JPS6337212B2 - - Google Patents

Info

Publication number
JPS6337212B2
JPS6337212B2 JP16727382A JP16727382A JPS6337212B2 JP S6337212 B2 JPS6337212 B2 JP S6337212B2 JP 16727382 A JP16727382 A JP 16727382A JP 16727382 A JP16727382 A JP 16727382A JP S6337212 B2 JPS6337212 B2 JP S6337212B2
Authority
JP
Japan
Prior art keywords
cos
bucket
axis
angle
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP16727382A
Other languages
Japanese (ja)
Other versions
JPS5955924A (en
Inventor
Kazushige Ikeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kubota Corp
Original Assignee
Kubota Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kubota Corp filed Critical Kubota Corp
Priority to JP16727382A priority Critical patent/JPS5955924A/en
Publication of JPS5955924A publication Critical patent/JPS5955924A/en
Publication of JPS6337212B2 publication Critical patent/JPS6337212B2/ja
Granted legal-status Critical Current

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/26Indicating devices

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Operation Control Of Excavators (AREA)

Description

【発明の詳細な説明】 本発明は、走行装置を備えた走行機体に第1枢
支軸芯周りで上下揺動自在に枢支連結されるブー
ムに、第2枢支軸芯周りで上下揺動自在にアーム
を枢支連結して、このアームに第3枢支軸芯周り
で上下揺動自在に枢支連結されるバケツトの先端
の、傾斜地におけるその傾斜面からの法線方向で
の突つ込み深さDを、走行機体に対する前記ブー
ムの揺動角度を検出する第1検出装置、前記ブー
ムに対する前記アームの揺動角度を検出する第2
検出装置、並びに、前記アームに対する前記バケ
ツトの揺動角度を検出する第3検出装置夫々から
の検出角度に基づき、下記式 D=H′−L1cos(α−φ)+L2cos(α−φ+β
)−L3cos(α−φ+β+γ) H′=−√1 2+(1−)2・cos(Θ+φ) x1L1cos(α1−π/2)−L2cos(α1+β1−π
/2)+L3cos(α1+β1+γ1−π/2) y1=H−L1cosα1+L2cos(α1+β1)−L3cos(
α1+β1+γ1) 但し、 L1:第1軸芯から第2軸芯までのブーム長さ L2:第2軸芯から第3軸芯までのアーム長さ L3:第3軸芯から爪先端までのバケツト長さ α,β,γ:傾斜地にバケツトを掘削突入させた
時点において第1ないし第3検出装置夫々で検
出した角度 α1,β1,γ1:傾斜面上の任意の点A(x1、y1)に
バケツトの先端を接地させた状態での第1ない
し第3検出装置夫々の検出角度 φ:バケツトの揺動方向に沿う掘削地の傾斜角度 H:走行装置の接地面から、その法線方向におけ
る第1枢支軸芯までの長さ から計算する掘削作業車における掘削深さの検出
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides a boom that is pivotally connected to a traveling aircraft body equipped with a traveling device so as to be swingable up and down around a first pivot axis. An arm is pivotally connected to the arm so that the tip of the bucket, which is pivotally connected to the arm so as to be vertically swingable around the third pivot axis, protrudes in the normal direction from the slope surface on the slope. A first detection device detects the swing angle of the boom with respect to the traveling aircraft body, and a second detection device detects the swing angle of the arm with respect to the boom.
Based on the detection angles from the detection device and the third detection device that detects the swing angle of the bucket with respect to the arm, the following formula D=H'-L 1 cos (α-φ) + L 2 cos (α- φ+β
)−L 3 cos(α−φ+β+γ) H′=−√ 1 2 +( 1 −) 2・cos(Θ+φ) x 1 L 1 cos(α 1 −π/2)−L 2 cos(α 11 −π
/2) + L 3 cos (α 1 + β 1 + γ 1 − π/2) y 1 = H − L 1 cos α 1 + L 2 cos (α 1 + β 1 ) − L 3 cos (
α 1 + β 1 + γ 1 ) However, L 1 : Boom length from the first axis to the second axis L 2 : Arm length from the second axis to the third axis L 3 : Third axis Lengths of the bucket from the top to the tip of the nail α, β , γ: Angle detected by the first to third detection devices respectively at the time when the bucket enters into the slope Detection angle φ of each of the first to third detection devices when the tip of the bucket is grounded at point A (x 1 , y 1 ): Inclination angle of the excavated site along the swinging direction of the bucket H: Traveling device The present invention relates to a method for detecting excavation depth in an excavation work vehicle, which is calculated from the length from the ground contact surface to the first pivot axis in the normal direction.

上記掘削作業車における掘削深さの検出方法に
よれば、掘削地の傾斜状態のいかんにかかわら
ず、ブーム、アーム及びバケツトの駆動上下揺動
に伴つて刻々と変化するバケツト先端の突つ込み
深さ、即ち、傾斜面に対する掘削深さを正確に検
出することができ、各種配管が埋設されている場
合でも、その配管埋設深さがわかつてさえいれ
ば、不測にバケツトで破損するといつた事無く安
全に掘削作業を行え、又、所定深さの溝をも正確
かつ良好に掘削でき、作業精度を向上できる利点
があるが、バケツトの揺動方向と掘削しようとす
る掘削地の傾斜面の傾斜方向とのなす角度が変わ
ると、バケツトの突つ込み深さ算出の基礎となる
べき掘削地の傾斜角度も変わつてしまうから、例
えば特公昭57−43701号公報に記載されているよ
うな、バケツトの揺動方向に沿う掘削地の傾斜角
度を例えばポテンシヨメータの回転軸の回転角と
して設定し、この設定された傾斜角度に基づいて
バケツト先端の突つ込み深さを算出する従来技術
によれば、バケツツトの揺動方向が変わる都度ブ
ーム、アーム或いはバケツトに対する操作を中断
して、バケツトの揺動方向における掘削地の傾斜
角度を計測し、この計測した傾斜角度になるよう
にポテンシヨメータを設定し直す必要があり、取
扱いが煩雑で、しかも、傾斜角度の設定時に設定
量を誤り易いおそれもあり、掘削作業の能率向上
を図りにくい欠点があつた。
According to the method for detecting the excavation depth in the excavation work vehicle described above, the plunge depth of the tip of the bucket changes every moment as the boom, arm, and bucket swing up and down, regardless of the slope of the excavated site. In other words, it is possible to accurately detect the depth of excavation on a sloped surface, and even if various types of pipes are buried, as long as the buried depth of the pipes is known, it will be safe without being accidentally damaged by a bucket. It also has the advantage of being able to excavate trenches of a predetermined depth accurately and well, improving work accuracy. If the angle between the two and According to the conventional technology, the inclination angle of the excavated site along the swinging direction is set as the rotation angle of the rotary shaft of a potentiometer, and the plunge depth of the tip of the bucket is calculated based on the set inclination angle. Each time the direction of swing of the bucket changes, the operation of the boom, arm, or bucket is interrupted, and the angle of inclination of the excavated site in the direction of swing of the bucket is measured, and the potentiometer is set to match the measured angle of inclination. This has the disadvantage that it is difficult to improve the efficiency of excavation work because it is necessary to reset the angle of inclination, making it complicated to handle.Moreover, there is a risk of making a mistake in setting the angle of inclination.

本発明は上記実状に鑑みて為されたものであつ
て、バケツト先端の位置が第1、第2、第3検出
装置による角度検出に基づいて容易に算出できる
点に着目し、バケツトの揺動方向が変わつても、
バケツトの揺動方向における掘削地の傾斜角度を
簡単かつ正確に設定し直せるようにして、能率良
く掘削作業が行えるようにすることを目的とす
る。
The present invention has been made in view of the above-mentioned circumstances, and focuses on the fact that the position of the tip of the bucket can be easily calculated based on the angle detection by the first, second, and third detection devices. Even if the direction changes,
To enable efficient excavation work by easily and accurately resetting the inclination angle of an excavated site in the swinging direction of a bucket.

上記目的を達成するための本発明の特徴構成
は、冒記した掘削作業車における掘削深さの検出
方法であつて、前記点A(x1、y1)と前記バケツ
トの揺動経路とを含む仮想面と交又する傾斜面上
の前記点A(x1、y2)以外の任意の点B(x2、y2
に前記バケツトの先端を接地させて、下記式 x2=L1cos(α2−π/2)−L3cos(α2+β2
π/2)+L3cos(α2+β2+γ2−π/2) y2=H−L1cosα2+L2cos(α2+β2)−L3cos(
α2+β2+γ2) α2,β2,γ2:傾斜面上の前記点Aと異なる任意の
点B(x2、y2)にバケツトの先端を接地させた
状態での第1ないし第3検出装置夫々の検出角
度 から掘削地の傾斜角度φを求め、前記突つ込み深
さDを計算する点にあり、かかる構成から次の作
用効果を奏する。
A characteristic configuration of the present invention for achieving the above object is a method for detecting the excavation depth in the above-mentioned excavation work vehicle, in which the point A (x 1 , y 1 ) and the rocking path of the bucket are Any point B (x 2 , y 2 ) other than the above point A (x 1 , y 2 ) on the slope that intersects the virtual plane containing
Ground the tip of the bucket and use the following formula. x 2 = L 1 cos (α 2 − π/2) − L 3 cos (α 2 + β 2
π/2) + L 3 cos (α 2 + β 2 + γ 2 − π/2) y 2 = H − L 1 cos α 2 + L 2 cos (α 2 + β 2 ) − L 3 cos (
α 2 + β 2 + γ 2 ) α 2 , β 2 , γ 2 : The first to The inclination angle φ of the excavated site is determined from the detection angle of each of the third detection devices, and the plunge depth D is calculated, and this configuration provides the following effects.

即ち、バケツトの揺動方向が変わると、ブー
ム、アーム又はバケツトに対する操作を中断する
ことなく、バケツトの揺動方向に沿う掘削地の傾
斜面上の任意の2点にバケツト先端を接地させ
て、この2点の位置を第1、第2、第3検出装置
の検出結果に基づいて算出し、この2点の位置か
らバケツトの揺動方向での掘削地の傾斜角度φを
算出して、この傾斜角度φに基づいて、バケツト
先端の突つ込み深さDを計算する。
That is, when the swinging direction of the bucket tot changes, the tip of the bucket can be grounded at any two points on the slope of the excavation site along the swinging direction of the bucket without interrupting operations on the boom, arm, or bucket tot. The positions of these two points are calculated based on the detection results of the first, second, and third detection devices, and the inclination angle φ of the excavated area in the swinging direction of the bucket is calculated from the positions of these two points. The plunging depth D of the tip of the bucket is calculated based on the inclination angle φ.

従つて、別途、傾斜角度φを計測したり、の計
測した傾斜角度φになるようにポテンシヨメータ
を設定し直したりする操作が不要であるから、設
定量を誤ることなく、簡単かつ正確に掘削地の傾
斜角度φを設定し直すことができ、能率良く掘削
作業が行える効果がある。
Therefore, there is no need to separately measure the inclination angle φ or reset the potentiometer to match the measured inclination angle φ, so you can easily and accurately set the amount without making a mistake. The inclination angle φ of the excavated area can be reset, which has the effect of allowing efficient excavation work.

殊に、本発明方法によれば、ブーム、アーム又
はバケツトに対する操作を中断することなく掘削
作業が行えるから、その操作感覚を連続的に維持
でき、一層能率良く、しかも安全に掘削作業が行
える利点がある。
In particular, according to the method of the present invention, excavation work can be performed without interrupting the operation of the boom, arm, or bucket, so the operating feeling can be maintained continuously, and the advantage is that the excavation work can be performed more efficiently and safely. There is.

以下、本発明の実施例を例示図に基いて詳述す
る。
Hereinafter, embodiments of the present invention will be described in detail based on illustrative drawings.

クローラ走行装置1を備えた走行車体に縦軸芯
P1周りで回動自在に旋回台2を設け、その旋回
台2に操縦部3を設けると共にその前部に縦軸芯
P2周りで回動自在に旋回ブラケツト4を設け、
旋回ブラケツト4に掘削装置5を取付け、他方、
走行機体に排土装置6を駆動上下揺動自在に設
け、1台でありながら対地掘削と排土の両作業を
行えるように掘削作業車を構成してある。
A vertical axis is attached to a traveling vehicle body equipped with a crawler traveling device 1.
A swivel base 2 is provided so as to be able to freely rotate around P 1 , a control section 3 is provided on the swivel base 2, and a vertical axis is attached to the front part of the swivel base 2.
A swing bracket 4 is provided to freely rotate around P 2 ,
Attach the drilling device 5 to the swing bracket 4, and on the other hand,
An earth removal device 6 is provided on the traveling body so that the earth removal device 6 can be driven and swung up and down, and the excavation work vehicle is constructed so that it can perform both ground excavation and earth removal work even though it is a single vehicle.

前記掘削装置5を構成するに、旋回ブラケツト
4に第1枢支軸芯Q1周りで上下揺動自在にブー
ム7を枢支連結すると共に、ブーム7に第2枢支
軸芯Q1周りで揺動自在にアーム8を、かつ、ア
ーム8に第3枢支軸芯Q3周りで揺動自在にバケ
ツト9を、夫々枢支連結し、そして、前記旋回ブ
ラケツト4とブーム7、ブーム7とアーム8、及
び、アーム8とバケツト9夫々間に第1ないし第
3油圧シリンダ10,11,12を介装し、ブー
ム7、アーム8及びバケツト9夫々を駆動揺動し
て対地掘削作業を行うように構成してある。
To configure the excavation equipment 5, a boom 7 is pivotally connected to the swing bracket 4 so as to be able to swing up and down about a first pivot axis Q1 , and a boom 7 is pivotally connected to the boom 7 about a second pivot axis Q1 . An arm 8 is pivotally connected to the arm 8, and a bucket 9 is pivotally connected to the arm 8 so as to be pivotable about a third pivot axis Q3 . First to third hydraulic cylinders 10, 11, and 12 are interposed between the arm 8 and the arm 8 and the bucket 9, respectively, and the boom 7, the arm 8, and the bucket 9 are driven and oscillated to perform ground excavation work. It is structured as follows.

前記第1枢支軸芯Q1に、走行装置1の接地面
の法線方向に対する、ブーム7の第1枢支軸芯
Q1と第2枢支軸芯Q2を結ぶ第1仮想直線の揺動
角度αを電圧変化で検出するボリユーム型の第1
検出装置13を付設し、前記第2及び第3枢支軸
芯Q2,Q3夫々に、ブーム7の前記第1仮想直線
に対するアーム8の第2枢支軸芯Q2と第3枢支
軸芯Q3とを結ぶ第2仮想直線の揺動角度β、及
び、アーム8の前記第2仮想直線に対するバケツ
ト9の第3枢支軸芯Q3とバケツト9の爪先端と
を結ぶ第3仮想直線の揺動角度γ夫々を電圧変化
によつて検出する第2及び第3検出装置14,1
5を付設してある。
The first pivot axis Q1 is the first pivot axis of the boom 7 with respect to the normal direction of the ground contact surface of the traveling device 1.
A volume-type first sensor detects the swing angle α of the first virtual straight line connecting Q 1 and the second pivot axis Q 2 by voltage change.
A detection device 13 is attached, and the second and third pivot axes Q 2 and Q 3 are connected to the second and third pivot axes Q 2 and Q 3 of the arm 8 with respect to the first virtual straight line of the boom 7, respectively. A swing angle β of a second imaginary straight line connecting the axis Q 3 and a third pivot axis Q 3 connecting the third pivot axis Q 3 of the bucket 9 with respect to the second imaginary straight line of the arm 8 and the tip of the claw of the bucket 9. Second and third detection devices 14, 1 that detect the swing angle γ of the virtual straight line, respectively, by voltage changes.
5 is attached.

前記操縦部3に演算処理装置16と表示装置1
7とを設け、前記第1ないし第3検出装置13,
14,15からの信号を演算処理装置16に入力
してバケツト9先端の地表面からの突つ込み深
さ、即ち、掘削深さを算出し、その算出結果を表
示装置17に表示させるように構成してあり、次
に、演算処理装置16にプログラムされた、バケ
ツト9の突つ込み深さDを求める計算式について
説明する。
The control section 3 includes an arithmetic processing device 16 and a display device 1.
7, the first to third detection devices 13,
The signals from 14 and 15 are input to the arithmetic processing unit 16 to calculate the plunge depth of the tip of the bucket 9 from the ground surface, that is, the excavation depth, and the calculation result is displayed on the display device 17. Next, a calculation formula for determining the plunging depth D of the bucket 9, which is programmed into the arithmetic processing unit 16, will be explained.

第2図に示すように、走行装置1の接地面を基
準線としてx−y座標系で考えれば、バケツト9
先端の位置(x、y)は、 x=L1cos(α−π/2)−L2cos(α+β−
π/2)+L3cos(α+β+γ−π/2)−(1) y=H−L1cosα+L2cos(α+β) −L3cos(α+β+γ) −(2) となる。
As shown in FIG. 2, if we consider the ground contact surface of the traveling device 1 as a reference line in an x-y coordinate system, the bucket 9
The position of the tip (x, y) is x = L 1 cos (α - π / 2) - L 2 cos (α + β -
π/2)+L 3 cos(α+β+γ−π/2)−(1) y=H−L 1 cosα+L 2 cos(α+β)−L 3 cos(α+β+γ)−(2).

ここで L1:第1軸芯Q1から第2軸芯Q2までのブーム7
長さ L2:第2軸芯Q2から第3軸芯Q3までのアーム8
長さ L3:第3軸芯Q3から爪9a先端までのバケツト
9長さ H:走行装置1の接地面からその法線方向におけ
る第1軸芯Q1までの長さ 上記(1)及び(2)式に基いて、掘削しようとする傾
斜面に対し、その傾斜方向で異なる2点A(x1
y1)、B(x2、y2)にバケツト9の先端を接地させ
た場合を考えれば、夫々の接地状態でのブーム
7,8,9夫々の検出揺動角度をA{α1、β1
γ1}、B{α2、β2、γ2}として代入することによ
り、 x1=L1cos(α1−π/2)−L2cos(α1+β
1−π/2+L3cos(α1+β1+γ1−π/2)−(3) y1=H−L1cosα1+L2cos(α1+β1)−L3c
os(α1+β1+γ1)−(4) x2=L1cos(α2−π/2)+L2cos(α2+β
2−π/2)−(5) y2=H−L1cosα2+L2cos(α2+β2)−L3c
os(α2+β2+γ2)−(6) として数値が特定される。
Here, L 1 : Boom 7 from the first axis Q 1 to the second axis Q 2
Length L 2 : Arm 8 from second axis Q 2 to third axis Q 3
Length L 3 : Length of the bucket 9 from the third axis Q 3 to the tip of the claw 9a H: Length from the ground plane of the traveling device 1 to the first axis Q 1 in its normal direction (1) and Based on equation (2), two points A (x 1 ,
y 1 ) and B (x 2 , y 2 ), the detected rocking angles of the booms 7, 8, and 9 in their respective ground states are A{α 1 , β 1 ,
γ 1 }, B{α 2 , β 2 , γ 2 }, x 1 = L 1 cos(α 1 −π/2)−L 2 cos(α 1
1 −π/2+L 3 cos(α 111 −π/2)−(3) y 1 =H−L 1 cosα 1 +L 2 cos(α 11 )−L 3 c
os (α 1 + β 1 + γ 1 ) − (4) x 2 = L 1 cos (α 2 − π/2) + L 2 cos (α 2 + β
2 −π/2)−(5) y 2 =H−L 1 cosα 2 +L 2 cos(α 22 )−L 3 c
The numerical value is specified as os(α 222 )−(6).

そして、上記2点A(x1、y1)、B(x2、y2)か
ら掘削地の傾斜角度が によつて求められ、(3)〜(6)式から傾斜角度が定
められる。
Then, from the above two points A (x 1 , y 1 ) and B (x 2 , y 2 ), the slope angle of the excavated area is The inclination angle is determined from equations (3) to (6).

次に、掘削地の傾斜面を基準線とするx′−y′座
標系に変換し、バケツト9先端の突つ込み深さD
をy′成分で考える。
Next, convert it to an x'-y' coordinate system with the slope of the excavated area as the reference line, and calculate the plunge depth D of the tip of the bucket 9.
Consider the y′ component.

前記第1枢支軸芯Q1と前記A(x1、y1)点とを
結ぶ直線とy軸との角度Θ、及びy′軸に対するブ
ーム7の仰角α′について求めれば、 α′=α− −(9) となる。
If the angle Θ between the y-axis and the straight line connecting the first pivot axis Q 1 and the point A (x 1 , y 1 ) and the elevation angle α' of the boom 7 with respect to the y' axis are determined, α′=α− −(9).

そして、第1枢支軸芯Q1からx′軸上に下ろし
た垂線の長さH′は、 H′=√1 2+(1−)2・cos(180゜−Θ+
)=−√1 2+(1−)2・cos(Θ+φ)−(10) となり、(7)及び(8)式を代入して となる。そして、バケツト9先端の突つ込み深さ
Dは、 D=H′−L1cosα′+L2cos(α′+β)−L3cos
(α′+β+γ) で求められ、(9)式を代入して整理すれば、 D=H′−L1cos(α−)+L2cos(α−+β
)−L3cos(α−+β+γ) となり、(7)及び(11)式から、深さDがα、β及びγ
に基き、演算処理装置16によつて刻々と算出さ
れるのである。そして、こうして算出された深さ
Dが表示装置17によつて刻々と表示されるので
ある。
Then, the length H' of the perpendicular drawn from the first pivot axis Q 1 to the x' axis is H' = √ 1 2 + ( 1 -) 2・cos (180° - Θ +
)=−√ 1 2 + ( 1 −) 2・cos(Θ+φ)−(10), and by substituting equations (7) and (8), becomes. The plunge depth D of the tip of the bucket 9 is D=H'-L 1 cos α'+L 2 cos (α'+β)-L 3 cos
(α′+β+γ), and by substituting and rearranging equation (9), we get D=H′−L 1 cos(α−)+L 2 cos(α−+β
)−L 3 cos(α−+β+γ), and from equations (7) and (11), the depth D is α, β, and γ.
It is calculated every moment by the arithmetic processing unit 16 based on the above. The depth D thus calculated is displayed on the display device 17 every moment.

尚、深さを表示させるに、掘削しようとする深
さを適宣設定すると共にその設定深さから上記深
さDを減算し、設定深さに到達するまでの残余深
さを表示させるようにしても良い。又、表示装置
17の画面に、上記深さと共に、掘削地の断面形
状と掘削作業車、並びに、ブーム7、アーム8及
びバケツト9の動作夫々をモニター表示させ、そ
の掘削状況を視覚的によりわかりやすいようにす
ることも可能である。
In addition, to display the depth, the depth to be excavated is set appropriately, the above-mentioned depth D is subtracted from the set depth, and the remaining depth until the set depth is reached is displayed. It's okay. In addition, on the screen of the display device 17, the cross-sectional shape of the excavated area, the excavation work vehicle, and the operations of the boom 7, arm 8, and bucket 9 are displayed on the screen of the display device 17, in addition to the depth, so that the excavation status can be more easily understood visually. It is also possible to do so.

前記第1ないし第3検出装置13,14,15
夫々としては、第1ないし第3シリンダ10,1
1,12夫々の伸縮量を検出することによりブー
ム7、アーム8及びバケツト9夫々の揺動角度を
検出するように構成しても良い。
The first to third detection devices 13, 14, 15
The first to third cylinders 10, 1, respectively.
The swing angle of each of the boom 7, the arm 8, and the bucket belt 9 may be detected by detecting the amount of expansion and contraction of each of the boom 7, the arm 8, and the bucket belt 9.

本発明によれば、バケツト9の爪先端を2点A
(x1、y1)、B(x2、y2)に接地させ、それにより、
走行機体に対するる掘削地の傾斜角度を求める
ものであり、第3図のイに示すように、走行機体
の接地面とほぼ同じ水平地面を掘削する場合と
か、第3図のロに示すように、走行機体の接地面
に連なる同一傾斜角の傾斜面を掘削する場合いず
れにおいても、求められた傾斜角度が零となり、
実質的に何ら支障無く適用でき、又、第3図のハ
に示すように、走行装置1が隆起部や石等に乗り
上げ、走行機体側が掘削地に対して傾斜したよう
な場合でも良好に使用でき、その掘削地あるいは
走行機体の傾斜状態いかんにかかわらず良好に適
用できる。尚、特許請求の範囲の項に図面との対
照を便利にする為に符号を記すが、該記入により
本発明は添付図面の構造に限定されるものではな
い。
According to the present invention, the tip of the claw of the bucket 9 is set at two points A.
(x 1 , y 1 ), B (x 2 , y 2 ), thereby
This is to find the inclination angle of the excavated ground with respect to the traveling machine, and is used when excavating horizontal ground that is almost the same as the ground plane of the traveling machine, as shown in Figure 3 A, or when excavating horizontal ground that is almost the same as the ground contact surface of the traveling machine, as shown in Figure 3 B. In both cases, when excavating a sloped surface with the same slope that is connected to the ground plane of the traveling aircraft, the calculated slope angle is zero,
It can be applied virtually without any problems, and can also be used well even when the traveling device 1 runs onto a bump, stone, etc., and the traveling device side is inclined with respect to the excavated ground, as shown in Fig. 3 C. It can be applied well regardless of the slope of the excavated area or the vehicle. Incidentally, although reference numerals are written in the claims section for convenient comparison with the drawings, the present invention is not limited to the structure shown in the accompanying drawings.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明に係る掘削作業車における掘削深
さの検出方法を説明する図面で、第1図は掘削作
業車の全体側面図、第2図は掘削深さ算出方法の
原理図である。第3図のイ,ロ及びハは、夫々各
種の使用形態を示す説明図である。 1……走行装置、7……ブーム、8……アー
ム、9……バケツト、13……第1検出装置、1
4……第2検出装置、15……第3検出装置、1
6……演算処理装置、17……表示装置、Q1
…第1枢支軸芯、Q2……第2枢支軸芯、Q3……
第3枢支軸芯。
The drawings are diagrams illustrating a method for detecting excavation depth in an excavation vehicle according to the present invention. FIG. 1 is an overall side view of the excavation vehicle, and FIG. 2 is a diagram showing the principle of the excavation depth calculation method. 3A, 3B, and 3C are explanatory diagrams showing various types of usage, respectively. 1... Traveling device, 7... Boom, 8... Arm, 9... Bucket, 13... First detection device, 1
4...Second detection device, 15...Third detection device, 1
6... Arithmetic processing unit, 17... Display device, Q 1 ...
...First pivot axis, Q 2 ...Second pivot axis, Q 3 ...
Third pivot axis.

Claims (1)

【特許請求の範囲】 1 走行装置1を備えた走行機体に第1枢支軸芯
Q1周りで上下揺動自在に枢支連結されるブーム
7に、第2枢支軸芯Q2周りで上下揺動自在にア
ーム8を枢支連結して、このアーム8に第3枢支
軸芯Q3周りで上下揺動自在に枢支連結されるバ
ケツト9の先端の、傾斜地におけるその傾斜面か
らの法線方向での突つ込み深さDを、走行機体に
対する前記ブーム7の揺動角度を検出する第1検
出装置13、前記ブーム7に対する前記アーム8
の揺動角度を検出する第2検出装置14、並び
に、前記アーム8に対する前記バケツト9の揺動
角度を検出する第3検出装置15夫々からの検出
角度に基づき、下記式 D=H′−L1cos(α−φ)+L2cos(α−φ+β
)−L3cos(α−φ+β+γ) H′=−√1 2+(1−)2・cos(Θ+φ) x1=L1cos(α1−π/2)−L2cos(α1+β1
π/2)+L3cos(α1+β1+γ1−π/2) y1=H−L1cosα1+L2cos(α1+β1)−L3cos(
α1+β1+γ1) 但し、 L1:第1軸芯Q1から第2軸芯Q2までのブーム7
長さ L2:第2軸芯Q2から第3軸芯Q3までのアーム8
長さ L3:第3軸芯Q3から爪先端までのバケツト9長
さ α,β,γ:傾斜地にバケツト9を掘削突入させ
た時点において第1ないし第3検出装置13,
14,15夫々で検出した角度 α1,β1,γ1:傾斜面上の任意の点A(x1、y1)に
バケツト9の先端を接地させた状態での第1な
いし第3検出装置13,14,15夫々の検出
角度 φ:バケツトの揺動方向に沿う掘削地の傾斜角度 H:走行装置1の接地面から、その法線方向にお
ける第1枢支軸芯Q1までの長さ から計算する掘削作業車における掘削深さの検出
方法であつて、前記点A(x1、y1)と前記バケツ
ト9の揺動経路とを含む仮想面と交叉する傾斜面
上の前記点A(x1、y1)以外の任意の点B(x2
y2)に前記バケツト9の先端を接地させて、下記
x2=L1cos(α2−π/2)−L3cos(α2+β2
π/2)+L3cos(α2+β2+γ2−π/2) y2=H−L1cosα2+L2cos(α2+β2)−L3cos(
α2+β2+γ2) α2,β2,γ2:傾斜面上の前記点Aと異なる任意の
点B(x2、y2)にバケツト9の先端を接地させ
た状態での第1ないし第3検出装置13,1
4,15夫々の検出角度 から掘削地の傾斜角度φを求め、前記突つ込み深
さDを計算することを特徴とする掘削作業車にお
ける掘削深さの検出方法。
[Claims] 1. A first pivot axis in a traveling aircraft body equipped with a traveling device 1.
An arm 8 is pivotally connected to the boom 7, which is pivotally connected to the boom 7 so as to be vertically swingable around the second pivot axis Q2 , and a third pivot is connected to the arm 8. The plunge depth D of the tip of the bucket belt 9, which is pivotally connected around the axis Q3 so as to be vertically swingable, in the normal direction from the slope surface on the slope is determined by the rocking of the boom 7 with respect to the traveling aircraft. a first detection device 13 that detects a movement angle; and a first detection device 13 that detects a movement angle;
Based on the detection angles from the second detection device 14, which detects the swing angle of the bucket belt 9, and the third detection device 15, which detects the swing angle of the bucket bag 9 with respect to the arm 8, the following formula D=H'-L 1 cos(α−φ)+L 2 cos(α−φ+β
)−L 3 cos(α−φ+β+γ) H′=−√ 1 2 +( 1 −) 2・cos(Θ+φ) x 1 = L 1 cos (α 1 − π/2) − L 2 cos (α 1 + β 1
π/2) + L 3 cos (α 1 + β 1 + γ 1 − π/2) y 1 = H − L 1 cos α 1 + L 2 cos (α 1 + β 1 ) − L 3 cos (
α 1 + β 1 + γ 1 ) However, L 1 : Boom 7 from the first axis Q 1 to the second axis Q 2
Length L 2 : Arm 8 from second axis Q 2 to third axis Q 3
Length L 3 : Length α, β, γ of the bucket 9 from the third axis Q 3 to the tip of the claw: The first to third detection devices 13,
Angle α 1 , β 1 , γ 1 detected at steps 14 and 15 respectively: 1st to 3rd detection with the tip of bucket 9 grounded at any point A (x 1 , y 1 ) on the slope Detection angle φ of each of the devices 13, 14, and 15: Inclination angle H of the excavated area along the swinging direction of the bucket: Length from the ground plane of the traveling device 1 to the first pivot axis Q 1 in the normal direction thereof A method for detecting excavation depth in an excavation work vehicle by calculating from the above, the point on an inclined surface intersecting a virtual plane including the point A (x 1 , y 1 ) and the swinging path of the bucket 9. Any point B (x 2 ,
y 2 ) with the tip of the bucket 9 grounded, and use the following formula. x 2 = L 1 cos (α 2 − π/2) − L 3 cos (α 2 + β 2
π/2) + L 3 cos (α 2 + β 2 + γ 2 − π/2) y 2 = H − L 1 cos α 2 + L 2 cos (α 2 + β 2 ) − L 3 cos (
α 2 + β 2 + γ 2 ) α 2 , β 2 , γ 2 : The first point with the tip of the bucket 9 in contact with an arbitrary point B (x 2 , y 2 ) different from the point A on the slope or third detection device 13,1
4. A method for detecting excavation depth in an excavation work vehicle, characterized in that the inclination angle φ of the excavated site is determined from each of the detection angles 4 and 15, and the plunge depth D is calculated.
JP16727382A 1982-09-25 1982-09-25 Excavating working vehicle Granted JPS5955924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16727382A JPS5955924A (en) 1982-09-25 1982-09-25 Excavating working vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16727382A JPS5955924A (en) 1982-09-25 1982-09-25 Excavating working vehicle

Publications (2)

Publication Number Publication Date
JPS5955924A JPS5955924A (en) 1984-03-31
JPS6337212B2 true JPS6337212B2 (en) 1988-07-25

Family

ID=15846681

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16727382A Granted JPS5955924A (en) 1982-09-25 1982-09-25 Excavating working vehicle

Country Status (1)

Country Link
JP (1) JPS5955924A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5446981A (en) * 1991-10-29 1995-09-05 Kabushiki Kaisha Komatsu Seisakusho Method of selecting automatic operation mode of working machine

Also Published As

Publication number Publication date
JPS5955924A (en) 1984-03-31

Similar Documents

Publication Publication Date Title
US6691437B1 (en) Laser reference system for excavating machine
US6389345B2 (en) Method and apparatus for determining a cross slope of a surface
US7810260B2 (en) Control system for tool coupling
US11505918B2 (en) System for remapping a control signal for excavator arm movement to a rotatory degree of freedom of a tool
JPS62185932A (en) Monitoring device for operation of excavator
JP7227843B2 (en) Vertical Shaft Construction Device and Vertical Shaft Construction Method
JPS6337212B2 (en)
JP2023510494A (en) inspection device
JPH0819697B2 (en) Excavator load monitoring device for power shovel
JPH0258411B2 (en)
KR200397423Y1 (en) Working display apparatus of excavator
JPS6378921A (en) Underwater rubble leveling work
JPS582299B2 (en) When you move your vehicle
JPS58160437A (en) Shovel working vehicle
JP3677614B2 (en) Method for correcting misalignment of excavation shaft in excavator for soil cement wall construction
JPH0230821A (en) Bucket track display device for oil pressure shovel
JPH07138993A (en) Method of measuring position of excavation of power shovel and excavation-position display used in the measuring method
JP7324100B2 (en) working machine
JP3250893B2 (en) Work implement vertical position correction method for work implement and work implement position detection device for work implement
JPH0310000B2 (en)
JPH0745740B2 (en) Angle of repose control device for hydraulic shovel
JPH08165677A (en) Bucket position control method and device of power shovel
JP2749253B2 (en) Excavator bucket edge position detection method
JPS63161226A (en) Shovel working vehicle
JPH07317097A (en) Linear excavation work device