JPS595527B2 - Manufacturing method of dihydrate gypsum crystals - Google Patents

Manufacturing method of dihydrate gypsum crystals

Info

Publication number
JPS595527B2
JPS595527B2 JP8271080A JP8271080A JPS595527B2 JP S595527 B2 JPS595527 B2 JP S595527B2 JP 8271080 A JP8271080 A JP 8271080A JP 8271080 A JP8271080 A JP 8271080A JP S595527 B2 JPS595527 B2 JP S595527B2
Authority
JP
Japan
Prior art keywords
gypsum
acid content
hydration
reaction
trihydrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8271080A
Other languages
Japanese (ja)
Other versions
JPS5711822A (en
Inventor
伊三美 藤岡
敏和 長嶋
憲照 山田
敏明 杉本
靖 宗野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Original Assignee
Central Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd filed Critical Central Glass Co Ltd
Priority to JP8271080A priority Critical patent/JPS595527B2/en
Publication of JPS5711822A publication Critical patent/JPS5711822A/en
Publication of JPS595527B2 publication Critical patent/JPS595527B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は化学工場より副生ずる付着酸分および包含酸分
を含む半水石膏から、石膏ボード用焼石膏原料などに適
した粗大な厚みのある三水石膏を製造する方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention produces coarse and thick gypsum trihydrate, which is suitable as a raw material for calcined gypsum for gypsum boards, from gypsum hemihydrate containing adhering acid content and inclusion acid content, which is produced as a by-product from a chemical factory. It is about the method.

半水石膏を水和して三水石膏結晶を得る際に、単に半水
石膏をそのまま温水中でスラリー化したのでは利用価値
の少ない微細な針状三水石膏しか得られないものであり
、例えば湿式リン酸製造工場において副生ずる硫酸、リ
ン酸などからなる混酸母液より分離、洗浄された、水和
を妨害するような固溶性不純物や有機物のきわめて少な
い半水石膏は、そのまま温水中でスラリー化しても、純
度が高いわりには、利用価値の少ない微細な針状三水石
膏しか得られない。
When hydrating gypsum hemihydrate to obtain gypsum trihydrate crystals, if the gypsum hemihydrate is simply made into a slurry in hot water, only fine acicular trihydrate crystals with little utility value will be obtained. For example, gypsum hemihydrate, which is separated and washed from a mixed acid mother liquor consisting of sulfuric acid, phosphoric acid, etc. produced as a by-product in a wet phosphoric acid production factory, has extremely low levels of solid-soluble impurities and organic substances that would interfere with hydration, and is slurried as it is in hot water. However, despite its high purity, only fine acicular trihydrate can be obtained which has little utility value.

半水石膏を水和して利用価値のある粗大な三水石膏結晶
を得るには三水石膏の核生成をできるだけおさえて、核
成長のみを促進する結晶成長条件の選択が必要であり、
実際には初期の水和反応速度がゆるやかになるように調
整すればよい場合が多い。
In order to obtain coarse trihydrate crystals that have utility value by hydrating gypsum hemihydrate, it is necessary to select crystal growth conditions that suppress nucleation of trihydrate as much as possible and promote only nucleation growth.
In reality, it is often sufficient to adjust the initial hydration reaction rate to be slow.

この調整方法としては、■)半水石膏から三水石膏への
転移領域で温度を加減して水利速度の調整をする方法、
2)半水石膏の水和時に第3物質を共存させて媒晶効果
をもたせる方法、3)三水石膏種晶を共存させる方法、
4)上記3法の折衷法等が挙げられる。
This adjustment method includes ■) adjusting the water usage rate by adjusting the temperature in the transition region from hemihydrate gypsum to trihydrate gypsum;
2) A method of causing a third substance to coexist during hydration of gypsum hemihydrate to provide a medium crystal effect, 3) A method of coexisting with gypsum trihydrate seed crystals,
4) A method that is a compromise between the above three methods may be mentioned.

ここで1)を中心とする方法はエネルギーコスト的に不
利となり、2)を中心とする方法は第3物質を含む排液
の処理、に困難がありコスト的にも不利であり、更に生
成三水石膏中に残存する第3物質の焼石膏物性に与える
影響などに注意を要する。
Here, the method focusing on 1) is disadvantageous in terms of energy cost, and the method focusing on 2) is disadvantageous in terms of cost because it is difficult to treat wastewater containing the third substance, and furthermore, the method focusing on 2) is disadvantageous in terms of cost. Attention must be paid to the effect of the third substance remaining in the plaster of Paris on the physical properties of the plaster of Paris.

本発明者等は2)の方法における媒晶効果について検討
した結果、水利反応時のpHの影響が大きいこと、更に
はpHを適当に調節すれば、特別な媒晶剤を使用しなく
ても結晶成長条件に合致した水和速度調整が可能である
ことを見出した。
As a result of studying the modeding effect in method 2), the present inventors found that the influence of the pH during the water utilization reaction is large, and furthermore, if the pH is adjusted appropriately, there is no need to use a special moderating agent. We found that it is possible to adjust the hydration rate to match the crystal growth conditions.

即ち、半水石膏に水を加えた直後にアルカリ分を加えて
速かに中性から弱アルカリ領域にpH調整を行なうこと
により水和速度がゆるやかとなり核発生が少なく、粗大
な三水石膏が得られ易いことを見出した。
In other words, by adding alkali immediately after adding water to hemihydrate gypsum to quickly adjust the pH from neutral to weakly alkaline, the hydration rate is slow, nucleation is small, and coarse trihydrate is removed. I found out that it is easy to obtain.

このアルカリ添加による水和遅延の理由は明らかではな
いが、半水石膏のζ(ジータ)電位の変化や中和によっ
て生成する塩類の影響に基づくものであり、リン酸副生
半水石膏の場合は主に難溶性リン酸塩が半水石膏表面に
析出するためと考えられる。
The reason for this delay in hydration due to the addition of alkali is not clear, but it is due to changes in the ζ (zeta) potential of gypsum hemihydrate and the influence of salts generated by neutralization. This is thought to be mainly due to the precipitation of poorly soluble phosphates on the surface of gypsum hemihydrate.

一方、前記のリン酸製造時に副生される半水石膏の場合
には希釈された付着酸分(半水石膏表向に付着して存在
する酸分)および包含酸分(半水石膏結晶内部に包含さ
れ水利の進行と共に放出されてくる酸分)のために単に
水を加えて水和をさせようとした場合、酸性領域で急速
に水和か起こるため、微細針状晶しか得られないものと
考えられる。
On the other hand, in the case of gypsum hemihydrate, which is produced as a by-product during the production of phosphoric acid, diluted adhering acid content (acid content attached to the surface of gypsum hemihydrate) and inclusion acid content (acid content present inside the gypsum hemihydrate crystal) If you try to hydrate it by simply adding water, you will only get fine needle-like crystals because hydration occurs rapidly in the acidic region. considered to be a thing.

上記アルカリ添加に当り、実際に湿式リン酸製造工程よ
り副生ずる半水石膏は操業条件により付着酸分および包
含酸分の変動が激しく、これを単にスラリー化して連続
的にアルカリ物質を添加して水利を行なわせるだけでは
結晶成長が未だ不十分である。
When adding the alkali mentioned above, gypsum hemihydrate, which is a by-product of the wet phosphoric acid production process, has a large variation in adhering acid content and inclusion acid content depending on the operating conditions, so it is necessary to simply slurry it and continuously add an alkali substance. Crystal growth is still insufficient just by using water.

本発明者等の検討によれば、水利反応初期段階のpHは
、酸性領域や強アルカリ領域では水利反応速度が大きす
ぎるため微細な結晶となり、一方、アルカリ領域では水
利速度があまりに遅くなるため経済的ではないことから
、中性から弱アルカリ領域に維持することが必要であり
、そのためには水利反応が開始されるまでの誘導期間内
に速かに付着酸分の中和を完了させておくことが必須で
あることを見出した。
According to the studies conducted by the present inventors, the pH at the initial stage of the water utilization reaction is such that in acidic and strongly alkaline regions, the water utilization reaction rate is too high, resulting in fine crystals, while in the alkaline region, the water utilization rate is too slow, making it economical. Therefore, it is necessary to maintain the soil in a neutral to slightly alkaline range, and for this purpose, neutralization of adhering acids must be completed quickly within the induction period before the water utilization reaction starts. I found that this is essential.

しかるに1段で水利を行なう場合には、上記のような酸
分の変動や、それに伴なう局部的なpH変動を考慮する
と誘導期間内に完全に中和を完了させるためにはpHの
設定値を強アルカリ側に高くとる必要があることから、
水和反応初期段階における水和速度は非常に小さくなっ
たり逆に大きくなったり、不規則に変動し、経済的な時
間内では微細な結晶しか得られないものであった。
However, when using water in one stage, taking into account the acid content fluctuations mentioned above and the accompanying local pH fluctuations, it is necessary to set the pH in order to completely complete neutralization within the induction period. Since the value needs to be high on the strongly alkaline side,
The hydration rate at the initial stage of the hydration reaction fluctuates irregularly, sometimes becoming very small and sometimes very fast, and only fine crystals could be obtained within an economical time.

本発明はこのような不都合を解消するため、特に変動割
合の大きな付着酸分を弱アルカリ領域で速かに中和した
後、種晶共存下に中和から弱アルカリ領域で水利反応お
よび包含酸分と残存アルカリ分との中和反応を完了させ
る二段階の反応工程をとるものであり、二段目のpH設
定値がより中性側に低くとれるため適度の水利速度で経
済的な時間内に特別な媒晶剤がなくても種晶存在下に粗
大な板状三水石膏が得られる。
In order to solve this problem, the present invention quickly neutralizes the adhering acid content, which has a particularly large fluctuation rate, in a weak alkaline region, and then performs the water utilization reaction and inclusion acid content in the weak alkaline region from neutralization in the coexistence of seed crystals. It takes a two-step reaction process to complete the neutralization reaction between the water and residual alkali, and because the pH setting value in the second stage can be set lower to the neutral side, water can be used at an appropriate rate within an economical time. Even without a special crystallizing agent, coarse platy trihydrate can be obtained in the presence of seed crystals.

すなわち、本発明は付着酸分および包含酸分を含有する
半水石膏に、全酸分とほぼ当量のアルカリ分を加えて温
水中で水和反応を行なわせる際に、水和反応開始の誘導
期間内にアルカリ領域で付着酸分とアルカリ分の相当量
の中和反応を完了させた後、種晶共存下に中性のpH付
近で水和反応および包含酸分と残存アルカリ分との中和
反応を完了させる二段階の反応工程をとることを特徴と
するものである。
That is, the present invention is capable of inducing the initiation of a hydration reaction when adding an alkali component approximately equivalent to the total acid content to gypsum hemihydrate containing attached acid content and inclusion acid content to cause a hydration reaction in warm water. After completing the neutralization reaction of a considerable amount of adhering acid and alkali in the alkaline region within the period, a hydration reaction and a reaction between the included acid and residual alkali occur at around neutral pH in the coexistence of seed crystals. This method is characterized by a two-step reaction process that completes the summation reaction.

本発明においては、半水石膏の水和反応が始まるまでの
誘導期間内に中和槽を設けて付着酸分をアルカリ中和し
た後、本来の水和槽に移すもので、この中和槽ではまだ
水和反応が開始されていないため、結晶形状の撹拌条件
による影響を考慮する必要はないので、pHの局部的な
不均一を回避すべく十分な混合撹拌を行えばよい。
In the present invention, a neutralization tank is provided during the induction period until the hydration reaction of gypsum hemihydrate begins, and after the adhering acid content is neutralized with alkali, it is transferred to the original hydration tank. Since the hydration reaction has not yet started, there is no need to consider the influence of the stirring conditions on the crystal shape, so sufficient mixing and stirring may be performed to avoid local non-uniformity in pH.

また中和槽でのスラリーの滞在時間は、使用するアルカ
リの種類によって異なるが、これらは弱アルカリ性領域
での半水石膏水利率曲線に基づいて決定され、水利率が
殆んどゼロである誘導期間内に設定することが必要であ
る。
In addition, the residence time of the slurry in the neutralization tank varies depending on the type of alkali used, but these are determined based on the hemihydrate gypsum water rate curve in the weakly alkaline region, and the water rate is almost zero. It is necessary to set it within the period.

また、この中和工程での最適なpH領域は使用するアル
カリの種類によっても異なるが、強塩基の場合はどその
範囲は狭くなる。
Further, the optimum pH range in this neutralization step varies depending on the type of alkali used, but in the case of a strong base, the range becomes narrower.

このようにして中和され中和槽を出た半水石膏スラリー
は、水和槽で中性領域下、種晶の共存下に水利反応およ
び包含酸分の中和反応を行なう。
The gypsum hemihydrate slurry that has been neutralized in this manner and leaves the neutralization tank undergoes a water utilization reaction and a neutralization reaction for included acids in a neutral region in the hydration tank in the presence of seed crystals.

このような種晶添加は公知のごとく自らのスラリー循環
で行なってもよい。
Such seeding may be carried out by self-circulation of the slurry, as is known in the art.

通常、水利反応の所要時間は約2時間で十分であり、生
成する工水石膏は洗浄することなく分離しても、中性で
遊離アルカリ分、遊離酸分をほとんど含まない、大きさ
、縦200μ、横100μ、厚み50μ程度の粗大な厚
みのある菱面体板状結晶として得られる。
Normally, the time required for the water utilization reaction is about 2 hours, and even if the produced water gypsum is separated without washing, it is neutral and contains almost no free alkali content or free acid content. It is obtained as a coarse rhombohedral plate crystal with a thickness of about 200 μm, width of 100 μm, and thickness of about 50 μm.

また分離P液の大部分は再度、中和槽で使用することが
できる。
Furthermore, most of the separated P solution can be used again in the neutralization tank.

本発明で用いられるpH調整用のアルカリ分は、酸分を
中和するアルカリ分なら何を使ってもよいが、付着酸分
、包含酸分と反応して完全に不活性な難溶性塩にするC
a(OH)2、CaOが好ましく、また粗大化の面から
はNaOH,NH4、OHなどのアルカリ分でも効果が
ある。
The alkaline component for pH adjustment used in the present invention may be any alkaline component that neutralizes acid components, but it reacts with attached acids and included acids to form a completely inert, slightly soluble salt. C
a(OH)2 and CaO are preferred, and alkaline components such as NaOH, NH4, and OH are also effective in terms of coarsening.

本発明においては、エネルギー的メリットがあると共に
、焼石膏とした場合の物性への影響に配慮せねばならな
いような媒晶剤を使用する必要もないという利点を有す
る焼石膏物性への影響が少ない公知の媒晶剤(例えばア
ルカリ金属硫酸塩等)の同時使用も勿論可能である。
The present invention has energy advantages and has the advantage that there is no need to use a modifier that requires consideration of the effect on the physical properties when used as calcined gypsum, and has little impact on the physical properties of calcined gypsum. It is of course possible to simultaneously use known crystallizing agents (for example, alkali metal sulfates).

次に本発明の実施態様について、湿式リン酸副生半水石
膏を用いる例を採って、第1図の反応工程図を用いて説
明する。
Next, an embodiment of the present invention will be described using an example of using wet phosphoric acid by-product gypsum hemihydrate, using the reaction process diagram shown in FIG.

本図において、1は中和槽、2は第−水和槽、3は第三
水和槽、4は熟成層、5は分類機、6はp過槽、7は王
水、8は半水石膏、9はアルカリ分(石灰乳)、10は
スラリー循環ライン、11は二水石膏取り出しライン、
12は三水石膏分離P液供給ラインを示す。
In this figure, 1 is a neutralization tank, 2 is a first hydration tank, 3 is a third hydration tank, 4 is an aging layer, 5 is a classifier, 6 is a p filter tank, 7 is aqua regia, and 8 is a half-water tank. Water gypsum, 9 is alkaline content (milk of lime), 10 is slurry circulation line, 11 is dihydrate gypsum removal line,
12 indicates a trihydrate separation P liquid supply line.

原料半水石膏をライン8から、スラリー化のための王水
をライン7から、石膏含有酸分を中和するためのアルカ
リ分(石灰乳)をライン9から、後述する三水石膏分離
P液をライン12から、それぞれ中和槽1に導入し、各
々の量を調節することにより槽内のスラリー濃度10〜
50%、好ましくは20〜30%、pH7〜12、好ま
しくは8〜11になるよう設定する。
Raw material gypsum hemihydrate from line 8, aqua regia for slurrying from line 7, alkaline content (milk of lime) for neutralizing acid content in gypsum from line 9, gypsum trihydrate separation P solution described later. are introduced into the neutralization tank 1 from the line 12, and by adjusting the amount of each, the slurry concentration in the tank is 10~10.
The pH is set to 50%, preferably 20 to 30%, and pH 7 to 12, preferably 8 to 11.

スラリー濃度は実際にはこの範囲外でも可能であるが、
50%を越えると粘度が高くなって操作が極めて難かし
くなる。
Slurry concentrations outside this range are actually possible, but
If it exceeds 50%, the viscosity becomes high and operation becomes extremely difficult.

またpH<7では、難溶性リン酸塩の形成が十分に為さ
れないため、水利の遅延効果が現われず水利速度が犬と
なり、微結晶の発生をもたらす6またpH≧12では難
溶性のリン酸塩の生成条件が変り水和速度が急に犬とな
る現象があり、しかも全酸分以上のアルカリ添加量とな
るため、新たにpH調整用として酸分の添加が必要とな
り経済的にも適当ではない。
Furthermore, at pH<7, poorly soluble phosphate is not formed sufficiently, so the water use delay effect does not appear and the rate of water use slows down, resulting in the generation of microcrystals6. Also, at pH>12, poorly soluble phosphate There is a phenomenon in which the salt formation conditions change and the hydration rate suddenly becomes slow, and the amount of alkali added exceeds the total acid content, so it is necessary to add an acid content for pH adjustment, which is not economically appropriate. isn't it.

pH調整はpH計により行なうのが便利である。It is convenient to adjust the pH using a pH meter.

スラリ一温度は蒸気加熱で30〜90℃、好ましくは5
0〜70℃に保持する。
The temperature of the slurry is 30 to 90°C, preferably 5°C by steam heating.
Maintain at 0-70°C.

30℃以下では水和が急速に起こるため粗大結晶の三水
化が図れず、急速に固化し操作不能となることも起こり
得る。
At temperatures below 30°C, hydration occurs rapidly, making it impossible to convert coarse crystals into trihydrate, which may result in rapid solidification and inoperability.

一方、90℃以上では水利速度が極めて遅いために実際
的ではない。
On the other hand, temperatures above 90°C are not practical because the rate of water use is extremely slow.

中和槽のスラリー滞在時間は半水石膏の水利反応の誘導
期間内とし、リン酸副生半水石膏の場合は5〜20分に
設定する。
The slurry residence time in the neutralization tank is within the induction period of the water utilization reaction of gypsum hemihydrate, and is set to 5 to 20 minutes in the case of gypsum hemihydrate, a by-product of phosphoric acid.

中和槽1で付着酸分を中和したスラリーは第−水和槽2
に送られ、後述の第二水和槽3から種晶としてライン1
0より循環供給されているスラリーと混合される。
The slurry whose adhering acid content has been neutralized in neutralization tank 1 is transferred to the second hydration tank 2.
line 1 as a seed crystal from the second hydration tank 3, which will be described later.
The slurry is mixed with the slurry that is being circulated from zero.

第−水和槽2および第二水和槽3ではスラリー濃度15
〜40%、好ましくは30〜35%、温度30〜90°
G、好才L<は50〜70℃、pH6〜8、好ましくは
6〜7でそれぞれ約1時間の滞在時間をもつように調節
し、水和反応および包含酸分と残存アルカリ分との反応
を完結させる。
In the first hydration tank 2 and the second hydration tank 3, the slurry concentration is 15.
~40%, preferably 30-35%, temperature 30-90°
G, L< is adjusted to 50 to 70°C, pH 6 to 8, preferably 6 to 7, and the residence time is about 1 hour each, and the hydration reaction and the reaction between the included acid content and the residual alkali content are performed. complete.

第二水和槽3で生成する三水石膏スラリーは種晶として
中和槽1から送られるスラリーの約10〜300%を第
−水和槽2に循環し、残りは熟成槽4に送り第一、第二
水和槽と同一条件で約1時間保持して熟成による結晶の
均一化をはかる。
About 10 to 300% of the trihydrate slurry generated in the second hydration tank 3 is sent as seed crystals from the neutralization tank 1 and circulated to the first hydration tank 2, and the rest is sent to the ripening tank 4. The first and second hydration tanks are kept under the same conditions for about 1 hour to ensure uniform crystal formation through ripening.

熟成槽4で熟成を完了した三水石膏スラリーは分離機5
にて濾過により粗大な厚みのある三水石膏結晶をライン
11より得る。
The trihydrate gypsum slurry that has been matured in the aging tank 4 is transferred to the separator 5.
Coarse and thick trihydrate crystals are obtained from line 11 by filtration.

分離ろ液はp液槽6に貯蔵され、一部または全量をライ
ン12より中和槽1に送り、原料半水石膏のスラリー化
に供す。
The separated filtrate is stored in a p-liquid tank 6, and a part or all of it is sent to the neutralization tank 1 through a line 12, where it is used to slurry the raw material gypsum hemihydrate.

以上のように、本発明によれば酸分の変動の激しい副生
半水石膏に対して、水利反応開始前の誘導期間内に中和
工程を設けるという簡単な手段のみで、焼石膏とした場
合に物性に影響を与え排液の後処理にも困る高価な媒晶
剤を使用することなく、粗大な厚みのある三水石膏を得
ることができるものである。
As described above, according to the present invention, gypsum hemihydrate, a by-product whose acid content fluctuates rapidly, can be converted into calcined gypsum by simply carrying out a neutralization process within the induction period before the start of the water utilization reaction. This makes it possible to obtain coarse and thick trihydrate gypsum without using an expensive crystal modifier that affects physical properties and poses problems in post-treatment of waste liquid.

次に本発明の実施例を示す。Next, examples of the present invention will be shown.

実施例 1 湿式リン酸製造工程より副生ずる半水石膏を、第1図に
示す工程にしたがい三水化した。
Example 1 Gypsum hemihydrate, a by-product of the wet phosphoric acid production process, was converted to trihydrate according to the process shown in FIG.

まず中和槽1にて、蒸気加温で約60℃に保持した三水
石膏分離ろ液18(1?/時間、工水801/時からな
る温水中に、半水石膏ケーキ(付着水分12%)を10
8kg/時間の割合で投入し、石灰乳でpHを8〜11
に調整し約10分の滞在時間を与えた後、循環スラIJ
−1501/時間を含む第一、第二水和槽2,3へ送り
、蒸気加温で約60℃に保持し、スラリー濃度30%、
pH7〜7.5にて約3時間滞在させ、次いで約1時間
熟成槽に滞在させ、生成した三水石膏スラリーを遠心分
離機にて分離した。
First, in the neutralization tank 1, a hemihydrate gypsum cake (adhered moisture 12 %) to 10
Inject at a rate of 8 kg/hour and adjust the pH to 8-11 with lime milk.
After adjusting for about 10 minutes, the circulating slug IJ
The slurry was sent to the first and second hydration tanks 2 and 3 containing -1501/hour, maintained at about 60°C by steam heating, and the slurry concentration was 30%.
The mixture was kept at pH 7 to 7.5 for about 3 hours, and then kept in an aging tank for about 1 hour, and the resulting trihydrate slurry was separated using a centrifuge.

得られた三水石膏ケーキは107ゆ7時間(付着水分9
%)で、縦200μ×横100μ×厚み50μにおよぶ
粗大な厚みのある菱面体板状結晶からなっていた(第2
図、写真)。
The obtained gypsum trihydrate cake was heated for 107 hours (adhered moisture 9
%) and consisted of coarse rhombohedral plate crystals measuring 200μ in length x 100μ in width x 50μ in thickness (second
Figures, photos).

分離ろ液250 l/時間のうち701/時間は系外へ
放出した。
Of the 250 l/hour of separated filtrate, 701/hour was discharged to the outside of the system.

比較例 1 実施例1における中和槽なしに、pH7〜7.5に調整
した第−水和槽に直接半水石膏、王水、アルカリ分等を
導入する以外は、実施例1と同一条件で実験を行なった
が、水和速度が犬で得られた結晶は第3図の写真に示す
ような、縦50μと横20μ×厚み5μの小さな厚みの
ない菱面体板状晶であった。
Comparative Example 1 Same conditions as Example 1 except that gypsum hemihydrate, aqua regia, alkali, etc. were directly introduced into the first hydration tank adjusted to pH 7 to 7.5 without the neutralization tank in Example 1. The crystals obtained with a hydration rate of dog were small, thin rhombohedral plate crystals measuring 50 μm long, 20 μm wide x 5 μm thick, as shown in the photograph in Figure 3.

比較例 2 実施例1における中和槽なしに、直接第一水和槽のpH
を8〜9に調整して実験を行なった以外は、実施例1と
ほぼ同一操作を行なった。
Comparative Example 2 The pH of the first hydration tank was directly adjusted without the neutralization tank in Example 1.
Almost the same operation as in Example 1 was performed, except that the experiment was conducted with the value adjusted to 8 to 9.

この場合は約4時間の滞在によっても水和か完了しない
場合が多く(第4図写真参照)、得られる結晶も不均一
で比較的小さな菱面体板状晶であった(第5図写真参照
)。
In this case, hydration is often not completed even after staying for about 4 hours (see the photo in Figure 4), and the crystals obtained are heterogeneous and relatively small rhombohedral plate crystals (see the photo in Figure 5). ).

いずれもしても水利速度が非常に広範囲に不規則変化を
起こし、連続操業は事実上、不可能であった。
In either case, the rate of water use varied widely and irregularly, making continuous operation virtually impossible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明方法の概略を示すフローシートであり、
第2図は本発明で得られた三水石膏の結晶の状態を示す
写真であり、第3,4および5図は比較例で得られた三
水石膏の結晶の状態を示す写真である。
FIG. 1 is a flow sheet showing an outline of the method of the present invention,
FIG. 2 is a photograph showing the state of trihydrate gypsum crystals obtained in the present invention, and FIGS. 3, 4, and 5 are photographs showing the state of trihydrate gypsum crystals obtained in a comparative example.

Claims (1)

【特許請求の範囲】[Claims] 1 付着酸分および包含酸分を含有する半水石膏に、全
酸分とほぼ当量のアルカリ分を加えて温水中で水和反応
させて三水石膏を得る際に、水和反応開始の誘導期間内
においてアルカリ領域で付着酸分と相当量のアルカリ分
の中和反応を完了させた後、別の槽において種晶共存下
に水和反応および包含酸分と残存アルカリ分との中和反
応を完了させる二段階反応からなることを特徴とする三
水石膏結晶の製造法。
1. When obtaining gypsum trihydrate by adding an alkali component approximately equivalent to the total acid content to gypsum hemihydrate containing attached acid content and included acid content and causing a hydration reaction in warm water, induction of the initiation of the hydration reaction is performed. After completing the neutralization reaction of the adhering acid content and a considerable amount of alkali content in the alkaline area within the period, a hydration reaction and a neutralization reaction of the included acid content and residual alkali content are carried out in the presence of seed crystals in another tank. A method for producing trihydrate crystals characterized by comprising a two-step reaction in which the following steps are completed.
JP8271080A 1980-06-20 1980-06-20 Manufacturing method of dihydrate gypsum crystals Expired JPS595527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8271080A JPS595527B2 (en) 1980-06-20 1980-06-20 Manufacturing method of dihydrate gypsum crystals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8271080A JPS595527B2 (en) 1980-06-20 1980-06-20 Manufacturing method of dihydrate gypsum crystals

Publications (2)

Publication Number Publication Date
JPS5711822A JPS5711822A (en) 1982-01-21
JPS595527B2 true JPS595527B2 (en) 1984-02-06

Family

ID=13781953

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8271080A Expired JPS595527B2 (en) 1980-06-20 1980-06-20 Manufacturing method of dihydrate gypsum crystals

Country Status (1)

Country Link
JP (1) JPS595527B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5230140B2 (en) * 2007-08-09 2013-07-10 株式会社トクヤマ Method for producing dihydrate gypsum
BRPI0916593B1 (en) * 2008-07-31 2019-10-22 Yoshino Gypsum Co process for continuous modification of dihydrate plaster

Also Published As

Publication number Publication date
JPS5711822A (en) 1982-01-21

Similar Documents

Publication Publication Date Title
WO2018032911A1 (en) Method for preparing feed grade calcium hydrophosphate from waste liquid comprising phosphoric acid
JPH0367967B2 (en)
US4088738A (en) Process for producing phosphoric acid using mixed acid feed and a dicalcium phosphate intermediate
JPS595527B2 (en) Manufacturing method of dihydrate gypsum crystals
US2264448A (en) Process for removing suspended, emulsified, or colloidally dissolved materials from water
US3441512A (en) Yttrium vanadate europium phosphor preparation by precipitation using ammonium carbonate
JPS62250990A (en) Treatment of waste water containing phosphate ion
JPS59137317A (en) Manufacture of needlelike alpha-hemihydrate gypsum
US1984146A (en) Production of disodium phosphate
JP2002274847A (en) Method of preparing needle zinc oxide
US4113835A (en) Process for preparing pure synthetic calcium sulfate semihydrate
US2226568A (en) Process for manufacturing iodoalkaloids
CN111847496A (en) Preparation method of stable-state copper hydroxide
US2515353A (en) Method of treating sugarcontaining solutions
JPS55167114A (en) Manufacture of hydroxyapatite
US2259638A (en) Process of inhibiting the hydration of anhydrous calcium sulphate
SU806622A1 (en) Method of purifying technological solutions from fluorine and aluminium
JP4343467B2 (en) Method for producing aluminum sulfate
KR800000426B1 (en) Method for recovering and exploiting waste of the chromic anhydride production
JPS63265805A (en) Manufacture of aluminum phosphate
JPS5811362B2 (en) Production method of anhydrous dicalcium phosphate
US2132449A (en) Crystalline ferric sulphate and method of preparing the same
SU1813710A1 (en) Method of sodium-zinc metaphosphate producing
JPS5913448B2 (en) Method for producing bulky calcium sulfate dihydrate needle crystals and apparatus used in the method
JPS59449B2 (en) Method for producing basic aluminum solution