に
パケット(9)の先端全接地させ た状態での第1ないし第3検出 装置(埒、α4) 、 (iF1夫々の検出角度α8.
βs、 rパ傾斜面上の前記点Aと異なる任意の点B 
(Xl、 3’t) vcパケット(9)の先端?接地
させた状態での フル1ないし舅3検出装館α3 、 (14)、09夫
々の検出角度 全プログラムした演算処理装置αQを設けて、前記第1
ないし第3検出装備U、圓、051からの情報を入力す
るように構成すると共に、前記演算処理装置ft QQ
で求めらfした前記ノ(ケラト(9)の突っ込み深さを
表示させる燥示装憧α″i)を付設しである事全特徴と
する掘削作業車。
[Claims] A first pivot axis (Q
A boom (7) is fully pivotally connected to the boom (7) so as to be able to swing up and down around the second pivot axis (Q, ), and an arm (8) is fully pivotally connected to the boom (7) so as to be able to swing freely around the second pivot axis (Q, ). and an excavation work vehicle in which a packet (9) Th is pivotally connected to the arm (8) so as to be swingable around an eighth pivot axis (Q,),
A first detection device @ detects the entire swing angle of the boom (7) with respect to the traveling aircraft, the swing of the arm (8) with respect to the boom (7) K, and the packet (9) with respect to the arm (8). 2nd and 3rd for detecting the angle
Detection device α4), Or9? The first to third detection devices α3. (Detection angle # from l brown and a time respectively
Based on π, calculate the penetration depth of the tip of the packet (9) in the normal direction from the slope on a slope using the following formula (%)) However, LI: From the first axis (Q, ) to the second axis Core (Q,)! Boom (7) length Ll: from 2nd, '1jllll core (Q,) to 3rd axis (
Q,) Arm (8) at the cutting edge: Packet (9) length from f8 axis (Qs) 71) to the tip of the claw α, β, γ: Drill the packet (9) ' into the slope At the time when
2) -L...(α, +A-2) 2 +Lμ (False 1μ + 11-2) yt-H-Li Fish Fake + L Fuji 4 (Appetizer 1β) - Risumi μs (False +β+γ□) Tame-RiYu ( Q -' ) -L, cos (false 10 μm2) 2 -) -L 5txs (%+A+ 1m-2) 2 yx=f(-L Icos α, +L, C05 (α ma+
β Proverb) -L, Can (α2+β, +γ,) H: Length α1. from the ground plane of the traveling device (1) to the first pivot axis (Q, ) in the normal direction thereof. β+, it:
The detection angle of each of the first to third detection devices (埒, α4), (iF1) with the entire tip of the packet (9) grounded at any point A (planes XI, yl) on the lt, fi diagonal α8.
βs, r Any point B on the slope surface that is different from the point A
(Xl, 3't) Tip of vc packet (9)? An arithmetic processing unit αQ is provided in which all the detection angles of the full 1 to 3 detection units α3, (14), and 09 are programmed in the grounded state, and the first
It is configured to input information from the third detection equipment U, En, 051, and the arithmetic processing unit ft QQ.
An excavation work vehicle characterized in that it is equipped with the above-mentioned kerato (9) penetration depth determined by f.
JP16727382A 1982-09-25 1982-09-25 Excavating working vehicle Granted JPS5955924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16727382A JPS5955924A (en) 1982-09-25 1982-09-25 Excavating working vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16727382A JPS5955924A (en) 1982-09-25 1982-09-25 Excavating working vehicle

Publications (2)

Publication Number Publication Date
JPS5955924A true JPS5955924A (en) 1984-03-31
JPS6337212B2 JPS6337212B2 (en) 1988-07-25

Family

ID=15846681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16727382A Granted JPS5955924A (en) 1982-09-25 1982-09-25 Excavating working vehicle

Country Status (1)

Country Link
JP (1) JPS5955924A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5446981A (en) * 1991-10-29 1995-09-05 Kabushiki Kaisha Komatsu Seisakusho Method of selecting automatic operation mode of working machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5446981A (en) * 1991-10-29 1995-09-05 Kabushiki Kaisha Komatsu Seisakusho Method of selecting automatic operation mode of working machine

Also Published As

Publication number Publication date
JPS6337212B2 (en) 1988-07-25

Similar Documents

Publication Publication Date Title
US10876275B2 (en) Construction machine
US7516563B2 (en) Excavation control system providing machine placement recommendation
JP4800497B2 (en) Method and apparatus for displaying objects on earthwork sites
JP4012448B2 (en) Construction machine excavation work teaching device
JPWO2018026021A1 (en) Management system
JP4642288B2 (en) Underground excavation system
JP2022001734A (en) Revolving work vehicle
KR101629716B1 (en) Coordinate Measuring System for Excavating Work and Method Thereof
WO2017188230A1 (en) Construction machine
JPS5955924A (en) Excavating working vehicle
JP6942671B2 (en) Dimensioning device and dimensioning method
JP2023543984A (en) Virtual boundary system for work machines
JP2017190587A (en) Mucking operation management device
KR200397423Y1 (en) Working display apparatus of excavator
JPH0819697B2 (en) Excavator load monitoring device for power shovel
JPS6378921A (en) Underwater rubble leveling work
JPH0258411B2 (en)
JP3161816B2 (en) Safety equipment for construction machinery
JPS6251596A (en) Safety device for power shovel
JP6175124B2 (en) Embedded object position indicator
JP7173627B2 (en) construction machinery
JPS59122636A (en) Excavating working vehicle
US20230313502A1 (en) Trench measurement system
WO2024048711A1 (en) Display system for work machine, work machine, and display method for work machine
JPH0754003B2 (en) Backhoe excavation position automatic detection device